
GRNet: Gridding Residual Network for
Dense Point Cloud Completion

Haozhe Xie1,2,3[0000−0001−9596−5179], Hongxun Yao1,2[0000−0003−3298−2574],
Shangchen Zhou4[0000−0001−8201−8877], Jiageng Mao5[0000−0003−2571−8767],

Shengping Zhang2,6[0000−0001−5200−3420], and Wenxiu Sun3[0000−0001−5026−8820]

1State Key Laboratory of Robotics and System, Harbin Institute of Technology
2Faculty of Computing, Harbin Institute of Technology

3SenseTime Research 4Nanyang Technological University
5The Chinese University of Hong Kong 6Peng Cheng Laboratory

https://haozhexie.com/project/grnet

Abstract. Estimating the complete 3D point cloud from an incomplete
one is a key problem in many vision and robotics applications. Main-
stream methods (e.g., PCN and TopNet) use Multi-layer Perceptrons
(MLPs) to directly process point clouds, which may cause the loss of
details because the structural and context of point clouds are not fully
considered. To solve this problem, we introduce 3D grids as intermediate
representations to regularize unordered point clouds and propose a novel
Gridding Residual Network (GRNet) for point cloud completion. In par-
ticular, we devise two novel differentiable layers, named Gridding and
Gridding Reverse, to convert between point clouds and 3D grids without
losing structural information. We also present the differentiable Cubic
Feature Sampling layer to extract features of neighboring points, which
preserves context information. In addition, we design a new loss func-
tion, namely Gridding Loss, to calculate the L1 distance between the 3D
grids of the predicted and ground truth point clouds, which is helpful to
recover details. Experimental results indicate that the proposed GRNet
performs favorably against state-of-the-art methods on the ShapeNet,
Completion3D, and KITTI benchmarks.

Keywords: Point cloud completion, gridding, cubic feature sampling

1 Introduction

With the rapid development of 3D acquisition technologies, 3D sensors (e.g., Li-
DARs) are becoming increasingly available and affordable. As a commonly used
format, point clouds are the preferred representation for describing the 3D shape
of an object. Complete 3D shapes are required in many applications, including
semantic segmentation and SLAM [2]. However, due to limited sensor resolution
and occlusion, highly sparse and incomplete point clouds can be acquired, which
causes loss in geometric and semantic information. Consequently, recovering the
complete point clouds from partial observations, named point cloud completion,
is very important for practical applications.

https://haozhexie.com/project/grnet

2 Haozhe Xie et al.

Gridding
Reverse

Gridding

Coarse
Point Cloud !!

Incomplete
Point Cloud !

Final Completed
Point Cloud !"

Cubic Feature
Sampling MLP

(a) GRNet

xx

(b) Gridding (c) Gridding Reverse (d) Cubic Feature Sampling (e) Gridding Loss

Gridding

Gridding

L1 Distance

3D CNN

Point Features

3D Grid "
Vertices: #, Values: $

3D Grid "′
Vertices: #, Values: $′

!!"

!#"

!$"

!%"

!&"

!'"

!("

!)"

"%*

#+

!,

"!*

")*
"&*

+,
"%

"!

")
"&

"$
"#

"(
"'

"$*
"#*

"(*
"'*

Fig. 1. Overview of the proposed (a) GRNet, (b) Gridding, (c) Gridding Reverse, (d)
Cubic Feature Sampling, and (e) Gridding Loss.

In the recent few years, convolutional neural networks (CNNs) have been
applied to 2D images and 3D voxels. Since the convolution can not be directly
applied to point clouds due to their irregularity and unorderedness, most of the
existing methods [3,7,34,35,29,40,26] voxelize the point cloud into binary vox-
els, where 3D convolutional neural networks can be applied. However, the vox-
elization operation leads to an irreversible loss of geometric information. Other
approaches [51,27,38] use the Multi-Layer Perceptrons (MLPs) to process point
clouds directly. However, these approaches use max pooling to aggregate in-
formation across points in a global or hierarchical manner, which do not fully
consider the connectivity across points and the context of neighboring points.
More recently, several attempts [42,41] have been made to incorporate graph
convolutional networks (GCN) [14] to build local graphs in the neighborhood of
each point in the point cloud. However, constructing the graph relies on the K-
nearest neighbor (KNN) algorithm, which is sensitive to the point cloud density
[39].

Several attempts in point cloud segmentation have been made to capture spa-
tial relationships in point clouds through more general convolution operations.
SPLATNet [36] and InterpConv [28] perform convolution on high-dimensional
lattices and 3D cubes interpolated from neighboring points, respectively. How-
ever, both of them are based on a strong assumption that the 3D coordinates of
the output points are the same as the input points and thus can not be used for
3D point completion.

To address the issues mentioned above, we introduce 3D grids as intermediate
representations to regularize unordered point clouds, which explicitly preserves
the structural and context of point clouds. Consequently, we propose a novel
Gridding Residual Network (GRNet) for point cloud completion, as shown in
Figure 1. Besides 3D CNN and MLP, we devise three differentiable layers: Grid-
ding, Gridding Reverse, and Cubic Feature Sampling. In Gridding, for each point
of the point cloud, eight vertices of the 3D grid cell that the point lies in are first
weighted using an interpolation function that explicitly measures the geometric

GRNet: Gridding Residual Network 3

relations of the point cloud. Then, a 3D convolutional neural network (3D CNN)
with skip connections is adopted to learn context-aware and spatially-aware fea-
tures, which allows the network to complete missing parts of the incomplete
point cloud. Next, Gridding Reverse converts the output 3D grid to a coarse
point cloud by replacing each 3D grid cell with a new point whose coordinate is
the weighted sum of the eight vertices of the 3D grid cell. The following Cubic
Feature Sampling extracts features for each point in the coarse point cloud by
concatenating the features of the corresponding eight vertices of the 3D grid cell
that the point lies in. The coarse point cloud and the features are forwarded to
an MLP to obtain the final completed point cloud.

