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In this supplement, we further discuss the specificity of the obtained domain-
specific masks (Section. 0.1). Following this, we discuss how sparsity as an incen-
tive compares with sIoU in terms of learning a balance between specificity and
invariance and in terms of performance (Section. 0.2). In Section. 0.3, we dis-
cuss alternative techniques for directly ensembling masks instead of the output
predictions in response to each mask. In Section. 0.4, we provide more extensive
comparisons to prior work on the PACS [10] dataset. Finally, in Section. 0.5,
we describe in detail the implementation and other details associated with our
experiments. We use C, I, P, Q, R, S to denote the domains – clipart, infograph,
painting, quickdraw, real and sketch respectively on the DomainNet [17] dataset.

0.1 Domain Specificity
As discussed in Section. 3.2 (main paper), we incentivize domain specificity by
optimizing the soft-IoU (sIoU) objective (see Eqn. 2 in main paper). To under-
stand the extend of domain-specificity achieved at convergence, we measure the
Jaccard Similarity Coefficient [7] (also known as IoU) among pairs of discrete
source domain masks, which we obtain by thresholding the soft-mask values
per-domain at 0.5, i.e., m = 1md>0.5 for domain d.

Fig. 1 shows the IoU among pairs of source domain masks in addition to
the overall average on DomainNet for the I,P,Q,R,S→C and C,I,P,R,S→Q shifts
with AlexNet as the backbone architecture (λO = 0.1 during training). Note
that the above metric provides information about the fraction of overlapping
neurons which are shared among pairs of source domains but only considers
them among the ones which are activated (turned on) based on the discrete
masks m. Therefore, in addition to the IoU statistics (as represented by the
bars), we also report the fraction of activated neurons on average. We note that
domain specificity does emerge by learning masks in the manner described in
Sec. 3.2 of the main paper, as evident by the IoU measures across pairs being
lower than – (1) ∼96% for the maximal pairwise IoU and (2) ∼92% for overall
IoU measures across both the shifts. Fig. 2 shows how the layerwise overall IoU
measure evolves as λO increases. While at lower values of λO, the amount of
specificity is relatively low and similar across layers, at higher values of λO we
see an increase of varying degrees across layers – the relative ordering among
layers in terms of IoU being fc6>fc7>fc8, indicating the importance of having
more shared neurons in the earlier layers.

Finally, note that since the pairwise IoU measures indicate the fraction of
neurons which are shared among the neurons which are turned on, upon con-
vergence we can essentially categorize the neurons present in the task network
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(a) I,P,Q,R,S → C (O.O.D. Acc 50.06%)
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(b) C,I,P,R,S → Q (O.O.D. Acc 13.07%)

Fig. 1: Emergence of domain-specificity in AlexNet with λO = 0.1. We show
the IoU overlap among pairs of discrete source domain masks for the two shifts (a)
I,P,Q,R,S→C and (b) C,I,P,R,S →Q on DomainNet [17] with out-of-domain accuracies
48.70% and 12.7% respectively. We find that domain-specificity does indeed emerge,
as indicated by the IoU measures.
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Fig. 2: Layerwise IoU sensitivity to λO. The average IoU score among pairs of
source domain masks decreases as λO increases, indicating the degree to which domain-
specificity emerges in individual layers (fc6, fc7, fc8).

into three categories – (1) equally useless – neurons turned off across all the
source domain masks, (2) equally useful or shared – neurons turned on across
all the source domain masks and (3) domain-specific – neurons turned on only
for specific source domains.

0.2 Choice of Incentive: sIoU vs Sparsity

As described in Section. 3.2 (main paper), to ensure feature selection, we impose
a soft-IoU loss in addition to standard cross-entropy training to penalize overlap
among pairs of source domain masks. However, in practice, one could also impose
a sparsity constraint on the domain-sepcific masks being learned ensure mini-
mality in the number of features or neurons selected during learning. However,
just incorporating a sparsity constraint does not explicitly incentivize domain-
specificity – masks corresponding to all the source domains could just end up
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(c) Average IoU

Fig. 3: Sensitivity to λS. We replace the sIoU with a differentiable sparsity term
(coefficient λS) – L1-norm of the soft-source domain masks, i.e.,

∑
Di∈DS

||mi||1 –

and study the sensitivity to λS as measured by out-of-domain accuracy (a), in-domain
accuracy (b) and average IoU score measured among pairs of source domain masks.
The legends in (b) indicate the target domain in the corresponding multi-source shift.
We find that predictive performance and specificity (Avg. IoU) is very sensitive to λS .

picking the same set of neurons, which is equivalent to learning a bottleneck
layer during training.

