
Contrastive Learning for Unpaired
Image-to-Image Translation

Taesung Park1 Alexei A. Efros1 Richard Zhang2 Jun-Yan Zhu2

University of California, Berkeley1 Adobe Research2

Appendix A Additional Image-to-Image Results

We first show additional, randomly selected results on datasets used in our main
paper. We then show results on additional datasets.

A.1 Additional comparisons

In Figure 1, we show additional, randomly selected results for Horse→Zebra and
Cat→Dog. This is an extension of Figure 3 in the main paper. We compare to
baseline methods CycleGAN [27], MUNIT [11], DRIT [17], Self-Distance and
DistanceGAN [1], and GcGAN [5].

A.2 Additional datasets

In Figure 2 and Figure 3, we show additional datasets, compared against baseline
method CycleGAN [27]. Our method provides better or comparable results,
demonstrating its flexibility across a variety of datasets.
• Apple→Orange contains 996 apple and 1,020 orange images from ImageNet

and was introduced in CycleGAN [27].
• Yosemite Summer→Winter contains 1,273 summer and 854 winter images of

Yosemite scraped using the FlickAPI was introduced in CycleGAN [27].
• GTA→Cityscapes GTA contains 24,966 images [22] and Cityscapes [4] contains

19,998 images of street scenes from German cities. The task was originally
used in CyCADA [10].

2 Taesung Park, Alexei A. Efros, Richard Zhang, Jun-Yan Zhu

CUTInput CycleGAN MUNIT DRIT SelfDistGANDistanceGAN GcGANFastCUT

Fig. 1: Randomly selected Horse→Zebra and Cat→Dog results. This is an
extension of Figure 3 in the main paper.

Contrastive Learning for Unpaired Image-to-Image Translation 3

CycleGANInput Ours(idt) CycleGANInput Ours(idt)

Fig. 2: Apple→Orange and Summer→Winter Yosemite. CycleGAN models were
downloaded from the authors’ public code repository. Apple→Orange shows that
CycleGAN may suffer from color flipping issue.

Ours(idt)Input

Fig. 3: GTA→Cityscapes results at 1024× 512 resolution. The model was trained on
512× 512 crops.

.

4 Taesung Park, Alexei A. Efros, Richard Zhang, Jun-Yan Zhu

Appendix B Additional Single Image Translation Results

We show additional results in Figure 4 and Figure 5, and describe training details
below.

Training details. At each iteration, the input image is randomly scaled to a
width between 384 to 1024, and we randomly sample 16 crops of size 128× 128.
To avoid overfitting, we divide crops into 64× 64 tiles before passing them to the
discriminator. At test time, since the generator network is fully convolutional, it
takes the input image at full size.

We found that adopting the architecture of StyleGAN2 [14] instead of Cycle-
GAN slightly improves the output quality, although the difference is marginal. Our
StyleGAN2-based generator consists of one downsampling block of StyleGAN2
discriminator, 6 StyleGAN2 residual blocks, and one StyleGAN2 upsampling
block. Our discriminator has the same architecture as StyleGAN2. Following
StyleGAN2, we use non-saturating GAN loss [21] with R1 gradient penalty [20].
Since we do not use style code, the style modulation layer of StyleGAN2 was
removed.

Single image results.
In Figure 4 and Figure 5, we show additional comparison results for our

method, Gatys et al. [6], STROTSS [16], WCT2 [25], and CycleGAN baseline [27].
Note that the CycleGAN baseline adopts the same augmentation techniques as
well as the same generator/discriminator architectures as our method. The image
resolution is at 1-2 Megapixels. Please zoom in to see more visual details.

Both figures demonstrate that our results look more photorealistic compared
to CycleGAN baseline, Gatys et al [6], and WCT2. The quality of our results is
on par with results from STROTSS [16]. Note that STROTSS [16] compares to
and outperforms recent style transfer methods (e.g., [7,19]).

Contrastive Learning for Unpaired Image-to-Image Translation 5

O
u

rs

In
p

u
t

G
a

ty
s

e
t

a
l.

C
yc

le
G

A
N

W
C

T
2

S
T

R
O

T
S

S

O
u

rs

In
p

u
t

G
a

ty
s

e
t

a
l.

