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Abstract. Fitting 3D morphable models (3DMMs) on faces is a well-
studied problem, motivated by various industrial and research applica-
tions. 3DMMs express a 3D facial shape as a linear sum of basis func-
tions. The resulting shape, however, is a plausible face only when the
basis coefficients take values within limited intervals. Methods based on
unconstrained optimization address this issue with a weighted ℓ2 penalty
on coefficients; however, determining the weight of this penalty is diffi-
cult, and the existence of a single weight that works universally is ques-
tionable. We propose a new formulation that does not require the tun-
ing of any weight parameter. Specifically, we formulate 3DMM fitting
as an inequality-constrained optimization problem, where the primary
constraint is that basis coefficients should not exceed the interval that
is learned when the 3DMM is constructed. We employ additional con-
straints to exploit sparse landmark detectors, by forcing the facial shape
to be within the error bounds of a reliable detector. To enable opera-
tion “in-the-wild”, we use a robust objective function, namely Gradi-
ent Correlation. Our approach performs comparably with deep learning
(DL) methods on “in-the-wild” data that have inexact ground truth,
and better than DL methods on more controlled data with exact ground
truth. Since our formulation does not require any learning, it enjoys a
versatility that allows it to operate with multiple frames of arbitrary
sizes. This study’s results encourage further research on 3DMM fitting
with inequality-constrained optimization methods, which have been un-
explored compared to unconstrained methods.
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1 Introduction

Estimation of 3D facial shape from 2D data via 3D morphable models (3DMMs),
a.k.a. face reconstruction, is a fundamental computer vision problem that at-
tracts great interest due to its various applications [10], such as facial expression
synthesis or analysis [18], gaze estimation [38] and facial landmark detection [45].

Most 3DMMs reconstruct facial shape as a linear sum of basis functions that
are typically learned via a variant of principal component analysis (PCA) [3,5,7]
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Fig. 1. Illustration of why inequality constraints are useful. (a) Morphable model con-
straints. Each row shows the effect of a basis function of the Basel’09 model [21] when
generating facial shapes. The shapes may become implausible when the basis coefficient
is outside a certain interval (in this case, ±3 standard deviations, [−3σ, 3σ]); thus, the
optimization algorithm is constrained to this interval. (b) Sparse landmark constraints.
The purple dots show the output of a landmark detector, and the red rectangles depict
the maximal error for two landmarks (i.e., eye and mouth corner), learned on a large
dataset (Section 2.2). When a dense facial mesh is fit to this image, the mouth and eye
corner of the mesh should remain inside the red rectangles

or other models [14,10]. Then, 3D facial shape reconstruction from 2D data is per-
formed by inferring the basis coefficients in this sum, often using unconstrained
pseudo-second-order (PSO) optimization. The magnitude of basis coefficients
must not be too large; otherwise, the resulting shape may hardly look like a
face (Fig. 1a). More specifically, the coefficients should be within the bounds
of their distributions, which are learned when the 3DMM is constructed. For
example, if the 3DMM is learned with PCA (e.g., [21]), the coefficients should
very rarely exceed ±3 standard deviations (Section 2.2). A similar interval can
be found for 3DMMs learned with other stochastic approaches (e.g.,[14]).

Many methods address the above-mentioned issue by adding a weighted ℓ2
penalty on the coefficients (Section 1.1). Unfortunately, the weights of those
penalties are not easy to tune, and such ℓ2 regularization can lead to overly
smooth faces that miss personal characteristics, or images that exaggerate those
characteristics to minimize reconstruction error (Fig. 2). Using deep learning
(DL) is another alternative to 3DMM fitting. However, the DL methods that
achieve the best performance “in-the-wild” also tend to produce overly-smooth
faces (Fig. 2). Moreover, DL methods may lack versatility, as they rely on a fixed
architecture that may not be suitable for working with images of arbitrary size,
or with multiple frames of a person when available (Section 1.1).

