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Abstract. Vision-and-Language Navigation (VLN) requires an agent
to find a specified spot in an unseen environment by following natural
language instructions. Dominant methods based on supervised learning
clone expert’s behaviours and thus perform better on seen environments,
while showing restricted performance on unseen ones. Reinforcement
Learning (RL) based models show better generalisation ability but have
issues as well, requiring large amount of manual reward engineering is
one of which. In this paper, we introduce a Soft Expert Reward Learning
(SERL) model to overcome the reward engineering designing and gen-
eralisation problems of the VLN task. Our proposed method consists of
two complementary components: Soft Expert Distillation (SED) module
encourages agents to behave like an expert as much as possible, but in
a soft fashion; Self Perceiving (SP) module targets at pushing the agent
towards the final destination as fast as possible. Empirically, we evaluate
our model on the VLN seen, unseen and test splits and the model out-
performs the state-of-the-art methods on most of the evaluation metrics.

Keywords: Soft Expert Distillation, Self Perceiving Reward, Vision-
and-Language Navigation

1 Introduction

Vision-and-Language Navigation (VLN) tasks [2] define a comprehensive prob-
lem: an embodied agent is placed at a spot in a photo-realistic house and the
agent is called to navigate to a specific spot based on given natural language
instructions. Rising research interests have been put into the VLN since multi-
modal data are involved. One of the biggest challenges for this task is to ask
an agent to perform appropriate actions in an unseen environment. This in turn
requires the agent to learn human behaviours to understand and explore the
scene, instead of memorising it.

Current VLN models [2, 4, 7, 9, 10] rely much on behavioural cloning (BC)
that treats expert behaviours as strong supervision signals. By doing this, it
enables the agents to gain better performance on seen scenarios, however the
agents meet trouble on unseen environments due to the error accumulation. As
stated in [14], teacher forcing models suffer from distribution shift issues because
of the greediness of imitating demonstrated expert actions.
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Some other works [16, 19], instead, adopt reinforcement learning (RL) along
with supervised learning methods intending to overcome the error accumulation
issue caused by hard behavioural cloning. However, the reward engineering in
RL suffers issues: the reward functions designed at one environment/task may
not generalise well to other scenarios; in many practical and complicated tasks,
it is hard to define concrete reward functions as game scores. What is more,
a hand-crafted reward is defined to target at a certain functionality, it thus
inevitably incurs lacking comprehensive considering of the system dynamics.
The designing of a reward function requires careful manual tuning and it also
suffers generalisation problem due to environment-oriented reward designing,
which may affect the model performance while inference.

In this paper, we propose a Soft Expert Reward Learning (SERL) model to
address above issues. Our proposed method consists of two orthogonal parts: the
Soft Expert Distillation (SED) module that portrays the expert data distribution
by distilling knowledge from a random projection space and a Self Perceiving
(SP) module that encourages agents to reach the goal as soon as possible. For
the SED module, intuitively, a higher reward should be assigned to an agent who
takes an action “close” to its expert. To measure the similarity continuously, a
density function was adopted to reflect this process in a soft manner rather than
leveraging behaviour cloning directly. This density function is implemented to
calculate the similarity between observation-action pairs of the expert and the
agent in a randomly projected space, by doing which it transforms the expert
behaviour into a soft reward signal for the reinforcement learning branch. For the
Self Perceiving (SP) module, our model first predicts the schedule to the target
location and then utilises the predicted schedule information as an additional
reward. As a result, the agent can perceive its current schedule and use it to
further pushing itself forward to the goal.

The two newly designed reward modules work complementarily: the Soft
Expert Distillation (SED) reward encourages agents to behave as an expert, but
the soften behaviour-imitation process makes it more robust; Self Perceiving
(SP) module targets at pushing the agents towards the final destination by
introducing the current schedule information as another intrinsic reward signal.
In summary, this paper makes the following three main contributions.

