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1 Additional discussions with related works:

Though some recent works [6,1,4] propose to model landmark relationship, our
problem/method has large differences from them. Tompson et al. [6] propose
to use spatial information in a post-processing step to filter outliers, while we
leverage visual-spatial joint features for landmark regression. Also, the PAF pro-
posed by Cao et al. [1] focuses on a different task of assembling detected key
points for multi-person parsing. Zhao et al. [9] focus differently on predicting 3D
poses from 2D joints. Their 2D joints are generated by a pre-trained 2D pose
estimation network. Besides, their network structure is predefined by a fixed ad-
jacency matrix while we actively learn the structures. Payer et al. [4], propose
a spatial configuration branch to disambiguate candidates from the heatmap
predictions. There is no explicit landmark structure modeling. In contrast, we
explicitly model shape through a graph representation with learnable connectiv-
ity.

Among the SOTA, WING [2] is pure coordinate-based, while LAB [8] and
AWING [7] integrate face boundary information via heatmap, which is their key
contributions. The gap between WING and AWING is significant on WFLW,
which is a more challenging dataset than 300W in terms of dataset scale, pose
variations, occlusions, etc. Our method performs significantly better than WING
on WFLW by reducing the failure rate by 50%, and is competitive to AWING. In
addition, WING focuses on loss design, which is orthogonal and complementary
to our novelty. By employing WING loss in our method, our performance can
be further improved (e.g., on 300W, inter-pupil NME from 4.27 to 4.21 and
inter-ocular NME from 3.04 to 3.01). While LAB and AWING utilize global
representation, human knowledge on face structure via a boundary heatmap is
injected, leading to task-specific solutions. In contrast, our method is a general
landmark detection method to model the structural information via a self-learned
graph structure.
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RCPR(HELEN,LFPW), Error: 8.76%, Failure: 20.12%
TCDCN(HELEN,LFPW,AFW,MAFL), Error: 7.66%, Failure: 16.17%
HPM(HELEN,LFPW), Error: 6.72%, Failure: 6.71%
SAPM(HELEN), Error: 6.64%, Failure: 5.72%
CFSS(HELEN,LFPW,AFW), Error: 6.28%, Failure: 9.07%
Ours(HELEN,LFPW,AFW), Error: 4.22%, Failure: 0.39%

Fig. 1: Cumulative Errors Distribution (CED) curve results on the COFW-68
test set.

2 CED Curve:

Following previous works [8,5], we report Cumulative Errors Distribution (CED)
curve result on cross-evaluations of COFW-68 test set. Recall that the success
rate measures the proportion of images that have a localization error below
a certain threshold [3]. Thus, given a range of thresholds, the corresponding
success rates will form a distribution which is considered as Cumulative Error
Distribution (CED). For clearer comparison, we include both Normalized Mean
Error (Error) as well as the Failure Rate (i.e. 1 − SuccessRate) (Failure) at
threshold of 0.1. As we can see from Figure 1, our model outperforms previous
methods by a large margin, especially in Failure Rate which is reduced to 0.39%
for the first time. The comparison of numerical NME and Failure Rate values
with the other state-of-the-arts can be found in Table 3 in our submitted ECCV-
20 main paper.

3 Ablation Studies

Here we conduct three more types of ablation studies, namely: (1) The compar-
ison of the transformation method used in GCN-global. (2) The effectiveness of
the proposed GCN modules.(3) The comparison of different number of regression
steps used in GCN-local. Results are recorded in Table 1.
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Table 1: Ablation studies on the proposed model with 300W fullset under Inter-
Ocular normalization.

Different Transformations Affine Transformation Perspective Transformation (Ours)
NME 3.13 3.04

Effectivenes of GCN modules Replace GCN-global with CNN Replace GCN-local with MLP
NME 3.12 3.18

Different GCN Steps Step=1 Step=3 (Ours) Step=5 Step=7
NME 3.24 3.04 3.07 3.11

Choice of transformations: We experiment two types of GCN-global choices:
(1) Adopt Affine Transformation. In this case, the performance of our GCN-
global module drops to 3.13.(2) Adopt Perspective Transformation. We achieve
the best result as 3.04 which is also reported in our main paper. This indicates
that GCN-global can better locates ROIs with the more flexible perspective
transformation.

Effectiveness of GCN modules: We examine the effectiveness of the pro-
posed GCN modules by: (1) Replacing GCN-global with a CNN block: we replace
the GCN-global module with a 2-layer CNN (Conv/BN/ReLU) with Global
Average Pooling predicting 9 transformation parameters. The average error in-
creased from 3.04 to 3.12. (2) Replacing GCN-local with a MLP block: we remove
the connectivity used in GCN-local, making it a simple MLP (FC/ReLU). The
average error increased from 3.04 to 3.18. These indicating the importance of
the proposed GCN modules.

Number of steps: We analyze different choices of steps for GCN-local.
Results are shown in Table 1. The overall performance improves as the number of
steps increases indicating the benefit of cascading multiple regressions. The best
performance is achieved when GCN-local is implemented with three iterations.

4 More Settings:

We describe more settings for training the model. Adam optimizer is adopted
with initial learning rate lr = 0.0001. The learning rate decreases at every 100
epochs. L2 penalty is applied to the training parameters with rate 0.0001. Margin
for training GCN-global is set to m = 0.1 for Face300W, m = 0.15 for WFLW,
m = 0.15 for three Medical datasets. All data augmentations we used: (1) Rotate
input image with a random angle in [-30, 30]. (2) Random flip the input image
horizontally. (3) Scale input image with a random factor in [0.75, 1.25].
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