We investigate the consequences of incorporating a sparsity regularizer in
Figure. 3 on all the multi-source shifts of the DomainNet dataset using AlexNet
as our backbone architecture. Specifically, instead of the sIoU loss, we penal-
ize the L1-norm of the soft-mask values, i.e., md for all the source domains –∑

d∈DS
||md||1‡. We run a sweep over different values of the coefficient (λS) of

this sparsity incentive from 0 to 1 in logarithmic increments. Fig. 3 (a) and (b)
show how out-of-domain and in-domain generalization performances and Fig. 3
(b) shows how the pairwise IoU measure among the source domain masks – in-
dicating domain-specificity, vary with λS . Unlike λO (see Sec. 5, main paper),
we find that generalization performance is quite sensitive to the choice of λS ,
with both out-of-domain and in-domain accuracies degrading significantly at rel-
atively high values of λS . We find performance comparable to our approach only
at values of λ = 10−5. For the pairwise IoU measures, we observe that while
specificity increases to some extent till λS = 10−3, but decreases sharply with
further increase in λS . At high-values of λS , we observe that the source domain
masks are extremely sparse and have high overlap indicating the fact that the
masks essentially encourage learning just a bottleneck layer. This further demon-
strates the efficacy of the sIoU loss in maintaining a reasonable balance between
encouraging specificty while retaining predictive performance.

0.3 Ensembling Choices at Test-time

In Section. 3.2 (main paper), we describe how we follow a soft-scaling scheme akin
to dropout [18] at test-time. Specifically, we obtain predictions corresponding to
neurons in the task network soft-scaled by individual source domain masks and
average them (call this Pred-Ens). In this section, we further investigate if the

‡Since the soft-mask probabilities (md) are positive, ||md||1 is essentially the sum
of mask probabilities per-neuron and is therefore differentiable and can be optimized
using gradient descent.
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Method Clipart Infograph Painting Quickdraw Real Sketch Overall
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Aggregate 47.17 10.15 31.82 11.75 44.35 26.33 28.60

Aggregate-SGD∓ 42.30 12.42 31.45 9.52 42.76 29.34 27.97

Multi-Headed 45.96 10.56 31.07 12.05 43.56 25.93 28.19

MetaReg [1]∓ 42.86 12.68 32.47 9.37 43.43 29.87 28.45

DMG (Pred-Ens) 50.06 12.23 34.44 13.07 46.98 30.13 31.15

DMG (Mask-Ens) 50.10 12.17 34.38 13.14 46.79 30.01 31.10

In-Domain

A
le

x
N

et

Aggregate 48.56 57.24 51.38 49.60 47.48 50.72 50.83

Aggregate-SGD∓ 48.14 54.93 50.55 48.33 47.57 49.98 49.92

Multi-Headed 48.16 56.73 51.31 49.75 47.65 50.82 50.74

MetaReg [1]∓ 48.87 56.06 51.23 49.60 48.66 50.12 50.76

DMG (Pred-Ens) 49.63 58.47 52.88 51.33 49.07 52.42 52.30

DMG (Mask-Ens) 49.49 58.38 52.81 51.16 48.90 52.29 52.17

DMG-KnownDomain 51.91 61.01 54.93 53.84 51.08 54.47 54.54

Table 1: Ensembling Choices at Test-time. We study how different ensembling
choices at test-time – (1) Mask-Ens: ensemble predictions from all the source domain
masks and (2) Pred-Ens: combine masks and then make a prediction – compare in
terms of in [bottom-half] an out-of-domain [top-half] performance. Using AlexNet as
the backbone architecture on the DomainNet [17] dataset, we find that Mask-Ens leads
to very minor (< 1%) drop in both in and out-of-domain performance compared to
Pred-Ens at test-time. The columns identify the held out sixth domain for each of
the multi-source shifts.∓We were unable to optimize the MetaReg [1] objective with
Adam [8] as the optimizer and therefore, we also include comparisons with Aggregate
and MetaReg trained with SGD.

choice of ensembling method at test-time matters. We compare Pred-Ens with
the setting where we average the soft masks (md for source domain d) and draw
a single prediction by scaling neurons with the averaged soft-mask – Mask-Ens.

In Table. 1, we compare DMG (Pred-Ens) and DMG (Mask-Ens) in terms
of both in and out-of-domain performances on all the multi-source shifts on Do-
mainNet using AlexNet as the backbone architecture. We observe that Mask-Ens
performs comparatively with Pred-Ens, with the margin of difference being
within ∼1%.

0.4 More Results

In Table. 2, we present more extensive comparisons of DMG with prior work on
the PACS [11] using AlexNet, ResNet-18 and ResNet-50 as the backbone CNN
architectures. We now describe briefly the prior approaches we compare to.