– We propose a Soft Expert Distillation (SED) formulation, which is very
simple yet offers a highly effective reward signal for obtaining expressive
navigational ability. The SED reward encourages the agent to have a better
alignment with its expert in a soft manner.

– We introduce another complementary reward signal with aforementioned
SED reward termed as Self Perceiving reward that can help the agent use
the current schedule information to push itself to reach the destination as
soon as possible.

– As a result, we show our instantiated model termed as SERL that enables
better performance than current state-of-the-art competing methods in both
validation unseen and test unseen set of VLN Room-to-Room dataset [2].
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2 Related Work

2.1 Vision-and-Language Navigation

In order to gain promising performance on Vision-and-Language (VLN) [2] task,
numerous methods have been proposed, as listed in Table 1. Many existing
works adopt supervised learning and behaviour cloning based methods. Seq2seq
[2] model is the most naive baseline that utilises an LSTM-based sequence-
to-sequence architecture with attention mechanism to predict the next action.
Speaker-Follower [4] model designs a language model (“speaker”) to learn the
relationship between visual and language information, as well as a policy net-
work (“follower”) to take actions based on multi-modal inputs. It uses “speaker”
to synthesise new instructions for data augmentation and help the policy net-
work to select routes. [7] claims its proposed FAST model is able to balance
local and global signals while exploring an unobserved environment. It enables
the agent act greedily but allows the agent backtrack if necessary according to
global signals. [9] proposes a visual-language co-grounding framework named as
self-monitoring model to better fuse the instructions and visual inputs. Building
upon self-monitoring model, [10] provides a strategy for the agent to retrieve
and re-choose paths based on monitored progress.

Reinforcement learning [12, 15, 8] is another paradigm for parameter opti-
misation. Wang et al. [19] propose a novel Reinforced Cross-modal Matching
(RCM) via reinforcement learning to enforce cross-modal matching locally and
globally along with imitation learning. In RCM model, an extrinsic reward mea-
suring the reduced distance toward the target location after taking actions,
as well as an intrinsic cross-modal matching reward between trajectories and
instructions, are proposed. Most recently, [16] introduces a novel environment
dropout to drop features channel-wisely targeting at feature maps inconsistency
issue through combining behaviour cloning and reinforcement learning.

However, these approaches require either exact imitation of the expert demon-
strations or careful reward designing. Behaviour cloning techniques unfortu-
nately lead to error accumulation and further result in catastrophic failure while
the agent is exploring unknown environments. Moreover, reward engineering re-
quires careful manual tuning, which motivates us to propose SERL model to
learn reward functions from the expert distribution directly.

Table 1. Performance Evaluation across different methods.

Methods
Behaviour Reinforcement Reward Reward
Cloning Learning Engineering Learning

Random [2]
Seq2seq [2] X
Speaker-Follower [4] X
FAST [7] X
Reinforced Cross-Modal [19] X X X
Self-Monitoring [9] X
Regretful Agent [10] X
EnvDrop [16] X X X
SERL (Ours) X X X X
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2.2 Reward Learning

Reward engineering is commonly used to design reward functions for reinforce-
ment learning algorithms. In conventional reinforcement learning tasks, such as
playing Atari games [3], rewards are individually shaped by each game simula-
tors. However, reward engineering has obvious drawbacks — the reward func-
tions are designed targeting at different environments which is not generic. There
are some methods have been proposed to solve this problem. Recently, Inverse
reinforcement learning (IRL) [13] framework is proposed to extract reward func-
tions from expert behaviours by updating both of the reward functions and the
policy networks. Random Expert Distillation (RED) [18] proposed an expert
policy support estimation method to distil rewards from given expert trajec-
tories. Generative Adversarial Imitation Learning (GAIL) [6] is also a recently
proposed model which tries to bypass the reward function and learn experts
behaviour directly with generative adversarial networks.