Existing methods adopt Chamfer Distance in PSGN [4] as the loss function
to train the neural networks. This loss function penalizes the prediction devi-
ating from the ground-truth. However, there is no guarantee that the predicted
point clouds follow the geometric layout of objects, and the networks tend to
output a mean shape that minimizes the distance [11,48]. Some recent works
[11,48,12,18,21] attempt to solve the unorderness while preserving fine-grained
details by projecting the 3D point cloud to an image, which is then supervised by
the corresponding ground truth masks. However, the projection requires extrin-
sic camera parameters, which are challenging to estimate in most scenarios [31].
To solve the unorderedness of point clouds, we propose Gridding Loss, which
calculates the L1 distance between the generated points and ground truth by
representing them in regular 3D grids with the proposed Gridding layer.

The contributions can be summarized as follows:

– We innovatively introduce 3D grids as intermediate representations to reg-
ularize unordered point clouds, which explicitly preserve the structural and
context of point clouds.

– We propose a novel Gridding Residual Network (GRNet) for point cloud
completion. We design three differentiable layers: Gridding, Gridding Re-
verse, and Cubic Feature Sampling, as well as a new Gridding Loss.

– Extensive experiments are conducted on the ShapeNet, Completion3D, and
KITTI benchmarks, which indicate that the proposed GRNet performs fa-
vorably against state-of-the-art methods.

2 Related Work

According to the network architecture used in point cloud completion and recon-
struction, existing networks can be roughly categorized into MLP-based, graph-
based, and convolution-based networks.
MLP-based Networks. Pioneered by PointNet [32], several works use MLP for
point cloud processing [1,22] and reconstruction [51,27] because of its simplicity
and strong representation ability. These methods model each point indepen-
dently using several Multi-layer Perceptrons and then aggregate a global feature
using a symmetric function (e.g., Max Pooling). However, the geometric relation-
ships among 3D points are not fully considered. PointNet++ [33] and TopNet

4 Haozhe Xie et al.

[38] incorporate a hierarchical architecture to consider the geometric structure.
To relief the structure loss caused by MLP, AtlasNet [6] and MSN [23] recover
the complete point cloud of an object by estimating a collection of parametric
surface elements.
Graph-based Networks. By considering each point in a point cloud as a ver-
tex of a graph, graph-based networks generate directed edges for the graph based
on the neighbors of each point. In these methods, convolution is usually operated
on spatial neighbors, and pooling is used to produce a new coarse graph by ag-
gregating information from each point’s neighbors. Compared with MLP-based
methods, graph-based networks take local geometric structures into account.
In DGCNN [42], a graph is constructed in the feature space and dynamically
updated after each layer of the network. Further, LDGCNN [52] removes the
transformation network and link the hierarchical features from different layers
in DGCNN to improve its performance and reduce the model size. Inspired by
DGCNN, Hassani and Haley [8] introduce the multi-scale graph-based network
to learn point and shape features for self-supervised classification and recon-
struction. DCG [41] also follows DGCNN to encode additional local connection
into a feature vector and progressively evolves from coarse to fine point clouds.
Convolution-based Networks. Early works [3,7,17] usually apply 3D convo-
lutional neural networks (CNNs) build upon the volumetric representation of
3D point clouds. However, converting point clouds into 3D volumes introduces a
quantization effect that discards some details of the data [43] and is not suitable
for representing fine-grained information. To the best of our knowledge, no work
directly applies CNNs on irregular point clouds for shape completion. In point
cloud understanding, several works [28,10,16,15,20] develop CNNs operating on
discrete 3D grids that are transformed from point clouds. Hua et al. [10] define
convolutional kernels on regular 3D grids, where the points are assigned with the
same weights when falling into the same grid. PointCNN [20] achieves permu-
tation invariance through a χ-conv transformation. Besides CNNs on discrete
space, several methods [26,39,36,49,25,24,44,9] define convolutional kernels on
continuous space. Thomas et al. [39] propose both rigid and deformable kernel
point convolution (KPConv) operators for 3D point clouds using a set of learn-
able kernel points. Compared with graph-based networks, convolution-based net-
works are more efficient and robust to point cloud density [28].

3 Gridding Residual Network

3.1 Overview

The proposed GRNet aims to recover the complete point cloud from an incom-
plete one in a coarse-to-fine fashion. It consists of five components, including
Gridding (Section 3.2), 3D Convolutional Neural Network (Section 3.3), Grid-
ding Reverse (Section 3.4), Cubic Feature Sampling (Section 3.5), and Multi-layer
Perceptron (Section 3.6), as shown in Figure 1. Given an incomplete point cloud
P as input, Gridding is first used to obtain a 3D grid G =< V,W >, where V
and W are the vertex set and value set of G, respectively. Then, W is fed to a

GRNet: Gridding Residual Network 5

3D CNN, whose output is W ′. Next, Gridding Reverse produces a coarse point
cloud P c from the 3D grid G′ =< V,W ′ >. Subsequently, Cubic Feature Sam-
pling generates features F c for the coarse point cloud P c. Finally, MLP takes
the coarse point cloud P c and the corresponding features F c as input to produce
the final completed point cloud P f .