This paper introduces a novel and theoretically compelling alternative to
unconstrained PSO optimization, which achieves a robustness on par with DL
methods, without sacrificing the versatility of 3DMMs. Specifically, we formu-
late 3DMM fitting as an inequality-constrained optimization problem, where
the primary constraint is that no basis function coefficient should be outside
the coefficient interval that is learned while the 3DMM is constructed (Fig. 1a).
Thus, we prevent coefficients from taking prohibitively large values, but unlike ℓ2
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Fig. 2. Illustration of the output of two state-of-the-art deep learning-based methods,
PRNet [11] and 3DDFA [45], in comparison to our method (3DI; used with Basel 2009
model [21]), two optimization-based methods with ℓ2 regularization (3DMM edges [1]
and ITW [7]) and ground truth. Deep learning methods are remarkably robust, but
tend to produce over-smooth faces, whereas our method is better capable of applying
the right amount of detail. More illustrations are provided in Supplementary Material

regularization, do not require the tuning of any application-specific parameter.
Additional inequality constraints are used to exploit (sparse) facial landmark
detectors (Fig. 1b). To enable our approach to operate “in-the-wild”, we use
Gradient Correlation (GC) [34] as the objective function, since GC is robust
against illumination variations and occlusion. Finally, our approach can fit a
3DMM to multiple frames of a person. We refer to our formulation as 3DI (3D
estimation via Inequality constraints).

This paper has two technical contributions. First, we propose a novel for-
mulation for 3DMM fitting as an inequality-constrained optimization problem.
Second, we show how to use GC as a robust objective function for fitting 3DMMs.
Our results on a widely-used “in-the-wild” dataset, AFLW2000-3D [44], are com-
parable to those of DL methods, even though our method does not require any
training at all, and the 3DMM that we use is learned under controlled condi-
tions [14]. Moreover, we demonstrate that our method actually outperforms the
state-of-the-art methods on data where exact ground truth is known (improve-
ment between 21% and 39% on the BU-4DFE dataset [41] and a synthesized
dataset). The performance improves significantly with multiple frames, high-
lighting the benefits of a versatile method that can use multiple images.

1.1 Related Work

Many 3DMM fitting methods use unconstrained PSO optimization [10], such
as stochastic gradient [24,3], Levenberg-Marquardt [27,23] or Gauss-Newton
[46,30,17,6,7,15,40]. These methods usually use various weighted ℓ2 regular-
ization terms in the cost function [27,2,3,1,6,7,15,12,46,24,39,30,4,17]. Unfortu-
nately, the determination of the weight of these terms can be ad hoc [3]. More-
over, it is highly unlikely that there are specific optimal weights that can work
on all images under all circumstances. For example, the optimal weight for the ℓ2
penalty on deviation from landmarks should ideally depend on the error of the
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landmark detector, which is different for each image. A key novelty of our ap-
proach is to replace ℓ2 regularization strategies with inequality constraints. Our
formulation requires only determination of the bounds of the inequalities, which
is learned for each 3DMM only once, without tuning w.r.t. a problem-specific
metric (Section 2.2). Some recent methods can operate “in-the-wild” by using
robust representations [1,6,7]. We also use a robust approach to fit morphable
models, namely GC, which is robust against illumination variation and has a
built-in outlier elimination, rendering it robust against occlusions [34].

Deep learning (DL) techniques are increasingly popular for 3D shape estima-
tion [43,11,13,28,20,22,26,29,31]. Herein, we focus on DL methods that prioritize
3D shape reconstruction, which is the purpose of our study (but, see a recent
survey on using DL for other tasks; e.g., texture reconstruction [10]). Two DL
methods are particularly robust, namely 3DDFA [45] and PRNet [11]. To our
knowledge, PRNet achieves the best performance on one of the most popular “in-
the-wild” datasets, AFLW2000-3D [45], as also shown in a recent independent
study [43]. Like most DL methods, PRNet and 3DDFA work with a single frame,
and cannot be trivially extended to use multiple frames of a person without cre-
ating a new architecture (e.g. [22]). In contrast, multi-frame operation is a rather
straightforward extension for PSO approaches [7] and for our formulation. Also,
the faces reconstructed by those DL methods tend to be too smooth (Fig. 2),
missing person-specific details, and possibly limiting their performance when
working with simpler images from relatively controlled conditions (Section 3.2).
This is unfortunate, as in many applications the conditions are not “in-the-wild”,
such as Skype interviews or video recordings for clinical research [36].