Comparing with the IRL and GAIL models, our proposed Soft Expert Dis-
tillation module learns expert demonstration data distribution directly by com-
paring the output similarity between a randomised network and a distillation
network, rather than utilising iterative model updating and generative adver-
sarial networks. The RED model designs state and action in relatively small
spaces for the Mujoco environment [17] and its driving task; while we design our
SED module in fundamentally different state and action spaces for navigation
in photo-realistic Matterport3D environments. We are the first to introduce soft
expert reward learning framework into Vision-and-Language task.

3 Soft Expert Reward Learning Model

3.1 Overview and Problem Definition

Vision-and-Language Navigation task requires an agent placed at a unknown
photo-realistic house to understand multi-modal data comprehensively, so that
the agent can navigate to the specified location. The multi-modal data includes
natural image data and natural language instructions. More specifically, after an
agent is spawn, at each time step t the observation of the agent consists of 36
images of panoramic views, denoted as Vt “ tvt,1, vt,2, ..., vt,36u. The navigable
views Nt “ tnt,1, nt,2, ..., nt,k, nt,k`1u are given as well, where k denotes the max-
imum number of navigable viewpoints and nt,k`1 represents “stay” action. A m
words length instruction is given which is denoted as X “ tx1, x2, ..., xmu. Based
on the visual and language information, actions at each time at will be selected
and eventually a trajectory τ “ ta1, a2, ..., aT u is formed. The objective of VLN
task is to find the optimal action a˚t at each step to quickly reach the target loca-
tion, while keep the trajectory τ as short as possible. Since Vision-and-Language
Navigation task is a sequential decision problem, it can be modelled as a Markov
Decision Process (MDP), which is noted as a four-element-tuple (S,A,P,R). S
and A represent state and action sets relatively. P is the environment dynam-
ics and it can be presented in the form Pps, s1q “ P ps1|s, aq. R is the reward
function.
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Fig. 1. The proposed Soft Expert Reward Learning (SERL) framework. After getting
the visual features and language features through the encoder, they are fed into the
decoder to obtain the selected action at for time step t. The training process of SERL
is divided into two parts: a supervised learning branch and a reinforcement learning
branch. We introduce two novel rewards (marked with yellow stars in the figure): Soft
Expert Distillation (SED) reward and Self Perceiving (SP) reward.

In this paper we introduce a Soft Expert Reward Learning model to distil
reward function directly from expert demonstrations and soften the process of
behaviour cloning to alleviate the drawbacks from error accumulation. The struc-
ture of our model is illustrated through Figure 1. We follow a standard Encoder-
Decoder paradigm. The encoder plays the role as a multi-modal data feature
extractor to fetch the features from both visual images and language instruc-
tions. The decoder is a LSTM (long short-term memory) network with attention
mechanism to predict actions according to the abovementioned two branches:
the supervised learning branch helps the agent imitate the expert demonstra-
tion and perceive the current schedule to the target location; the reinforcement
learning branch optimises the outputted action probability distribution from re-
inforcement learning aspects. The key difference of our proposed SERL model
with previous models is that we proposed two novel intrinsic reward signals:
Soft Expert Distillation reward RSED encourages the agent to align with ex-
pert actions but in a soft fashion and Self Perceiving reward RSP motivates the
agent to reach the goal as fast as possible with predicted schedule information.
In the following sections, we will first introduce the Encoder-Decoder structure
and then introduce the two reward functions.

3.2 Encoder-Decoder Structure

Encoder-Decoder structure (as shown in 2) is adopted as the main structure
of our method. Natural image data and natural language instructions are in-
putted to an encoder to extract corresponding features maps. Following the
paper [9, 16], we extract ResNet [5] features of the navigable views concatenated
with the orientation as the visual features V isFt. We then use a Bi-Directional
Long Short-Term Memory (Bi-LSTM) to pull out language features LangFt. The
multi-modal features are fed into a decoder to output the next action probability
vectors later on.
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Fig. 2. Encoder-Decoder Structure of Soft Expert Reward Learning (SERL) frame-
work. After fetching the visual and language features from the encoder, the multi-modal
features are fed into the decoder to obtain cross-modal attentions. Finally, actions will
be chosen according to the attentive features.