3.2 Gridding

2D and 3D convolutions have been developed to process regularly arranged data
such as images and voxel grids. However, it is challenging to directly apply stan-
dard 2D and 3D convolutions to unordered and irregular point clouds. Several
methods [3,7,26,17] convert point clouds into 3D voxels and then apply 3D con-
volutions to them. However, the voxelization process leads to an irreversible loss
of geometric information. Recent methods [51,38] adopt Multi-layer Perceptrons
(MLPs) to directly operate on point clouds and aggregate information across
points with max pooling. However, MLP-based methods may lose local context
information because the connectivity and layouts of points are not fully consid-
ered. Recent studies also indicate that simply applying MLPs to point clouds
cannot always work in practice [28,49].

In this paper, we introduce 3D grids as intermediate representations to regu-
larize point clouds and further propose a differentiable Gridding layer, which con-
verts an unordered and irregular point cloud P = {pi}ni=1 into a regular 3D grid
G =< V,W > while preserving spatial layouts of the point cloud, where pi ∈ R3,
V = {vi}N

3

i=1, W = {wi}N
3

i=1, vi ∈ {(−N
2 ,−

N
2 ,−

N
2), . . . , (

N
2 − 1, N

2 − 1, N
2 − 1)},

wi ∈ R, n is the number of points in P , and N is the resolution of the 3D grid G.
As shown in Figure 1 (b), we define a cell as a cubic consisting of eight vertices.
For each vertex vi = (xv

i , y
v
i , z

v
i) of the 3D grid cell G, we define the neighboring

points N (vi) as points that lie in the adjacent 8 cells of this vertex. The point
p = (x, y, z) ∈ N (vi) is defined as a neighboring point of vertex vi by satisfying
p ∈ P , xv

i − 1 < x < xv
i + 1, yvi − 1 < y < yvi + 1, and zvi − 1 < z < zvi + 1,

respectively. In standard voxelization, value wi at the vertex vi is computed as

wi =

!
0 ∀p ∕∈ N (vi)

1 ∃p ∈ N (vi)
(1)

However, this voxelization process introduces a quantization effect that discards
some details of an object. In addition, voxelization is not differentiable and thus
can not be applied to point cloud reconstruction. As illustrated in Figure 1 (b),
given a vertex vi and its neighboring points p ∈ N (vi), the proposed Gridding
layer computes the corresponding value wi of this vertex vi as

wi =
"

p∈N (vi)

w(vi, p)

|N (vi)|
(2)

where |N (vi)| is the number of neighboring points of vi. Specially, we define
wi = 0 if |N (vi)| = 0. The interpolation function w(vi, p) is defined as

w(vi, p) = (1− |xv
i − x|)(1− |yvi − y|)(1− |zvi − z|) (3)

6 Haozhe Xie et al.

G
rid
di
ng
(6
4)

Cu
bi
c
Fe
at
ur
e
Sa
m
pl
in
g

Pa
rt
ia
l P
oi
nt
 C
lo
ud

4!
×3
2c
on
v3
D

4!
×6
4c
on
v3
D

4!
×1
28
co
nv
3D

4!
×2
56
co
nv
3D

FC
 L
ay
er
 (d
im
=2
0
48
)

FC
 L
ay
er
 (d
im
=1
63
84
)

4!
×1
28
dc
on
v3
D

4!
×6
4d
co
nv
3D

4!
×3
2d
co
nv
3D

4!
×1
dc
on
v3
D

G
rid
di
ng
 R
ev
er
se

FC
 L
ay
er
 (d
im
=1
79
2)

FC
 L
ay
er
 (d
im
=4
48
)

FC
 L
ay
er
 (d
im
=1
12
)

FC
 L
ay
er
 (d
im
=2
4)

Co
ar
se
 P
oi
nt
 C
lo
ud

Re
sh
ap
e
to
 25

6×
4!

2!
M
ax
Po
ol

2!
M
ax
Po
ol

2!
M
ax
Po
ol

2!
M
ax
Po
ol

Ra
nd
om
 S
am
pl
e
 2
04
8
Po
in
ts

Si
ze
: 2
04
8×
17
92

Re
sh
ap
e
to
 16

38
4×
3

Tile

Si
ze
: 2
04
8×
3

Si
ze
: 1
×6
4!

MLP3D CNN

Fi
na
l C
om
pl
et
ed

Po
in
t C
lo
ud

Fig. 2. The network architecture of GRNet.
!

denotes the sum operation. Tile creates
a new tensor of size 16384× 3 by replicating the “Coarse Point Cloud” 8 times.

3.3 3D Convolutional Neural Network

The 3D Convolutional Neural Network (3D CNN) with skip connections aims
to complete the missing parts of the incomplete point cloud. It follows the idea
of a 3D encoder-decoder with U-net connections [46,47]. Given W as input, the
3D CNN can be formulated as

W ′ = 3DCNN(W) (4)

where W ′ = {w′
i}N

3

i=1 and w′
i ∈ R.

As shown in Figure 2, the encoder of the 3D CNN has four 3D convolutional
layers, each of which has a bank of 43 filters with padding of 2, followed by batch
normalization, leaky ReLU activation, and a max pooling layer with a kernel size
of 23. The numbers of output channels of convolutional layers are 32, 64, 128,
256, respectively. The encoder is finally followed by two fully connected layers
with dimensions of 2048 and 16384. The decoder consists of four transposed
convolutional layers, each of which has a bank of 43 filters with padding of 2 and
stride of 1, followed by a batch normalization layer and a ReLU activation.