DICA [15] is a kernel-based optimization algorithm that aims a learn a trans-
formation that renders representations invariant across domains by minimiz-
ing the dissimilarity across the source domains. D-MTAE [6] is an autoencoder
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Method A C P S Overall
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Aggregate [13] 63.40 66.10 88.50 56.60 68.70

Aggregate* 56.20 70.69 86.29 60.32 68.38

Multi-Headed 61.67 67.88 82.93 59.38 67.97

DICA [15] 64.60 64.50 91.80 51.10 68.00

D-MTAE [6] 60.30 58.70 91.10 47.90 64.50

DSN [2] 61.10 66.50 83.30 58.60 67.40

TF-CNN [11] 62.90 67.00 89.50 57.50 69.20

Fusion [14] 64.10 66.80 90.20 60.10 70.30

DANN [5] 63.20 67.50 88.10 57.00 69.00

MLDG [12] 66.20 66.90 88.00 59.00 70.00

MetaReg [1] 63.50 69.50 87.40 59.10 69.90

CrossGrad [19] 61.00 67.20 87.60 55.90 67.90

Epi-FCR [13] 64.70 72.30 86.10 65.00 72.00

MASF [3] 70.35 72.46 90.68 67.33 75.21

DMG (Ours) 64.65 69.88 87.31 71.42 73.32

R
es

N
et

-1
8

Aggregate [13] 77.60 73.90 94.40 74.30 79.10

Aggregate* 72.61 78.46 93.17 65.20 77.36

Multi-Headed 78.76 72.10 94.31 71.77 79.24

DANN [5] 81.30 73.80 94.00 74.30 80.80

MAML [4] 78.30 76.50 95.10 72.60 80.60

MLDG [12] 79.50 77.30 94.30 71.50 80.70

MetaReg† [1] 79.50 75.40 94.30 72.20 80.40

CrossGrad [19] 78.70 73.30 94.00 65.10 77.80

Epi-FCR [13] 82.10 77.00 93.90 73.00 81.50

MASF [3] 80.29 77.17 94.99 71.68 81.03

DMG (Ours) 76.90 80.38 93.35 75.21 81.46

R
es

N
et

-5
0 Aggregate* 75.49 80.67 93.05 64.29 78.38

Multi-Headed 75.15 76.37 95.27 75.26 80.51

MASF [3] 82.89 80.49 95.01 72.29 82.67

DMG (Ours) 82.57 78.11 94.49 78.32 83.37

Table 2: Out of Domain Generalization Results on PACS. We compare per-
formance (accuracy in %) against prior work in the standard domain generalization
setting of training on three domains as source and evaluating on the held-out fourth
domain (identified by the column headers). We include the aggregate baseline both as
reported in [13] as well as our own implementation (indicated as Aggregate∗)

based approach which aims to learn invariant representations by cross-domain
reconstruction. DSN [2] aims to extract representations that can be partitioned
into domain-specific and domain-invariant components. TF-CNN [11] learns a
low-rank parameterized CNN for end-to-end domain-generalization training. Fu-
sion [14] fuses predictions from all classifiers trained on all the source domains
at test-time. DANN [5] leverages the source domain features extractor from Do-
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main Adversarial Neural Networks to generalize to target domains. MetaReg [1]
learns regularizers by modeling domain-shifts within the source set of distribu-
tions. MLDG [12] learns network parameters using meta-learning. Epi-FCR [13]
is a recently proposed episodic scheme to learn network parameters robust to
domain-shift. MASF [3] is a recent approach which introduces complementary
losses to explicitly regularize the semantic structure of the feature space via a
model-agnostic episodic learning procedure. Cross-Grad [19] uses Bayesian Net-
works to perturb the input manifold for domain generalization.

0.5 Experimental Details

We summarize several experimental details in this section. For all our experi-
ments, we use Adam [8] as the optimizer with a batch size of 64. For PACS, we
use an initial learning rate of 10−4 for both the network and mask parameters
decayed exponentially with a rate of 0.99 every epoch and set weight decay to
10−5. For DomainNet, we use an initial learning rate of 10−4 for both the network
and mask parameters decayed per-epoch using an inverse learning rate schedule§

and set weight decay to 0. We conduct a sweep over values of λO – coefficient of
the sIoU loss – in the range {0, 10−5, 10−4, 10−3, 10−2, 10−1, 1}. Our backbone
CNN architectures are initialized with ImageNet [9] pretrained checkpoints. We
initialize the final linear layer weights (to be learned from scratch) from a zero
centered normal distribution (N (0, 0.001)) and a uniform distribution (standard
in PyTorch) for DomainNet and PACS respectively. For all our experiments, we
initialize the mask parameters from the uniform distribution, i.e., m̃d ∼ U(0, 1).
We select the best checkpoints across 50 epochs of training based on overall
in-domain validation accuracy. We implement everything in the Pytorch [16]
framework¶. Our code and data-splits will be made publicly available.
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