Encoder: On the encoder side, after pre-extracting ResNet features of different
views, the feature maps of each navigable view nt,i is attached with an orientation
tag pcos γt,i, sin γt,i, cosϕt,i, sinϕt,iq to form the visual feature V isFt:

V isFt “ concatpresnetpnt,iq, pcos γt,i, sin γt,i, cosϕt,i, sinϕt,iqq, (1)

where concatp.q is a concatenation function.
For the language perspective, after each word of the instruction is tokenised

into a vector, the token vectors are fed into a Bi-LSTM network to extract the
language features LangFt. As Eqn. 2, formally we have

LangFt “ tx
1
1, x

1
2, ..., x

1
mu “ Bi-LSTMptx1, x2, ..., xmuq, (2)

where x1i is the corresponding i-th encoded word tokenised by Bi-LSTM.

Decoder: On the decoder side, after the visual feature V isFt and language fea-
tures LangFt are formed, along with the last cross-modal hidden state ht´1, they
are fed into soft attention layers to fetch the attentive visual and language fea-
tures. Following the work [16], the environment dropout is used on V isFt before
feeding into soft attention layer to obtain feature-wise dropout for consistency
in different views. Formally,

V ĄisF t “ Soft-AttenpEnvDroppV isFtq, ht´1q, (3)

LĄangFt “ Soft-AttenpLangFt, ht´1q. (4)

Together with previous navigated view prevt´1, last cross-modal hidden state
ht´1, cell state ct´1, attentive visual and language features are fed into a LSTM
layer to form the cross-modal hidden state ht and cell state ct at step t. This
step is critical for the model to fuse the visual and language multi-modal signals
to choose the action.

ht, ct “ LSTMpht´1, ct´1, pre
v
t´1, V

ĄisF t, LĄangFtq. (5)

The action probability distribution for the next step is calculated as:

pt “ softmaxpfcpLĄangFt, dropphtqq ¨ V isFtq, (6)
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where dropp.q represents a dropout function. The dot product ¨ is used hereafter
for matrix multiplication operation.

The decoder is connected to two branches: supervised learning branch and
reinforcement learning branch. These two branches optimise the outputted action
probability distribution from two different learning paradigms. In this case, the
total loss function is:

L “ LSL ` LRL. (7)

SL Branch: In the supervised learning branch, the cross-entropy loss between the
predicted action logits and expert actions one-hot vector is calculated to force
the agent to mimic its teacher’s behaviours. This loss is termed as behaviour
cloning loss LBC . Following the work [9], besides the behaviour cloning loss,
another loss to predict current schedule towards the goal is adopted. This loss
is named as schedule loss LSCHE working as an additional supervisory signal.
Formally, the loss function for the supervised learning branch is:

LSL “ LBC ` LSCHE . (8)

where the behaviour cloning loss LBC can be presented detailedly:

LBC “ ´

n
ÿ

i

yactt,i logppt,iq, (9)

where pt and yactt are predicted action logits and expert actions one-hot vector
at step t respectively.

To calculate the LSCHE , the model ought to predict distance improvement
ratio in advance at each step as its current schedule information. Then, L2
distance between predicted schedule and the genuine schedule is chosen as the
loss function. Formally,

LSCHE “ py
sche
t ´ V sche

t q2, (10)

where V sche
t represents the predicted schedule which will be described in detail

in the subsequent section and yschet is the corresponding true schedule value.