3.4 Gridding Reverse

As illustrated in Figure 1 (c), we propose Gridding Reverse to generate the coarse
point cloud P c = {pci}mi=1 from the 3D grid G′ =< V,W ′ >, where pci ∈ R3 and
m is the number of points in the coarse point cloud P c. Let Θi = {θij}8j=1 be the
index set of vertices of the i−th 3D grid cell. Gridding Reverse generates one
point coordinate pci for this grid cell by a weighted combination of eight vertices
coordinates {vθ|θ ∈ Θi} and the corresponding values {w′

θ|θ ∈ Θi} in this cell,
which is computed as

pci =

#
θ∈Θi w′

θvθ#
θ∈Θi w′

θ

(5)

Specially, we ignore the point pci for this cell if
#

θ∈Θi w′
θ = 0.

3.5 Cubic Feature Sampling

MLP-based methods (e.g., PCN) are unable to take the context of neighboring
points into account due to no local spatial connectivity across points. These

GRNet: Gridding Residual Network 7

methods use max-pooling to aggregate information globally, which may lose
local context information.

To overcome this issue, we present Cubic Feature Sampling to aggregate fea-
tures F c = {f c}mi=1 for the coarse point cloud P c, which is helpful for the fol-
lowing MLP to recover the details of point clouds, as shown in Figure 1 (d). Let
F = {fv

1 , f
v
2 , . . . , f

v
t3} be the feature map of 3D CNN, where fv

i ∈ Rc and t3

is the size of the feature map. For a point pci of the coarse point cloud P c, its
features f c

i are computed as

f c
i = [fv

θi
1
, fv

θi
2
, . . . , fv

θi
8
] (6)

where [·] is the concatenation operation. {fv
θi
j
}8j=1 denotes the features of eight

vertices of the i-th 3D gird cell where pci lies in.
In GRNet, Cubic Feature Sampling extracts the point features from feature

maps generated by the first three transposed convolutional layers in 3D CNN. To
reduce the redundancy of these features and generate a fixed number of points,
we randomly sample 2, 048 points from the coarse point cloud P c. Consequently,
it produces a feature map of size 2048× 1792.

3.6 Multi-layer Perceptron

The Multi-layer Perceptron (MLP) is used to recover the details from the coarse
point cloud by learning residual offsets between the coordinates of points in the
coarse and final completed point cloud. It takes the coarse point cloud P c and
the corresponding features F c as input, and outputs the final completed point
cloud P f = {pfi }ki=1 as

P f = MLP(F c) + Tile(P c, r) (7)

where pfi ∈ R3 and k is the number of points in the final completed point cloud
P f . Tile creates a new tensor of size rm× 3 by replicating P c r times.

In GRNet, r is set to 8. The MLP consists of four fully connected layers
with dimensions of 1792, 448, 112, and 24, respectively. The output of MLP is
reshaped to 16384 × 3, which corresponds to the offsets of the coordinates of
16, 384 points.

3.7 Gridding Loss

Existing methods adopt Chamfer Distance [4] as the loss function to train the
neural networks. This loss function penalizes the prediction deviating from the
ground-truth. However, it can not guarantee that the predicted points follow the
geometric layout of the object. Therefore the networks tend to output a mean
shape that minimizes the distance, which causes the loss of the object’s details
[11,48].

Due to the unorderedness of point clouds, it is difficult to directly apply
binary cross-entropy like voxels or L1/L2 loss like images. With the proposed

8 Haozhe Xie et al.

Gridding, we can convert unordered point clouds into regular 3D grids (Figure
1 (e)). Therefore, we design a new loss function based on Gridding, namely
Gridding Loss, which is defined as the L1 distance between value sets of the two
3D grids. Let Gpred =< V pred,W pred > and Ggt =< V gt,W gt > be the 3D grids
obtained by Gridding the predicted and ground truth point clouds, respectively,
where W pred ∈ RN3

G , W gt ∈ RN3
G , and NG is the resolution of the two 3D grids.

The Gridding Loss can be defined as

LGridding(W
pred,W gt) =

1

N3

"
||W pred −W gt|| (8)

4 Experiments

4.1 Datasets

ShapeNet. The ShapeNet dataset [45] for point cloud completion is derived
from PCN [51], which consists of 30,974 3D models from 8 categories. The
ground truth point clouds containing 16,384 points are uniformly sampled on
mesh surfaces. The partial point clouds are generated by back-projecting 2.5D
depth maps into 3D. For a fair comparison, we use the same train/val/test splits
as PCN.
Completion3D. The Completion3D benchmark [38] is composed of 28,974
and 800 samples for training and validation, respectively. Different from the
ShapeNet dataset generated by PCN, there are only 2,048 points in the ground
truth point clouds.
KITTI. The KITTI dataset [5] is composed of a sequence of real-world Velodyne
LiDAR scans, also derived from PCN [51]. For each frame, the car objects are
extracted according to the 3D bounding boxes, which results in 2,401 partial
point clouds. The partial point clouds in KITTI are highly sparse and do not
have complete point clouds as ground truth.

4.2 Evaluation Metrics

Let T = {(xi, yi, zi)}nT
i=1 be the ground truth and R = {(xi, yi, zi)}nR

i=1 be a
reconstructed point set being evaluated, where nT and nR are the numbers
of points of T and R, respectively. In our experiments, we use both Chamfer
Distance and F-Score as quantitative evaluation metrics.
Chamfer Distance. Follow PSGN [4] and TopNet [38], the distance between
T and R are defined as

CD =
1

nT

"

t∈T
min
r∈R

||t− r||22 +
1

nR

"

r∈R
min
t∈T

||t− r||22 (9)

F-Score. As pointed out in [37], Chamfer Distance may sometimes be mislead-
ing. As suggested in [37], we take F-Score as an extra metric to evaluate the
performance of point completion results, which can be defined as following

F-Score(d) =
2P (d)R(d)

P (d) +R(d)
(10)

GRNet: Gridding Residual Network 9

Table 1. Point completion results on ShapeNet compared using Chamfer Distance
(CD) with L2 norm computed on 16,384 points and multiplied by 104. The best results
are highlighted in bold.