C
yc

le
G

A
N

W
C

T
2

S
T

R
O

T
S

S

O
u

rs

In
p

u
t

G
a

ty
s

e
t

a
l.

C
yc

le
G

A
N

W
C

T
2

S
T

R
O

T
S

S

Fig. 4: High-res painting to photo translation (I). We transfer Monet’s paintings
to reference natural photos shown as insets at top-left corners. The training only requires
a single image from each domain. We compare our results to recent style and photo
transfer methods including Gatys et al. [6], WCT2 [25], STROTSS [16], and our modified
patch-based CycleGAN [27]. Our method can reproduce the texture of the reference
photos while retaining structure of the input paintings. Our results are at 1k ∼ 1.5k
resolution.

6 Taesung Park, Alexei A. Efros, Richard Zhang, Jun-Yan Zhu

O
u

rs

In
p

u
t

G
a

ty
s

e
t

a
l.

C
yc

le
G

A
N

W
C

T
2

S
T

R
O

T
S

S

O
u

rs

In
p

u
t

G
a

ty
s

e
t

a
l.

C
yc

le
G

A
N

W
C

T
2

S
T

R
O

T
S

S

O
u

rs

In
p

u
t

G
a

ty
s

e
t

a
l.

C
yc

le
G

A
N

W
C

T
2

S
T

R
O

T
S

S

Fig. 5: High-res painting to photo translation (II). We transfer Monet’s paintings
to reference natural photos shown as insets at top-left corners. The training only requires
a single image from each domain. We compare our results to recent style and photo
transfer methods including Gatys et al. [6], WCT2 [25], STROTSS [16], and our modified
patch-based CycleGAN [27]. Our method can reproduce the texture of the reference
photos while retaining structure of the input paintings. Our results are at 1k ∼ 1.5k
resolution.

Contrastive Learning for Unpaired Image-to-Image Translation 7

Appendix C Unpaired Translation Details and Analysis

C.1 Training details

To show the effect of the proposed patch-based contrastive loss, we intentionally
match the architecture and hyperparameter settings of CycleGAN, except the loss
function. This includes the ResNet-based generator [13] with 9 residual blocks,
PatchGAN discriminator [12], Least Square GAN loss [18], batch size of 1, and
Adam optimizer [15] with learning rate 0.002.

Our full model CUT is trained up to 400 epochs, while the fast variant
FastCUT is trained up to 200 epochs, following CycleGAN. Moreover, inspired
by GcGAN [5], FastCUT is trained with flip-equivariance augmentation, where
the input image to the generator is horizontally flipped, and the output features
are flipped back before computing the PatchNCE loss. Our encoder Genc is the
first half of the CycleGAN generator [27]. In order to calculate our multi-layer,
patch-based contrastive loss, we extract features from 5 layers, which are RGB
pixels, the first and second downsampling convolution, and the first and the
fifth residual block. The layers we use correspond to receptive fields of sizes
1×1, 9×9, 15×15, 35×35, and 99×99. For each layer’s features, we sample 256
random locations, and apply 2-layer MLP to acquire 256-dim final features. For
our baseline model that uses MoCo-style memory bank [8], we follow the setting
of MoCo, and used momentum value 0.999 with temperature 0.07. The size of
the memory bank is 16384 per layer, and we enqueue 256 patches per image per
iteration.

C.2 Evaluation details

We list the details of our evaluation protocol.

Fréchet Inception Distance (FID [9]) throughout this paper is computed by
resizing the images to 299-by-299 using bilinear sampling of PyTorch framework,
and then taking the activations of the last average pooling layer of a pretrained
Inception V3 [23] using the weights provided by the TensorFlow framework.
We use the default setting of https://github.com/mseitzer/pytorch-fid. All
test set images are used for evaluation, unless noted otherwise.

Semantic segmentation metrics on the Cityscapes dataset are computed
as follows. First, we trained a semantic segmentation network using the DRN-D-
22 [26] architecture. We used the recommended setting from https://github.

com/fyu/drn, with batch size 32 and learning rate 0.01, for 250 epochs at
256x128 resolution. The output images of the 500 validation labels are resized to
256x128 using bicubic downsampling, passed to the trained DRN network, and
compared against the ground truth labels downsampled to the same size using
nearest-neighbor sampling.