RL Branch: As the reinforcement learning branch shown in Figure 1, we adopt
actor-critic algorithm [11] as our reinforcement learning method. For the rein-
forcement learning branch, the training loss LRL can be formally represented
as:

LRL “
ÿ

t

´logpptq ˚ pĎRt ´ vphtqq

loooooooooooooooomoooooooooooooooon

actor loss

`
ÿ

t

pĎRt ´ vphtqq
2

looooooooomooooooooon

critic loss

, (11)

where vp.q is the value function of critic. ĎRt represents the discounted reward
for time step t and it can be formulated as:

ĎRt “ ĘRt`1 ˚ γ `Rt, (12)
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Fig. 3. The Soft Expert Distillation networks structure. Given an expert demonstrated
data point x P RN , it is fed into a weight-fixed randomly initialised neural network
ψpxq; simultaneously, the data point x is inputted into a distillation network φpx; θq

with different structure but same output dimensions with the parameters θ.

in which the γ is the discount factor. The reward Rt is made up of three parts:
an extrinsic reward REXT and another two complementary and newly proposed
reward functions — Soft Expert Distillation (SED) reward RSED and Self Per-
ceiving reward RSP . The total reward function thus can be formalised as:

Rt “ αRSED ` βRSP `REXT , (13)

where (1) SED reward RSED, an automatically learnt reward function through
aligning agent’s behaviours to the provided expert demonstrations. (2) SP re-
ward RSP , a reward function comes from predicted schedule to encourage the
agent to reach the goal as soon as possible. (3) The extrinsic reward REXT

assigns the agent a positive reward, if the agent stops within three-meter from
target or the agent reduces the distance to the goal; otherwise, a negative reward
will be returned. α, β are the trade-off factors of SED reward and SP reward
respectively. The details of individual proposed reward function will be revealed
in the following sections.

3.3 Soft Expert Distillation

Inspired by the work [18], we propose to learn the reward function from inputted
expert demonstration in Vision-and-Language Navigation task. We train a neu-
ral network to predict the output of a random-initialised but frozen network to
distil the expert knowledge. The Soft Expert Distillation networks structure is
shown in Figure 3. The key intuition behind this is: given a certain amount of
random projection information, the representation learner is required to fit the
structure of these given data points in the random projection space to achieve
a similar projected distribution. The learning function is expected to predict
relatively better where more expert data lays. In this case, a strong density
function is formed. It models the likelihood of the agent performing a similar
action with its expert in a situation through distillation. A higher prediction dis-
tance, which results in a low SED reward in turn, will be assigned to unexpected
observation-action pairs that differs from given expert demonstrations. Thus, a
higher reward will be assigned to an agent who takes an action similar with its
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expert. This encapsulation of density function gives us another view of learning
expert demonstrations directly other than [13] and [6].

Precisely, for a given expert demonstrated data point x P RN , we first feed
it into a weight-fixed and random-initialised neural network ψpxq; at the same
time the data point x is inputted into a distillation network φpx; θq with different
structure but same output dimensions. The data is projected to a M -dimensional
new space by a representation learner φ : RN ÞÑ RM with the parameters θ.
We emphasise here, the function capacity of network φ is less than network ψ,
by doing which can prevent overfitting. As we adopt L2 distance as our loss
function, then we formulate the subsequent step as a prediction task and define
a loss function as:

Lsedpxq “ pφpx; θq, ψpxqq
2
, (14)

Empirically, both of ψ and φ are implemented by multi-layer perceptrons.
ψ : RN ÞÑ RM plays the role of a random data mapping function to project
points into a randomly projected space. By doing so, this loss offers a simple
yet powerful supervisory signal for the distillation network to learn semantic-
rich feature representations from given expert data processed by the random
projection function ψ.