2 Inequality-Constrained 3D Model Fitting

We first give background for fitting a 3D model to 2D frames and introduce our
notation (Section 2.1). We then explain why it is natural to formulate 3DMM
fitting as an inequality-constrained optimization problem (Section 2.2). Finally,
we describe the robust objective function that we use (Section 2.3) and how to
optimize it subject to inequality constraints (Section 2.4).

2.1 Background and Notation

Fitting a 3DMM to a set of 2D frames, I1, . . . , IT , amounts to finding the facial
shape, texture, camera view, and illumination coefficients that best reconstruct
the frames.

3D facial shape. The 3D facial shape is represented with a dense mesh of N
points at each frame. Let pt be the mesh at frame t, pt:=(pT

t1,p
T
t2, . . . ,p

T
tN )T ∈

R
3N , where pti is a single point, i.e., pti=(pxti, p

y
ti, p

z
ti)

T . Then, morphable models
represent the facial shape as a linear sum,

pt = p̄+Aα+Eεt, (1)
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where p̄ is the mean face shape, A∈R3N×Kα is the (shape) identity basis of the
morphable model, α ∈ R

Kα is the vector of shape parameters, E∈R3N×Kε is the
facial expression basis and εt ∈ R

Kε is the vector of expression coefficients. Note
that α does not depend on t as facial identity does not change over time, but the
expression εt can. The points undergo a camera view transformation; that is, a
rotation by a matrixRt ∈ SO(3) and translation by a vector τ t = (τtx, τty, τtz)

T .
The view-transformed points are represented as vt1,vt2, . . . ,vtN , where

vti := (vxti, v
y
ti, v

z
ti)

T := Rtpti + τ t. (2)

The rotation matrix can be represented via quaternion parameters qt0, q
t
1, q

t
2 and

qt3 [7]. The camera view transformation is represented concisely as a 6-vector
ct := (ct1, . . . , ct6)

T := (qt1, q
t
2, q

t
3, τ

T
t )

T ; qt0 is ignored, as it can be determined
when qt1, q

t
2, q

t
3 are known due to the unit-norm constraint of quaternions [7].

3D-to-2D mapping. The next step towards reconstructing the face image
is to project each 3D point vti onto the image plane. For a CCD camera, this
process is carried out with a perspective transformation [16], and the 2N -vector
containing image points, xt:=(xt

1, y
t
1, . . . , x

t
N , ytN ), is obtained as:

xt
i = φxv

x
ti/v

z
ti+cx, yti = φyv

y
ti/v

z
ti+cy (3)

where φx and φy are the parameters of the perspective transformation, and cx
and cy are the coordinates of the image center.

Texture. To obtain the reconstructed face image, Ît, one needs to deter-
mine the texture (i.e., the pixel intensity) that will be assigned to each image
point. This essentially depends on two factors: the facial texture of the person
(e.g., color of skin) and the illumination. A morphable model represents the

facial texture of a person, Îft , as a linear sum, Îft := t̄ + Bβ, where t̄ is the
mean texture and t̄ ∈ R

N for a grayscale image; B ∈ R
N×Kβ is the texture

basis of the morphable model; and β ∈ R
Kβ is the vector of texture coefficients.

Using a simplified version of the Phong illumination model (i.e., we ignore spec-
ular reflection [3]), the pixel intensities of the reconstructed image can finally be
computed as

Ît = Î
f
t + ΛÎft ⊙ Îdt , (4)

where ⊙ is element-wise vector production, Îdt is the diffuse reflection component
of the Phong model and Λ is a scalar—the diffuse reflection coefficient. The ith
element of Îdt is Îdt [i]:=〈nti,λt − vti〉, where nti is the unit-norm the surface
normal vector of the facial mesh at the ith point, 〈·, ·〉 is the standard inner
product on ℓ2, and λt:=(λtx, λty , λtz)

T is the 3D location of the illumination
source. Eq. (4) can be extended to use multiple illumination sources [3].

