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Supplementary material

Appendix overview
We provide in section 1 computational details regarding the normalization of
Euclidean loss provided in Spatial Embedding of RGB and Pose (section 3.2
(II)). Section 2 provides the details of the baseline with LSTM pose backbone
with or without coupler in Table 2 & 4 from the ablation studies. Section 3
provides the details of the divergence losses used for comparing with Normalized
Euclidean loss in Table 3 from ablation studies. Finally, we provide some more
insights about VPN in section 4 to illustrate its effectiveness.
For convenience, we use the same notation as in the main paper for this supple-
mentary material.

1 Details on normalization of Euclidean loss

In equation (4), T̂vfs = Tvfs
||Tvfs||2 = fe

||fe||2 and T̂pz1 =
Tpz1
||Tpz1||2 = Pe

||Pe||2 are the

feature representations projected to the unit hypersphere. Here, we compute the
norm ||fe||2 and ||Pe||2 using

||fe||2 =
√
Σif2ei + ε & ||Pe||2 =

√
ΣiP 2

ei + ε (1)

where ε is a small positive value to prevent dividing zero.

2 LSTM Pose backbone with or without coupler baselines

For the LSTM Pose Backbone in Table 2 & 4, we use a 3-layer stacked LSTM,
pre-trained for action classification, as a Pose Backbone by freezing the weights
of their cell gates following [2]. The output feature vector h∗ is computed by
concatenating all the LSTM output features over time. To have a fair comparison
with our GCN Pose Backbone, we also introduced residual connections between
the original pose input and the LSTM output tensor. However, these residual
connections do not improve the action classification accuracy.

For the experiments in Table 2 to implement the attention network with-
out the coupler, we do not perform the step AST = inflate(AS)◦inflate(AT ).
Instead, we multiply the attention weights inflate(AS) and inflate(AT ) sep-
arately with the RGB feature map f in two streams following [2]. Finally, the
modulated feature maps from both the streams are concatenated to classify the
actions.
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3 Baselines with KL divergence loss

In Table 3, we compare different forms of KL divergence loss with normalized
euclidean loss for spatial embedding of RGB and 3D poses. The KL-divergence
losses DKL(fe||Pe) and DKL(Pe||fe) for n samples are computed by

DKL(fe||Pe) =

n∑
i=1

f ielog(
f ie
P i
e

) (2)

DKL(Pe||fe) =

n∑
i=1

P i
e log(

P i
e

f ie
) (3)

where f ie and P i
e are visual and pose embedding of the ith input sample.

Finally, the bi-directional KL-divergence loss is given byDKL(fe||Pe)+DKL(Pe||fe).

4 Detailed qualitative analysis of VPN

In this section, we provide illustrations to show the impact of each VPN com-
ponents in section 4.1, superiority of VPN compared to other representative
baselines in section 4.2, and some result visualization to highlight the solved and
remaining challenges in ADL.

4.1 Illustration to show the impact of VPN components

In fig. 1, we illustrate a set of graphs showing the top-5 improvement of action
classification accuracy using different components of VPN compared to I3D base-
line. As discussed in the ablation studies of the primary paper, each component
in VPN is critical for good performance on ADL recognition.

– The spatial embedding provides an accurate alignment of the RGB images
and the 3D poses. As a result, the recognition performance of the fine-grained
actions improves compared to its counterpart without embedding (see fig. 1
(a)).

– The GCN pose backbone of the attention network, not only provides a strat-
egy to globally optimize the recognition model but also takes the human joint
configuration into account for computing the attention weights. This further
boosts the action classification performance (see fig. 1 (b)).

– The spatio-temporal coupler of the attention network provides discriminative
spatio-temporal attention weights which enables the recognition model to
better disambiguate the actions with similar appearance (see fig. 1 (c)).

4.2 Illustration to show the superiority of VPN

We illustrate in fig. 2, the top-5 per-class classification improvement compared
to baseline I3D [1] and to an attention mechanism (Separable STA [2]) from the
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Fig. 1. Graphs illustrating the superiority of each component of VPN compared to
their counterparts (without the respective components). We present the Top-5 per
class improvement for (a) VPN with embedding vs without embedding (only Spaital
Attention), (b) VPN with GCN vs LSTM Pose Backbone, and (c) attention in VPN
with vs without spatio-temporal coupler.

state-of-the-art, utilizing 3D poses. The significant accuracy improvements for
actions with subtle motion like hush (+52.7%), staple book (+40.7%) and reading
(+36.2%) as depicted in fig. 2 (a) illustrate the efficacy of VPN for fine-grained
actions. It is worth noting that VPN improves further the classification of actions
possessing similar appearance as compared to separable STA in fig. 2 (b). For
example, actions like clapping (+44.3%) and flicking hair (+19.1%) are now
discriminated with better accuracy. Further, in fig. 2 (c) we present a radar for
the average mis-classification score of few action-pairs. The smaller area under
the curve for VPN compared to I3D baseline and Separable STA shows that it is
able to better disambiguate the action-pairs even with low inter-class variation.
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Fig. 2. Graphs illustrating the superiority of VPN compared to the state-of-the-art
methods. We present the Top-5 per class improvement for VPN over (a) I3D baseline
and (b) Separable STA. In (c), we present a radar for the average mis-classification score
of few action-pairs: lower scores indicate lesser ambiguities between the action-pairs.

4.3 Result visualization

In this section, we provide the confusion matrix for action classification on NTU
RGB+D 120 and Toyota Smarthome using VPN. In fig 3, we present the confu-
sion matrix of VPN on NTU RGB+D (on right) and a zoom of it around the red
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bounding box (on left). We also present the corresponding zoom of the confusion
matrix of I3D. We are particularly interested in the mis-classifications performed
by VPN and thus, we zoom into the region with relatively low classification ac-
curacy. We observe that actions like staple book and taking something out of
bag were confused with cutting papers and put something into a bag respec-
tively when classified with I3D. However, with VPN these actions with similar
motion are now better discriminated, improving their classification accuracy by
approximately 42% and 27% respectively.

Similarly, in fig. 4 (a), we present the confusion matrix of VPN on Toyota
Smarthome dataset. In fig. 4 (b), we show the poses for some images belonging
to action videos mis-classified by I3D. Thanks to the high quality 3D poses for
these videos, now VPN can correctly classify these actions taking the human
topology of the 3D poses into account. We provide some visual results in fig. 5
where VPN outperforms I3D baseline. We notice that actions like Drink from
glass are not recognized due to extremely low number of training samples. We
further notice that actions like using tablet are recognized with low accuracy
of 13% and largely confused with using laptop. However, I3D completely mis-
classifies the action using tablet. We also observe that still few action classes are
recognized with extremely low classification accuracy. We infer that these poor
classification results on certain videos are due to occlusion, low resolution of the
actions and low quality poses as illustrated in fig 6.

VPN

VPN

Confusion Matrix of VPN on NTU RGB+D (CS protocol)

Fig. 3. Confusion matrix of VPN on NTU RGB+D (CS Protocol) on the right. Zoom
of the red bounding box on the left along with the corresponding confusion matrix of
I3D.
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Fig. 4. (a) Confusion matrix of VPN on Toyota Smarthome (CS protocol) (b) Illustra-
tion of poses for activities mis-classified with I3D but correctly classified with VPN.
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Fig. 5. Visual results from NTU RGB+D 120 where VPN outperforms I3D.
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Fig. 6. Illustration of the remaining challenges in Toyota Smarthome with images from
activities (indicated below) and their corresponding challenges (indicated on the top)
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