In order to distil the expert behaviour distribution, the data points are consist
of expert’s visual observation, language instructions and actions. The equation
is formally shown as:

Lt
sed “ pφptV isFt, LangFt, atu; θq ´ ψptV isFt, LangFt, atuqq

2
. (15)

The SED module preserves semantic-rich information w.r.t. distribution of
expert demonstration for the representation learner. So the module is an ideal
density function to measure the similarity of an agent’s behaviour with the expert
demonstration. Differ from the behaviour cloning process, it is formed in a soft
manner. The SED intrinsic reward function is formally presented as:

RSED “

"

`2, ifDissedt ă“ thresh
´2, ifDissedt ą thresh

(16)

The L2 distance between φptV isFt, LangFt, atu; θq and ψptV isFt, LangFt, atuq
is denoted as Dissedt . Intuitively, if Dissedt is less than the threshold, it repre-
sents the current behaviour of the agent is similar with the expert distribution
where a positive reward should be awarded; otherwise, a negative reward will be
returned. In contrast, behaviour cloning based models encourage the agent to
copy expert demonstrations exactly; while our proposed soft expert distillation
module learns the demonstrated behaviour in a soft manner by depicting the
distribution of expert behaviours. In the case, the agent can retain the expert
knowledge but will not suffer from the error accumulation problem. Thus, it
increases the robustness of the model across various VLN environments.



10 H. Wang et al.

3.4 Self Perceiving Reward

To perceive the schedule information towards the goal is crucial for the agent to
complete the VLN task. A self perceiving module is designed to predict distance
improvement ratio at each step as current schedule information of the agent. In
order to utilise the information more adequately, we take one more step ahead
by making use of this schedule information as another intrinsic reward—self
perceiving reward. Formally, the self perceiving reward is calculated from:

Cattn “ softmaxpfcpht´1q ¨ LangFtq, (17)

RSP “ V sche
t “ σpfcpdropptanhpctq d σpfcpht´1, V ĄisF tqqq, Cattnqq, (18)

where Cattn represents the language attention over different vocabularies
within the instruction sentence. d is the element-wise Hadamard product. Intu-
itively, the Self Perceiving reward indicates the predicted schedule information
toward the destination. The more distance improvement ratio of the current ac-
tion archived, the higher reward ought to be assigned. Moreover, this reward
offers more information of distance change than raw distances. The more self
perceiving reward the agent collected, the closer the agent believes to reach the
target location.

4 Experiments

Following previous works [2, 4, 7, 9, 10, 16, 19], we evaluate our model on the
Room-to-Room (R2R) dataset [2] for VLN task. Furthermore, we test our method
on the VLN test server1 [20] to validate the proposed Soft Expert Reward Learn-
ing Model. Ablation study is further conveyed to examine the contribution of
each individual component of the model. The experimental results show the
effectiveness of the proposed model.

4.1 Experimental Setup

Evaluation Metrics. Currently, a variety of metrics are used to evaluate VLN
models. We adopt the following metrics: Navigation Error (NE) is to measure
the shortest path distance between the stopping position and the goal; Success
Rate (SR) quantifies the rate of success if the agent can stop within three meters
from the target; Oracle Success Rate (OSR) is the success percentage if the agent
can stop at the closest point along its trajectory; the Success rate weighted by
Path Length (SPL) [1] is also adopted to indicate the weighted SR.
Implementation Detail. Following [4, 16], we utilise the ResNet-152 model
pre-trained on ImageNet to extract CNN features as visual inputs. Empirically,

1 The VLN leaderboard address is https://evalai.cloudcv.org/web/challenges/challenge-
page/97/leaderboard/270.
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Table 2. Performance Evaluation across different methods. The first place of each
column is bolded. All of the results are reported on models without beam search, except
FAST [7] model using a beam-search style strategy. The Ò means that the higher the
better; vice versa. The * sign represents data augmentation.

Val Seen Val Unseen Test Unseen
Methods NE Ó SR Ò OSR Ò SPL Ò NE Ó SR Ò OSR Ò SPL Ò NE Ó SR Ò OSR Ò SPL Ò

Random [2] 9.45 0.16 0.21 - 9.23 0.16 0.22 - 9.77 0.13 0.18 -
Seq2seq [2] 6.01 0.39 0.53 - 7.81 0.22 0.28 - 7.85 0.20 0.27 0.18
Self-Monitoring [9] 3.72 0.63 0.75 0.56 5.98 0.44 0.58 0.30 - - - -
Regretful-Agent [10] 3.69 0.65 0.72 0.59 5.36 0.48 0.61 0.37 - - - -
EnvDrop [16] 4.71 0.55 - 0.53 5.49 0.47 - 0.43 - - - -
SERL (Ours) 3.67 0.66 0.71 0.58 4.97 0.50 0.59 0.44 5.70 0.51 0.57 0.47