Image formation. Rendering of reconstructed face image is carried out
by filling the pixels whose location is specified in xt with the intensity values
specified in Ît. The true rendering process is slightly more complicated, as it
requires rasterization to identify the pixels that will be rendered and Z-buffering
to discard occluded pixels. However, for notational simplicity, we will suppose
that Ît is the (vectorized) rendered image—that the ith value of Ît contains the
pixel intensity at image location (xi, yi).
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2.2 Inequality Constraints

The facial shape and texture bases of morphable models are learned from a large
number of 3D facial scans [3]. Often, a statistical learning approach that underlies
the assumption of Normal distribution (e.g., PCA [2,7]) is used, in which case
basis coefficients should very rarely exceed ±3 standard distribution [35]. Thus,
the distributions learned while constructing the 3DMM can be used to determine
hard upper and lower bounds for basis coefficients. Importantly, one can set those
bounds a priori, in an application-independent manner. Nevertheless, since the
basis coefficients are empirical distributions, it is worth visually confirming that
the hard bounds generated using the statistics of those distributions do indeed
generate plausible-looking faces, as the aim is to have universally-valid bounds.

Let us define hα, hβ and hε
t as the constraint functions hα := α, hβ := β,

and hε
t := εt. Then, the morphable model constraints are

α− � hα � α+, ε− � hε
t � ε+, β− � hβ � β+, (5)

where α−∈RKα ,α+∈RKα , ε−∈RKε , ε+∈RKε , β−∈RKβ and β+∈RKβ are vec-
tors containing the bounds for the morphable model’s facial shape, expression
and texture coefficients. The symbol � is componentwise inequality [8].

Additional inequality constraints can be used to further improve the fit-
ting via (sparse) 2D landmark detectors, as in Fig. 1b. Suppose that we have
a detector that estimates the locations of L landmark points. Let those land-
mark points on the facial mesh be x′

t := (xt
i1
, yti1 , . . . , x

t
iL
, ytiL), and let x̂′

t :=
(x̂t

i1
, ŷti1 , . . . , x̂

t
iL
, ŷtiL) be the location of the same landmarks as estimated by the

detector. Let us suppose that the maximal error of the landmark detector is
measured for each landmark on a very large dataset and encoded in a vector
ǫ as ǫ := (ǫx1 , ǫ

y
1 , . . . , ǫ

x
L, ǫ

y
L) (Fig. 1b). Here, the maximal error of a landmark,

ǫxj , ǫ
y
j , can be defined in the strict sense (i.e., the error on the ith landmark does

not exceed ǫxi , ǫ
y
i for any image in the dataset) or in a slightly loose sense, such

as the error that is valid for 99% of the images. Then, the discrepancy between
x̂′

t and the image location of the same landmarks under the morphable model,
x′

t := (xt
i1
, yti1 , . . . , x

t
iL
, ytiL) [see (3)], should not exceed ǫ. Thus, the sparse land-

mark constraint can be represented as

−stbǫ � hL
t � stbǫ, (6)

where hL
t :=x′

t−x̂′

t, and sb is the bounding box size stb:=
√

wt
bbox×ht

bbox, which is
used for normalizing the error [9]. The width and height of the box, wt

bbox and
ht
bbox, are computed from the landmarks.

2.3 Objective Function

Fitting a 3DMM to an input image It requires a cost function to measure the
quality of fit. One may simply use the squared pixel-wise difference between the
input and reconstructed image [3], but this would hardly be robust (e.g., against
occlusions). We use GC, as it is a robust function due to its outlier elimination
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property [34]. GC has been used for rigid [32,34] and non-rigid 2D registra-
tion [33]; however, to our knowledge, it has not been used for 3DMM fitting. We
derive the mathematical expressions needed for the latter in Section 2.4.