C.3 Pseudocode

Here we provide the pseudo-code of PatchNCE loss in the PyTorch style. Our
code and models are available at our GitHub repo.

https://github.com/mseitzer/pytorch-fid
https://github.com/fyu/drn
https://github.com/fyu/drn
https://github.com/taesungp/contrastive-unpaired-translation

8 Taesung Park, Alexei A. Efros, Richard Zhang, Jun-Yan Zhu

import torch
cross_entropy_loss = torch.nn.CrossEntropyLoss()

Input: f_q (BxCxS) and sampled features from H(G_enc(x))
Input: f_k (BxCxS) are sampled features from H(G_enc(G(x))
Input: tau is the temperature used in NCE loss.
Output: PatchNCE loss
def PatchNCELoss(f_q, f_k, tau=0.07):

batch size, channel size, and number of sample locations
B, C, S = f_q.shape

calculate v * v+: BxSx1
l_pos = (f_k * f_q).sum(dim=1)[:, :, None]

calculate v * v-: BxSxS
l_neg = torch.bmm(f_q.transpose(1, 2), f_k)

The diagonal entries are not negatives. Remove them.
identity_matrix = torch.eye(S)[None, :, :]
l_neg.masked_fill_(identity_matrix, -float('inf'))

calculate logits: (B)x(S)x(S+1)
logits = torch.cat((l_pos, l_neg), dim=2) / tau

return NCE loss
predictions = logits.flatten(0, 1)
targets = torch.zeros(B * S, dtype=torch.long)
return cross_entropy_loss(predictions, targets)

C.4 Distribution matching

In Figure 6, we show an interesting phenomenon of our method, caused by the
training set imbalance of the horse→zebra set. We use an off-the-shelf DeepLab
model [3] trained on COCO-Stuff [2], to measure the percentage of pixels that
belong to horses and zebras1. The training set exhibits dataset bias [24]. On
average, zebras appear in more close-up pictures than horses and take up about
twice the number of pixels (37% vs 18%). To perfectly satisfy the discriminator,
a translation model should attempt to match the statistics of the training set.
Our method allows the flexibility for the horses to change the size, and the
percentage of output zebra pixels (31%) better matches the training distribution
(37%) than the CycleGAN baseline (19%). On the other hand, our fast variant
FastCUT uses a larger weight (λX = 10) on the Patch NCE loss and flip-
equivariance augmentation, and hence behaves more conservatively and more
similar to CycleGAN. The strong distribution matching capacity has pros and
cons. For certain applications, it can create introduce undesired changes (e.g.,

1 Pretrained model from https://github.com/kazuto1011/deeplab-pytorch

https://github.com/kazuto1011/deeplab-pytorch

Contrastive Learning for Unpaired Image-to-Image Translation 9

CUTInput CycleGAN

horse 17.9% zebra 36.8%zebra 30.8% zebra 25.9% zebra 19.1%

FastCUT Source training set Target training set

detected pixels:

Fig. 6: Distribution matching. We measure the percentage of pixels belonging to
the horse/zebra bodies, using a pre-trained semantic segmentation model. We find a
distribution mismatch between sizes of horses and zebras images – zebras usually appear
larger (36.8% vs. 17.9%). Our full method CUT has the flexibility to enlarge the horses,
as a means of better matching of the training statistics than CycleGAN [27]. Our faster
variant FastCUT, trained with a higher PatchNCE loss (λX = 10) and flip-equivariance
augmentation, behaves more conservatively like CycleGAN.

zebra patterns on the background for horse→zebra). On the other hand, it can
enable dramatic geometric changes for applications such as Cat→Dog.