Speaker-Follower* [4] 3.36 0.66 0.74 - 6.62 0.36 0.45 - 6.62 0.35 - 0.28
RCM* [19] 3.37 0.67 0.77 - 5.88 0.43 0.52 - 6.12 0.43 0.50 0.38
FAST* [7] - - - - 4.97 0.56 - 0.43 5.14 0.54 - 0.41
Self-Monitoring* [9] 3.22 0.67 0.78 0.58 5.52 0.45 0.56 0.32 5.67 0.48 0.59 0.35
Regretful-Agent* [10] 3.23 0.69 0.77 0.63 5.32 0.50 0.59 0.41 5.69 0.48 0.56 0.40
EnvDrop* [16] 3.99 0.62 - 0.59 5.22 0.52 - 0.48 5.23 0.51 0.59 0.47
EnvDrop-Our-Impl* 3.77 0.66 0.72 0.62 5.49 0.49 0.56 0.45 - - - -
SERL* (Ours) 3.20 0.69 0.75 0.64 4.74 0.56 0.65 0.48 5.63 0.53 0.61 0.49

we set the M equal to 128, and set both of the reward trade-off factors α and β
to 0.1. In Soft Expert Distillation networks, the randomised network is made up
of two hidden linear layers with 512 and 256 neurons respectively; the distillation
network has one hidden linear layers with 256 neurons. Between every two linear
layers, both of the randomised network and the distillation network adopt leaky-
relu as their activation function. To prevent overfitting, we early-stopped the
training process of models according to the performance on the validation set.
The Soft Expert Distillation module is not jointly trained with the rest of the
model. This decoupling prevents performance unstableness during training and
increase the robustness of the model.

4.2 Overall Performance

In this section, we convey the evaluation experiments on three individual sets,
validation seen, validation unseen and test set, shown in table 2, to compare the
effectiveness of our proposed soft expert reward learning model with other mod-
els. The comparison is split into two groups: models trained on non-augmented
data and augmented data. Within twelve indicators of validation set and test set,
we achieve ten best results on the non-augmented group and nine best results
on the augmented group, which reveals the effectiveness of SERL model. More
specifically, for the non-augmented group, on validation unseen set, our SERL
model reduces the navigation error by 7%, increase the success rate by 4% and
SPL by 2%. Our method also receives remarkable results on test unseen set.
Similarly for the augmented group, on validation unseen set, it is clear that our
model is the best performer. SERL model reduces the navigation error by 5%
and gets 0.56 successful rate. Our model also increases 10% for the oracle suc-
cessful rate and gets 0.48 SPL respectively compared to the second-best model.
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Table 3. Ablation study of different components in SERL model. We evaluate the
results on validation seen set and validation unseen set. The best result are bolded.

Val Seen Val Unseen
Models SED SP BS NE Ó SR Ò OSR Ò SPL Ò NE Ó SR Ò OSR Ò SPL Ò

1 3.77 0.66 0.72 0.62 5.49 0.49 0.56 0.45
2 X 3.67 0.66 0.74 0.63 5.10 0.52 0.58 0.48
3 X 3.19 0.67 0.72 0.61 4.93 0.53 0.61 0.46
4 X X 3.20 0.69 0.75 0.64 4.74 0.56 0.65 0.48
5 X X X 2.47 0.77 0.99 0.02 3.01 0.71 0.99 0.02

On the test unseen set, our SERL model can achieve performance better than,
or comparably well to, the other competing methods in Table 2. When com-
pared to the second-best model, the model increases 3% for the oracle successful
rate and 4% SPL respectively. The FAST [7] model applies a beam-search style
strategy, thus it is expected to produce better successful rate (SR) but it leads
to a relatively worse SPL.