To compute GC, we need to compute the magnitude-normalized gradient of
the input image It and the fitted image Ît [34]. Let us denote the magnitude-
normalized gradients of It along the x and y axes with the N -dimensional vectors
gtx and gty. If we approximate the ideal gradient operator with centered differ-
ence, then the kth entry of those vectors can be computed as

gtx[k]:=(It[kr]− It[kl])/h, gty[k]:=(It[kb]− It[ka])/h, (7)

where ka, kb, kl, and kr are the pixels above, below, to the left, and right of

the kth pixel, and h:=

√

(It[kr]−It[kl])
2
+ (It[kb]−It[ka])

2
is the magnitude. The

magnitude-normalized gradients of Ît, ĝtx and ĝty, are computed similarly. For
notational simplicity, we concatenate those gradients and represent them as
gt:=(gT

tx,g
T
ty)

T and ĝt:=(ĝT
tx, ĝ

T
ty)

T . The objective function f that we aim to
maximize, namely the GC between the input and the fitted frames, is

f =
T
∑

t=1

gT
t ĝt. (8)

2.4 Optimization

Inequality-constrained optimization problems are more difficult to solve than
unconstrained problems [8]. Algorithms that are standard for 3DMM fitting, such
as Gauss-Newton, cannot be used with inequality constraints. Fortunately, there
are high-quality solvers for inequality-constrained problems, such as IPOPT [37],
that require only the derivative of the objective function f and the Jacobian of
inequality constraints. We derive these terms below.

Derivative of objective function. The derivative of f in (8) w.r.t. any
parameter y that affects the rendered image Ît is

∂f

∂y
=

T
∑

t=1

gT
t

∂ĝt

∂y
=

T
∑

t=1

gT
t

∂ĝt

∂Ît

∂Ît
∂y

. (9)

Since the normalized gradient depends only on neighboring values of the input
image [see (7)], ∂ĝt/∂Ît is a sparse 2N × N matrix. This matrix is obtained
by horizontally concatenating ∂ĝtx/∂Ît and ∂ĝty/∂Ît. The entries of the latter
matrices are provided in Supplementary Material. To compute the partial deriva-
tives of f for all needed variables, we must compute ∂Ît/∂α, ∂Ît/∂β, ∂Ît/∂εt,
∂Ît/∂ct and ∂Ît/∂λt and then replace them in turn with ∂Ît/∂y in (9). ∂Ît/∂β

is rather simple as β affects only the Î
f
t in (4):

∂Ît
∂β

=
∂Îft
∂β

+
∂Îft
∂β

⊙ (1T
Kβ

⊗ ΛÎdt ) = B+B⊙ (1T
Kβ

⊗ ΛÎdt ), (10)
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where 1T
Kβ

is the transpose of the Kβ-dimensional column vector whose all

entries are 1, and ⊗ is the Kronecker product; therefore, (1T
Kβ

⊗ Îdt ) is an N×Kβ

matrix whose every column is ΛÎdt . The derivative w.r.t. illumination source λ

is also simple as λ has no effect on Î
f
t :

∂Ît
∂λ

= (1T
3 ⊗ Î

f
t )⊙

∂Îdt
∂λ

= (1T
3 ⊗ Î

f
t )⊙ (nt1,nt2, . . . ,ntN )T . (11)

The derivatives w.r.t. remaining parameters are obtained as follows:

∂Ît
∂α

=
∂Îft
∂xt

∂xt

∂pt

∂pt

∂α
⊙
(

1NKα
+1T

Kα
⊗ΛÎdt

)

+
(

1T
Kα

⊗ΛÎft

)

⊙∂Îdt
∂xt

∂xt

∂pt

∂pt

∂α
,

∂Ît
∂εt

=
∂Îft
∂xt

∂xt

∂pt

∂pt

∂εt
⊙
(

1NKε
+1T

Kε
⊗ΛÎdt

)

+
(

1T
Kε

⊗ΛÎft

)

⊙∂Îdt
∂xt

∂xt

∂pt

∂pt

∂εt
,

∂Ît
∂ct

=
∂Îft
∂xt

∂xt

∂ct
⊙
(

1N6 + 1T
6 ⊗ΛÎdt

)