Methods Airplane Cabinet Car Chair Lamp Sofa Table Watercraft Overall

AtlasNet [6] 1.753 5.101 3.237 5.226 6.342 5.990 4.359 4.177 4.523
PCN [51] 1.400 4.450 2.445 4.838 6.238 5.129 3.569 4.062 4.016
FoldingNet [50] 3.151 7.943 4.676 9.225 9.234 8.895 6.691 7.325 7.142
TopNet [38] 2.152 5.623 3.513 6.346 7.502 6.949 4.784 4.359 5.154
MSN [23] 1.543 7.249 4.711 4.539 6.479 5.894 3.797 3.853 4.758
GRNet 1.531 3.620 2.752 2.945 2.649 3.613 2.552 2.122 2.723

Table 2. Point completion results on ShapeNet compared using F-Score@1%. Note
that the F-Score@1% is computed on 16,384 points. The best results are highlighted
in bold.

Methods Airplane Cabinet Car Chair Lamp Sofa Table Watercraft Overall

AtlasNet [6] 0.845 0.552 0.630 0.552 0.565 0.500 0.660 0.624 0.616
PCN [51] 0.881 0.651 0.725 0.625 0.638 0.581 0.765 0.697 0.695
FoldingNet [50] 0.642 0.237 0.382 0.236 0.219 0.197 0.361 0.299 0.322
TopNet [38] 0.771 0.404 0.544 0.413 0.408 0.350 0.572 0.560 0.503
MSN [23] 0.885 0.644 0.665 0.657 0.699 0.604 0.782 0.708 0.705
GRNet 0.843 0.618 0.682 0.673 0.761 0.605 0.751 0.750 0.708

where P (d) and R(d) denote the precision and recall for a distance threshold d,
respectively.

P (d) =
1

nR

"

r∈R

$
min
t∈T

||t− r|| < d

%
(11)

R(d) =
1

nT

"

t∈T

$
min
r∈R

||t− r|| < d

%
(12)

4.3 Implementation Details

We implement our network using PyTorch [30] and CUDA1. All models are
optimized with an Adam optimizer [13] with β1 = 0.9 and β2 = 0.999. We
train the network with a batch size of 32 on two NVIDIA TITAN Xp GPUs.
The initial learning rate is set to 1e− 4 and decayed by 2 after 50 epochs. The
optimization is set to stop after 150 epochs.

4.4 Shape Completion on ShapeNet

To compare the performance of GRNet with other state-of-the-art methods, we
conduct experiments on the ShapeNet dataset. AtlasNet [6] generates a point

1 The source code is available at https://github.com/hzxie/GRNet.

https://github.com/hzxie/GRNet

10 Haozhe Xie et al.

Input AtlasNet PCN FoldingNet TopNet MSN GRNet GT

Fig. 3. Qualitative completion results on the ShapeNet testing set. GT stands for the
ground truth of the 3D object.

cloud with a set of parametric surface elements. To compare with other methods
fairly, we sample 16,384 points from the generated primitive surface elements.
PCN [51] completes the partial point cloud with a stacked version of PointNet
[32], which directly outputs the coordinates of 16,384 points. FoldingNet [50]
is a baseline method adopted in PCN [51], which deforms a 128 × 128 2D grid
into 3D point cloud. TopNet [38] incorporates a decoder following a hierarchical
rooted tree structure to consider the topology of point clouds. Due to the scalable
architecture of TopNet, it can easily generate 16,384 points by setting the number
of nodes and the size of feature embedding. A very recent method MSN [23]
generates dense point cloud containing 8,192 points in a coarse-to-fine fashion.
To generate 16,384 points, we combine the generated points of 2 times forward
propagation.

Quantitative results in Tables 2 and 1 indicate that GRNet outperforms all
competitive methods in terms of Chamfer Distance and F-Score@1%. Figure 3
shows the qualitative results for point completion on ShapeNet, which indicates
that the proposed method recovers better details of objects (e.g., chairs and
lamps) than the other methods.

GRNet: Gridding Residual Network 11

Table 3. Point completion results on Completion3D compared using Chamfer Distance
(CD) with L2 norm. Note that the CD is computed on 2,048 points and multiplied by
104. The best results are highlighted in bold.

Methods Airplane Cabinet Car Chair Lamp Sofa Table Watercraft Overall

AtlasNet [6] 10.36 23.40 13.40 24.16 20.24 20.82 17.52 11.62 17.77
FoldingNet [50] 12.83 23.01 14.88 25.69 21.79 21.31 20.71 11.51 19.07
PCN [51] 9.79 22.70 12.43 25.14 22.72 20.26 20.27 11.73 18.22
TopNet [38] 7.32 18.77 12.88 19.82 14.60 16.29 14.89 8.82 14.25
GRNet 6.13 16.90 8.27 12.23 10.22 14.93 10.08 5.86 10.64

4.5 Shape Completion on Completion3D

Using the model with the lowest Chamfer Distance (CD) on the validation set,
we recover the complete point clouds for 1,184 objects in the Completion3D
testing set. Then, random subsampling is applied to the generated point clouds
to obtain 2,048 points for benchmark evaluation. According to the online leader-
board 2, as shown in Table 3, the overall CD for the proposed GRNet is 10.64,
which remarkably outperforms all state-of-the-art methods and ranks first on
this benchmark.