C.5 Additional Ablation studies

In the paper, we mainly discussed the impact of loss functions and the number of
patches on the final performance. Here we present additional ablation studies on
more subtle design choices. We run all the variants on horse2zebra datasets [27].
The FID of our original model is 46.6. We compare it to the following two
variants of our model:
• Ours without weight sharing for the encoder Genc and MLP projection network
H: for this variant, when computing features {zl}L = {Hl(G

l
enc(x))}L, we use

two separate encoders and MLP networks for embedding input images (e.g.,
horse) and the generated images (e.g., zebras) to feature space. They do not
share any weights. The FID of this variant is 50.5, worse than our method.
This shows that weight sharing helps stabilize training while reducing the
number of parameters in our model.
• Ours without updating the decoder Gdec using PatchNCE loss: in this variant,

we exclude the gradient propagation of the decoder Gdec regarding PatchNCE
loss LPatchNCE. In other words, the decoder Gdec only gets updated through
the adversarial loss LGAN. The FID of this variant is 444.2, and the results
contain severe artifacts. This shows that our LPatchNCE not only helps learn the
encoder Genc, as done in previous unsupervised feature learning methods [8],
but also learns a better decoder Gdec together with the GAN loss. Intuitively,
if the generated result has many artifacts and is far from realistic, it would be
difficult for the encoder to find correspondences between the input and output,
producing a large PatchNCE loss.

10 Taesung Park, Alexei A. Efros, Richard Zhang, Jun-Yan Zhu

References

1. Benaim, S., Wolf, L.: One-sided unsupervised domain mapping. In: Advances in
Neural Information Processing Systems (NeurIPS) (2017) 1

2. Caesar, H., Uijlings, J., Ferrari, V.: Coco-stuff: Thing and stuff classes in context.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
8

3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 40(4), 834–848 (2018) 8

4. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2016) 1

5. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Zhang, K., Tao, D.: Geometry-
consistent generative adversarial networks for one-sided unsupervised domain map-
ping. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2019) 1, 7

6. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional
neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2016) 4, 5, 6

7. Gu, S., Chen, C., Liao, J., Yuan, L.: Arbitrary style transfer with deep feature
reshuffle. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2018) 4

8. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2020) 7, 9

9. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs
trained by a two time-scale update rule converge to a local Nash equilibrium. In:
Advances in Neural Information Processing Systems (2017) 7

10. Hoffman, J., Tzeng, E., Park, T., Zhu, J.Y., Isola, P., Saenko, K., Efros, A.A., Darrell,
T.: Cycada: Cycle-consistent adversarial domain adaptation. In: International
Conference on Machine Learning (ICML) (2018) 1

11. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-
to-image translation. European Conference on Computer Vision (ECCV) (2018)
1

12. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2017) 7

13. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and
super-resolution. In: European Conference on Computer Vision (ECCV) (2016) 7

14. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing
and improving the image quality of stylegan. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2020) 4

15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: International
Conference on Learning Representations (ICLR) (2015) 7

16. Kolkin, N., Salavon, J., Shakhnarovich, G.: Style transfer by relaxed optimal
transport and self-similarity. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2019) 4, 5, 6

Contrastive Learning for Unpaired Image-to-Image Translation 11

17. Lee, H.Y., Tseng, H.Y., Huang, J.B., Singh, M.K., Yang, M.H.: Diverse image-
to-image translation via disentangled representation. In: European Conference on
Computer Vision (ECCV) (2018) 1

18. Mao, X., Li, Q., Xie, H., Lau, Y.R., Wang, Z., Smolley, S.P.: Least squares generative
adversarial networks. In: IEEE International Conference on Computer Vision (ICCV)
(2017) 7

19. Mechrez, R., Talmi, I., Zelnik-Manor, L.: The contextual loss for image transforma-
tion with non-aligned data. In: European Conference on Computer Vision (ECCV)
(2018) 4

20. Mescheder, L., Geiger, A., Nowozin, S.: Which training methods for gans do actually
converge? In: International Conference on Machine Learning (ICML) (2018) 4

21. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with
deep convolutional generative adversarial networks. In: International Conference on
Learning Representations (ICLR) (2016) 4

22. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: Ground truth from
computer games. In: European Conference on Computer Vision (ECCV) (2016) 1

23. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception
architecture for computer vision. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2016) 7

24. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2011) 8

25. Yoo, J., Uh, Y., Chun, S., Kang, B., Ha, J.W.: Photorealistic style transfer via
wavelet transforms. In: IEEE International Conference on Computer Vision (ICCV)
(2019) 4, 5, 6

26. Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2017) 7

27. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: IEEE International Conference on
Computer Vision (ICCV) (2017) 1, 4, 5, 6, 7, 9