+
(

1T
6 ⊗ΛÎft

)

⊙ ∂Îdt
∂ct

(12)

where 1N is an N -dimensional vector of ones. ∂Îft /∂xt is an N × 2N block-

diagonal matrix that contains the (un-normalized) gradient of the image Î
f
t ;

specifically, the nth block on its diagonal is a 1× 2 matrix comprising the hor-
izontal and vertical gradient of the nth pixel of Î

f
t . ∂p/∂α and ∂p/∂εt are

respectively A and E. ∂xt/∂pt is a block-diagonal matrix whose nth block is
a 2 × 3 matrix containing the derivative of the nth image point w.r.t. pn. The
remaining terms that are needed to complete the computation of derivatives,
namely ∂xt/∂ct and ∂Îdt /∂ct, are provided in Supplemental Material.

Jacobian of constraints. Our problem has 2 + 2T constraint functions hα,
hβ ,hε

1, . . . ,h
ε
T ,h

L
1 , . . . ,h

L
T and 2+3T sets of variablesα, β, ε1, . . . , εT , c1, . . . , cT ,

λ1, . . . ,λT . The Jacobian of the constraints is therefore a matrix partitioned into
a grid of (2+2T )× (2+3T ) blocks, where each partition is the partial derivative
of one of the afore-listed constraint functions w.r.t. one of the sets of variables.
J is a sparse matrix, as each constraint depends only on a small set of variables.
We list all of the non-zero derivatives in this partitioning below. The derivatives
for the morphable model constraints are

∂hα

∂α
= IKα

,
∂hε

t

∂εt
= IKε

∂hβ

∂β
= IKβ

, (13)

where IKα
, IKε

and IKβ
are identity matrices of size Kα, Kε and Kβ, respec-

tively. The derivatives for the landmark constraints are

∂hL
t

∂εt
=

∂x′

t

∂p′

t

∂p′

t

∂εt
,

∂hL
t

∂ct
=

∂x′

t

∂ct
, (14)

where p′

t is the 3L-vector obtained by concatenating the 3D points corresponding
to landmarks, p′

t := (pT
ti1

, . . . ,pT
tiL

)T . The matrix ∂x′

t/∂p
′

t is a block-diagonal
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matrix obtained similarly to the ∂xt/∂pt described for (12); the only difference
is that it comprises L blocks –corresponding to L landmarks– and not N blocks.
The derivative ∂p′

t/∂α is a 3L×Kα matrix containing the rows ofA correspond-
ing to the L landmarks. Similarly, ∂p′

t/∂εt contains the rows of E corresponding

to landmarks. The partial derivative
∂x′

t

∂ct
is also similar to the ∂xt

∂ct
in (12), with

the difference that it is computed from L landmark points.

3 Experimental Validation

We validate our method experimentally on three tasks, namely (sparse) 2D facial
landmark estimation (a.k.a. face alignment), 3D landmark estimation, and dense
(3D) facial shape estimation. We show the robustness of the method, as well as
its ability to attain high precision, through experiments conducted with “in-the-
wild” data in addition to controlled data.

3.1 Experimental Setup

Evaluation metric and datasets. We evaluate performance with the com-
monly used Normalized Mean Error (NME) for all tasks [9,11,45]. For 2D land-
mark estimation, the NME of one image is computed by calculating the esti-
mation error for each landmark via ℓ2 norm, then computing the average of
those errors, and finally normalizing this average by dividing it by the bound-
ing box size computed as

√
wbbox × hbbox, where the bounding box width wbbox

and height hbbox are computed from the labeled landmarks. We report perfor-
mance on the commonly employed L = 68 landmark points (Fig. 1b) as well
as the L = 51 (inner-face) points [25]. When computing NME for 3D land-
mark estimation, the point-wise error is computed in terms of 3D points, and
Z-normalization is applied to all points to resolve the ambiguity along the depth
axis. For NME for dense facial shape estimation, the average error is computed
from all the points on the dense facial mesh, and normalization is performed by
dividing by outer interocular distance [11]. Similarly to previous studies, we use
Iterative Closest Point (ICP) prior to computing the dense NME, but only to
establish the point correspondence between the ground truth mesh shape and
the estimated facial mesh [42,19] (i.e., rigid alignment is not used).