4.3 Ablation Study

Ablation Study of Different Components Performance This section ex-
amines the contribution of each component of SERL model. Different compo-
nents are added to the baseline model. The ablation results are represented as
Table 3. The results are shown on validation seen and unseen sets and the mod-
els are trained with the same data augmentation strategy. In the first column,
SED represents our proposed soft expert distillation module, while SP is the self
perceiving module. BS represents beam search setting. We check different com-
ponents in the second column to examine each variant. Row model #1 shows the
performance of the environment dropout methods that we implemented. From
the table we can clearly find that when comparing to row #1, excluding the
beam search setting on the validation unseen set, the model with SED module
alone (method #2) achieves higher SR by 6% and increases SPL score from 0.45
to 0.48; the model with SP module alone (#3) receives better success rate as
0.53 from 0.49 and better SPL score as 0.46 from 0.45. This is because the SED
module encourages the agent to have better alignment with expert trajectories,
but in a soft way; the SP module pushes the agent to find the target location as
fast as possible. The full SERL model (method #4) combines the advantages of
individual module and it achieves 0.56 of successful rate and 0.48 of SPL, which
outperforms other variants.

Additionally, beam search is another popular Vision-and-Language Naviga-
tion setting. In the beam search setting, the agents are given the chance to
choose the trajectories with the highest success rate. In this case, it can further
boost the success rate of our SERL model (method #5) to 0.77 on validation
seen set and 0.71 on validation seen set. Moreover, SERL model receives 0.70 in
successful rate on the test unseen set with beam search.
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Fig. 4. The sensitivity test of our Soft Expert Reward Learning (SERL) model. The
figures show the SR and SPL performance of the model on validation unseen set with
different α and β values.

Sensitivity Test This section presents the performances of SERL model with
different α and β weights to trade-off the proposed individual intrinsic reward.
Figure 4 shows the sensitivity test results, which is evaluated in SR and SPL on
validation unseen set. It is clear that SERL generally performs stably w.r.t. the
use of different α and β weights. This demonstrates the general stability of our
SERL method by setting different hyper-parameters. In general, α “ β “ 0.1
is recommended for SERL to achieve effective visual and language navigation
performance.

4.4 Visualisation

Figure 5 shows the actions taken by our baseline agents and proposed SERL
agent, respectively. The attention maps over the instruction at each step are
also illustrated in the figure. On the left column of the figure, the agent is
trained by behaviour cloning solely and it performs correctly at the first three
steps. But the agent takes a wrong action at the fourth step and it results in
failure navigation in the next three steps. This is because subtle errors will be
accumulated at each step by just copy expert demonstrations in the training
phase. However, our SERL model can attend over the instruction in a better
way and it does not encounter the error accumulation problem in the case.

5 Conclusions

In this paper, we propose a Soft Expert Reward Learning (SERL) model to
address the behaviour cloning error accumulation and the reinforcement learn-
ing reward engineering issues for VLN task. From the experimental results, we
show that our SERL model gains better performance generally than current
state-of-the-art methods in both validation unseen and test unseen set on VLN
Room-to-Room dataset. The ablation study shows that our proposed the Soft
Expert Distillation (SED) module and the Self Perceiving (SP) module are com-
plementary to each other. Moreover, the visualisation experiments further verify
the SERL model can overcome the error accumulation problem. In the future,
we will further investigate more reward learning methods on VLN task.
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(a) Our Baseline (b) SERL Model

Fig. 5. The visualisation of our proposed Soft Expert Reward Learning (SERL) model.
The figure shows the comparison between SERL model and the baseline model. The
yellow colours in the sentence represents the attention maps over the instruction. The
depth of the colours indicates the strength of the attention. The darker the colours, the
more attention is put on the specific vocabularies. The check mark means the agents
take a same action as the expert; the cross mark represents the opposite.
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