4.6 Shape Completion on KITTI

To evaluate the performance of the proposed method on real-world LiDAR scans,
we test GRNet on the KITTI dataset for completing sparse point clouds of cars.
Unlike ShapeNet generated by back-projected from 2.5D images, point clouds
from LiDAR scans can be highly sparse, which are much sparser than those in
ShapeNet.

We fine-tuned all competitive methods on ShapeNetCars (the cars from
ShapeNet) except PCN that directly uses released output for evaluation. Dur-
ing testing, each point cloud is transformed into the bounding box’s coordinates
and transformed back to the world frame after completion. The models trained
specifically on cars are able to incorporate prior knowledge of the object class.

Since there are no complete ground truth point clouds for KITTI, we use Con-
sistency and Uniformity to evaluate the performance of all competitive methods.
Consistency in PCN [51] is the average CD between the output of the same car
instance in nf consecutive frames. Let Rj

ti be the output for the j-th car instance
at time ti. The Consistency for the j-th car can be calculated as

Consistency =
1

nf − 1

nf"

i=2

CD(Rj
ti−1

,Rj
ti) (13)

2 https://completion3d.stanford.edu/results

https://completion3d.stanford.edu/results

12 Haozhe Xie et al.

Table 4. Point completion results on LiDAR scans from KITTI compared using Con-
sistency and Uniformity. The best results are highlighted in bold.

Methods
Consistency Uniformity for different p

(×10−3) 0.4% 0.6% 0.8% 1.0% 1.2%

AtlasNet [6] 0.700 1.146 1.005 0.874 0.761 0.686

PCN [51] 1.557 3.662 5.812 7.710 9.331 10.823

FoldingNet [50] 1.053 1.245 1.303 1.262 1.162 1.063

TopNet [38] 0.568 1.353 1.326 1.219 1.073 0.950

MSN [23] 1.951 0.822 0.675 0.523 0.462 0.383

GRNet 0.313 0.632 0.572 0.489 0.410 0.352

KITTI RGB Image KITTI LiDAR Scan Input AtlasNet PCN FoldingNet TopNet MSN GRNet

Fig. 4. Qualitative completion results on the LiDAR scans from KITTI. The incom-
plete input point cloud is extracted and normalized from the scene according to its 3D
bounding box.

Following PU-GAN [19], we adopt Uniformity to evaluate the distribution
uniformity of the completed point clouds, which can be formulated as

Uniformity(p) =
1

M

M"

i=1

Uimbalance(Si)Uclutter(Si) (14)

where Si(i = 1, 2, . . . ,M) is a point subset cropped from a patch of the output
R using the farthest sampling and ball query of radius

√
p. The term Uimbalance

and Uclutter account for the global and local distribution uniformity, respectively.

Uimbalance(Si) =
(|Si|− n̂)2

n̂
(15)

where n̂ = p|R| is the expected number of points in Si.

Uclutter(Si) =
1

|Si|

|Si|"

j=1

(di,j − d̂)2

d̂
(16)

GRNet: Gridding Residual Network 13

Table 5. The Chamfer Distance (CD), F-Score@1%, numbers of parameters, and back-
ward time on ShapeNet with different resolutions of 3D grids generated by Gridding.
The backward time is measured on an NVIDIA TITAN Xp GPU with batch size of 1.

Resolutions
CD (×10−4) F-Score@1% # Parameters Backward Time

Coarse Complete Coarse Complete (M) (ms)

323 23.339 5.943 0.329 0.549 69.54 64

643 11.259 2.723 0.340 0.708 76.70 100

1283 12.383 2.732 0.366 0.712 76.77 302

Table 6. The Chamfer Distance (CD), F-Score@1%, and numbers of parameters of
MLPs on ShapeNet with different features maps feeding into Cubic Feature Sampling.
The backward time is measured on an NVIDIA TITAN Xp GPU with batch size of 1.

The Size of Feature Maps CD F-Score # Parameters Backward Time

128× 83 64× 163 32× 323 (×10−4) @1% (M) (ms)

11.375 0.343 0 72

! 2.922 0.640 0.11 80

! ! 2.805 0.686 0.96 88

! ! ! 2.723 0.708 4.07 100

where di,j represents the distance to the nearest neighbor for the j-th point in

Si, and d̂ is roughly
&

2πp

|Si|
√
3
if Si has a uniform distribution [19].

Table 4 shows the completion results for cars in the LiDAR scans from the
KITTI dataset. Experimental results indicate that GRNet outperforms other
competitive methods in terms of Consistency and Uniformity. Benefited from
Gridding and Gridding Reverse, GRNet is more sensitive to the spatial structure
of the input points, which leads to better consistency between the two con-
secutive frames. As shown in Figure 4, the cars are barely recognizable due to
incompleteness of the input data. In contrast, the completed point clouds provide
more geometric information. In addition, the qualitative results also demonstrate
the proposed method generates more reasonable shape completion.

4.7 Ablation Study

The performance improvement of GRNet should be attributed to three key com-
ponents, including Gridding, Cubic Feature Sampling, and Gridding Loss. To
demonstrate the effectiveness of each component in the proposed method, we
evaluate the performance with different parameters.