We use three datasets. First, AFLW2000-3D [45]— a widely used dataset
[45,9,43,19] that contains 2D and 3D landmark annotations. Second, a Synthe-

sized dataset that we generated using the Basel’09 3DMM [21]. This dataset
has two advantages: It enables us to compute exact ground truth for 2D and
3D landmarks, and to run multi-frame experiments, as the images of the same
face from different angles can be generated trivially (examples of images for the
Synthesized dataset are in Supplementary Material). We use the Basel’09 model,
as its facial mesh is used by many previous methods [1,45,6,7] and the ground
truth location of the L = 68 landmarks on this mesh are established. Thus, an
exact comparison between the estimated and true location of 3D points becomes
possible. We synthesize 900 images from 100 subjects in 9 poses as in previous
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works [19,45]; that is, we apply 9 yaw rotations of, -80, -60, ..., 80 degrees, and
a pitch rotation randomly selected from -15, 20 and 25 degrees. We also apply
a random illumination variation. Finally, we use the BU-4DFE [41] dataset for
dense facial shape estimation. BU-4DFE contains 3D facial data collected from
101 subjects, and allows us to evaluate our method on faces of real subjects from
various ethnic and racial backgrounds. This is important for our study as the
Basel models that we use for fitting are constructed from European participants;
therefore, our methods’s ability to generalize to non-European populations must
be explicitly tested. Similarly to the Synthesized dataset, we generate 9 images
per subject, but also add one of the six basic facial expressions, namely happi-
ness, sadness, anger, surprise, fear and disgust.

Compared methods and implementation of 3DI. To validate different
aspects of our method, we compare with five very recent state-of-the-art meth-
ods. First, we compare with PRNet [11], which, to our knowledge, attains the
best performance on AFLW2000-3D, even in an independent study [43]. Second,
we compare with 3DDFA [45]. While 3DFFA was outperformed by some recent
studies [11,43,19], it now has an updated code3 that is considerably improved.
Third, we compare with one of the most popular landmark estimation methods,
3D-FAN [9]. Fourth, we compare with two robust optimization-based methods
that use ℓ2 regularization, namely 3DMM Edges [1] and ITW [7]. Finally, we
compare with a video-based variant of the latter, ITW-V [7].

We implemented our method, 3DI, in MATLAB. We used IPOPT [37] for
inequality-constrained optimization, and 3D-FAN [9] for landmark estimation.
To learn the maximal landmark detection error (ǫ) as discussed in Section 2.2,
we synthesized a large face dataset with the Basel’09 model, and computed the
error of 3D-FAN for each landmark. We ignored the outliers by not taking into
account the 1% of the images with the highest errors. However, we expanded the
error bounds by 15% to account for the difficulties associated with “in-the-wild”
images. We resized each image to 100× 100, and applied Gaussian smoothing as
suggested for GC [34]. We used the Basel’17 3DMM[14], except for the experi-
ments on the Synthesized dataset, where we used Basel’09 for landmark estima-
tion experiments with the aim of providing exact comparison using the common
keypoints with other methods (see Datasets above). We applied the coefficient
constraints of ±3 standard deviations for the Basel’09 model. For the Basel’17
model, we used a reduced interval of ±1.5 standard deviations as the interval
of ±3 generates implausible looking faces with this model (see Supplementary
Material). Note that these intervals were determined only through evaluating
Basel 3DMMs, and fixed for all experiments. The source code of our method is
available on https://github.com/sariyanidi/3DI for research purposes.