Gridding. Table 5 shows the results of different resolutions of 3D grids generated
by Gridding. The F-Score of final completed point clouds increases with the 3D
grids’ resolutions. However, the numbers of parameters and the backward time

14 Haozhe Xie et al.

Table 7. The Chamfer Distance (CD) and F-Score@1% on ShapeNet with different
resolutions of 3D grids generated by Gridding Loss. The backward time is measured
on an NVIDIA TITAN Xp GPU with batch size of 1.

Resolutions
CD (×10−4) F-Score@1% Backward Time

Coarse Complete Coarse Complete (ms)

Not Used 11.259 4.460 0.340 0.624 86

643 10.275 3.427 0.364 0.672 92

1283 9.324 2.723 0.386 0.708 100

also increases. To archive a balance between effect and efficiency, we choose the
resolution of size 643 for Gridding in GRNet.
Cubic Feature Sampling. To quantitatively evaluate the effect of Cubic Fea-
ture Sampling, we compare the performance without Cubic Feature Sampling
and with different feature maps fed into it. The experimental results presented
in Table 6 indicate that Cubic Feature Sampling improves the point cloud com-
pletion results significantly. In addition, with more feature maps are fed, the
completion quality becomes better without a significant increase in the numbers
of parameters and backward time.
Gridding Loss. We further validate the effects of Gridding Loss, as shown in
Table 7. There is a decrease in terms of both CD and F-Score when removing
Gridding Loss. When increasing the resolution of 3D grids from 643 to 1283,
there are 25.9% and 5.4% improvements in CD and F-Score, respectively.

5 Conclusion

In this paper, we study how to recover the complete 3D point cloud from an
incomplete one. The main motivation of this work is to enable the convolutions
on 3D point clouds while preserving their structural and context information.
To this aim, we introduce 3D grids as intermediate representations to regularize
unordered point clouds. We then propose a novel Gridding Residual Network
(GRNet) for point cloud completion, which contains three novel differentiable
layers: Gridding, Gridding Reverse, and Cubic Feature Sampling, as well as a new
Gridding Loss. Extensive comparisons are conducted on the ShapeNet, Com-
pletion3D, and KITTI benchmarks, which indicate that the proposed GRNet
performs favorably against state-of-the-art methods.
Acknowledgements. This work is supported by the National Natural Sci-
ence Foundation of China (Nos. 61772158, 61702136 and 61872112), National
Key Research and Development Program of China (Nos. 2018YFC0806802 and
2018YFC0832105), and Self-Planned Task (No. SKLRS202002D) of State Key
Laboratory of Robotics and System (HIT).

GRNet: Gridding Residual Network 15

References

1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.J.: Learning representations
and generative models for 3D point clouds. In: ICML 2018 (2018) 3

2. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid,
I.D., Leonard, J.J.: Past, present, and future of simultaneous localization and map-
ping: Toward the robust-perception age. IEEE Transactions on Robotics 32(6),
1309–1332 (2016) 1

3. Dai, A., Qi, C.R., Nießner, M.: Shape completion using 3D-encoder-predictor CNNs
and shape synthesis. In: CVPR 2017 (2017) 2, 4, 5

4. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object recon-
struction from a single image. In: CVPR 2017 (2017) 3, 7, 8

5. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI
dataset. International Journal Robotics Research (IJRR) 32(11), 1231–1237 (2013)
8

6. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-mâché
approach to learning 3D surface generation. In: CVPR 2018 (2018) 4, 9, 11, 12

7. Han, X., Li, Z., Huang, H., Kalogerakis, E., Yu, Y.: High-resolution shape comple-
tion using deep neural networks for global structure and local geometry inference.
In: ICCV 2017 (2017) 2, 4, 5

8. Hassani, K., Haley, M.: Unsupervised multi-task feature learning on point clouds.
In: ICCV 2019 (2019) 4

9. Hermosilla, P., Ritschel, T., Vázquez, P., Vinacua, A., Ropinski, T.: Monte carlo
convolution for learning on non-uniformly sampled point clouds. ACMTransactions
on Graphics 37(6), 235:1–235:12 (2018) 4

10. Hua, B., Tran, M., Yeung, S.: Pointwise convolutional neural networks. In: CVPR
2018 (2018) 4

11. Jiang, L., Shi, S., Qi, X., Jia, J.: GAL: geometric adversarial loss for single-view
3D-object reconstruction. In: ECCV 2018 (2018) 3, 7

12. Kar, A., Häne, C., Malik, J.: Learning a multi-view stereo machine. In: NIPS 2017
(2017) 3

13. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR 2015
(2015) 9

14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR 2017 (2017) 2

15. Lan, S., Yu, R., Yu, G., Davis, L.S.: Modeling local geometric structure of 3D point
clouds using Geo-CNN. In: CVPR 2019 (2019) 4

16. Lei, H., Akhtar, N., Mian, A.: Octree guided CNN with spherical kernels for 3D
point clouds. In: CVPR 2019 (2019) 4

17. Li, D., Shao, T., Wu, H., Zhou, K.: Shape completion from a single RGBD image.
IEEE Transactions on Visualization and Computer Graphics 23(7), 1809–1822
(2017) 4, 5

18. Li, K., Pham, T., Zhan, H., Reid, I.D.: Efficient dense point cloud object recon-
struction using deformation vector fields. In: ECCV 2018 (2018) 3

19. Li, R., Li, X., Fu, C., Cohen-Or, D., Heng, P.: PU-GAN: a point cloud upsampling
adversarial network. In: ICCV 2019 (2019) 12, 13

20. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: Convolution on
x-transformed points. In: NeurIPS 2018 (2018) 4

21. Lin, C., Kong, C., Lucey, S.: Learning efficient point cloud generation for dense 3D
object reconstruction. In: AAAI 2018 (2018) 3

16 Haozhe Xie et al.

22. Lin, H., Xiao, Z., Tan, Y., Chao, H., Ding, S.: Justlookup: One millisecond deep
feature extraction for point clouds by lookup tables. In: ICME 2019 (2019) 3

23. Liu, M., Sheng, L., Yang, S., Shao, J., Hu, S.M.: Morphing and sampling network
for dense point cloud completion. In: AAAI 2020 (2020) 4, 9, 10, 12

24. Liu, Y., Fan, B., Meng, G., Lu, J., Xiang, S., Pan, C.: DensePoint: Learning densely
contextual representation for efficient point cloud processing. In: ICCV 2019 (2019)
4

25. Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network
for point cloud analysis. In: CVPR 2019 (2019) 4

26. Liu, Z., Tang, H., Lin, Y., Han, S.: Point-voxel CNN for efficient 3D deep learning.
In: NeurIPS 2019 (2019) 2, 4, 5

27. Mandikal, P., Radhakrishnan, V.B.: Dense 3D point cloud reconstruction using a
deep pyramid nxetwork. In: WACV 2019 (2019) 2, 3

28. Mao, J., Wang, X., Li, H.: Interpolated convolutional networks for 3D point cloud
understanding. In: ICCV 2019 (2019) 2, 4, 5

29. Nguyen, D.T., Hua, B., Tran, M., Pham, Q., Yeung, S.: A field model for repairing
3D shapes. In: CVPR 2016 (2016) 2

30. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala,
S.a.: PyTorch: An imperative style, high-performance deep learning library. In:
NeurIPS 2019 (2019) 9

31. Peng, S., Liu, Y., Huang, Q., Zhou, X., Bao, H.: Pvnet: Pixel-wise voting network
for 6dof pose estimation. In: CVPR 2019 (2019) 3

32. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: Deep learning on point sets for
3D classification and segmentation. In: CVPR 2017 (2017) 3, 10

33. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: Deep hierarchical feature learn-
ing on point sets in a metric space. In: NIPS 2017 (2017) 3

34. Sharma, A., Grau, O., Fritz, M.: VConv-DAE: Deep volumetric shape learning
without object labels. In: ECCV 2016 Workshops (2016) 2

35. Stutz, D., Geiger, A.: Learning 3D shape completion from laser scan data with
weak supervision. In: CVPR 2018 (2018) 2

36. Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E., Yang, M., Kautz, J.:
Splatnet: Sparse lattice networks for point cloud processing. In: CVPR 2018 (2018)
2, 4

37. Tatarchenko, M., Richter, S.R., Ranftl, R., Li, Z., Koltun, V., Brox, T.: What do
single-view 3D reconstruction networks learn? In: CVPR 2019 (2019) 8

38. Tchapmi, L.P., Kosaraju, V., Rezatofighi, H., Reid, I.D., Savarese, S.: TopNet:
Structural point cloud decoder. In: CVPR 2019 (2019) 2, 4, 5, 8, 9, 10, 11, 12

39. Thomas, H., Qi, C.R., Deschaud, J., Marcotegui, B., Goulette, F., Guibas, L.J.:
Kpconv: Flexible and deformable convolution for point clouds. In: ICCV 2019
(2019) 2, 4

40. Varley, J., DeChant, C., Richardson, A., Ruales, J., Allen, P.K.: Shape completion
enabled robotic grasping. In: IROS 2017 (2017) 2

41. Wang, K., Chen, K., Jia, K.: Deep cascade generation on point sets. In: IJCAI
2019 (2019) 2, 4

42. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph CNN for learning on point clouds. ACM Transactions on Graphics 38(5),
146:1–146:12 (2019) 2, 4

GRNet: Gridding Residual Network 17

43. Wang, Z., Lu, F.: VoxSegNet: Volumetric CNNs for semantic part segmentation of
3D shapes. IEEE Transactions on Visualization and Computer Graphics p. DOI:
10.1109/TVCG.2019.2896310 (2019) 4

44. Wu, W., Qi, Z., Li, F.: PointConv: Deep convolutional networks on 3D point clouds.
In: CVPR 2019 (2019) 4

45. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3D ShapeNets:
A deep representation for volumetric shapes. In: CVPR 2015 (2015) 8

46. Xie, H., Yao, H., Sun, X., Zhou, S., Zhang, S.: Pix2Vox: Context-aware 3D recon-
struction from single and multi-view images. In: ICCV 2019 (2019) 6

47. Xie, H., Yao, H., Zhang, S., Zhou, S., Sun, W.: Pix2Vox++: Multi-scale context-
aware 3D object reconstruction from single and multiple images. IJCV (2020).
https://doi.org/10.1007/s11263-020-01347-6 6

48. Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: DISN: deep implicit surface
network for high-quality single-view 3D reconstruction. In: NeurIPS 2019 (2019)
3, 7

49. Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Y.: SpiderCNN: Deep learning on point
sets with parameterized convolutional filters. In: ECCV 2018 (2018) 4, 5

50. Yang, Y., Feng, C., Shen, Y., Tian, D.: FoldingNet: Point cloud auto-encoder via
deep grid deformation. In: CVPR 2018 (2018) 9, 10, 11, 12

51. Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: PCN: point completion
network. In: 3DV 2018 (2018) 2, 3, 5, 8, 9, 10, 11, 12

52. Zhang, K., Hao, M., Wang, J., de Silva, C.W., Fu, C.: Linked Dynamic Graph
CNN: learning on point cloud via linking hierarchical features. arXiv 1904.10014
(2019) 4

https://doi.org/10.1007/s11263-020-01347-6