3.2 Results

2D and 3D landmark estimation. Our method’s qualitative 2D landmark
estimation and dense 3DMM fitting results are shown in Fig. 3. Overall, Fig. 3

3 https://github.com/cleardusk/3DDFA
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Fig. 3. Qualitative illustration of our method’s performance on the AFLW2000-3D
dataset. Top row: input images; middle row: 2D landmarks estimated by our method;
bottom row: dense 3D shape estimated by our method. It is notable that our method
can successfully operate in such uncontrolled conditions, even though we use a 3DMM
collected from controlled data, namely Basel 2017 [14]
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Fig. 4. Cumulative error distribution (CED) of compared methods on the AFLW2000-
3D dataset for the tasks of 2D and 3D (sparse) landmark estimation. Performance is
reported separately for L=68 and L=51 landmarks

demonstrates that our method operates well “in-the-wild”, producing compelling
results even in the presence of large illumination or expression variations, or oc-
clusions (more qualitative results are provided in Supplementary Material). This
is a remarkable outcome that validates the theoretical appeal of our formulation
in practice; to our knowledge, we propose the first method that can general-
ize to “in-the-wild” data, without requiring a morphable model constructed
from uncontrolled images (e.g., [7]) or a deep architecture trained with large
amounts of “in-the-wild” data. Fig. 4 shows the 2D and 3D landmark estima-
tion performance of all methods via cumulative error distribution (CED) on the
AFLW2000-3D dataset, and Table 1 shows the mean NME. The 2D landmark es-
timation performance of our method on 51 or 68 landmarks (Fig. 4 and Table 1)
is very similar to that of PRNet, which, to our knowledge, is the best-performing
method on this dataset. Our method’s error is slightly higher than other meth-
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Fig. 5. Cumulative error distribution (CED) of compared methods on the Synthesized
dataset for the tasks of 2D and 3D (sparse) landmark estimation. Performance is re-
ported separately for L=68 and L=51 landmarks

ods on 3D landmark estimation, but one must take those results with a pinch of
salt, because the annotations of AFLW2000-3D are controversial [11]. 3D land-
mark annotations on AFLW are obtained from single frames. Such annotations
can hardly be called ground truth, as inferring 3D points from 2D data is an
ill-posed problem. We next investigate the performance of the same methods on
BU-4DFE and the Synthesized dataset, where true ground truth is available.

Table 1. Mean NME of compared methods on the AFLW2000-3D and Synthesized
datasets for the tasks of 2D and 3D landmark estimation for L = 51 and L=68 land-
marks. Bold and underline indicate best and second best performance, respectively

AFLW2000-3D dataset Synthesized dataset
2D landmarks 3D landmarks 2D landmarks 3D landmarks
L=51 L=68 L=51 L=68 L=51 L=68 L=51 L=68

PRNet 0.041 0.035 0.048 0.044 0.041 0.038 0.045 0.045
3DDFA 0.049 0.040 0.050 0.046 0.048 0.042 0.048 0.048
3D-FAN 0.041 0.038 0.060 0.053 0.041 0.041 0.050 0.052
ITW 0.047 0.042 0.066 0.060 0.041 0.034 0.048 0.041
ITW-V (multi-frame) N/A N/A N/A N/A 0.060 0.045 0.043 0.038
3DI Single-frame (our) 0.042 0.038 0.057 0.056 0.025 0.027 0.034 0.036
3DI Multi-frame (our) N/A N/A N/A N/A 0.026 0.027 0.026 0.032

Fig. 5 shows the 2D and 3D landmark estimation results on the Synthesized
dataset. Results for multiframe methods are computed by using 5 randomly
selected frames simultaneously; additional results with 3 and 9 frames are re-
ported in Supplementary Material. Our method outperforms all other methods
when the performance metric is reliable (i.e., a true ground truth is available). Of
note, using our method with multiple frames significantly improves 3D landmark
estimation even though it does not improve 2D landmark estimation. This is be-
cause 3DMM fitting is an ill-posed problem; even though single-frame estimation
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Fig. 7. Normalized mean error (NME) of compared methods on the BU-4DFE dataset
for dense face reconstruction, reported in terms of Cumulative Error Distribution
(CED) and NME against pose. Numbers in legend indicate mean NME

is generally capable of finding a good fit for 2D landmarks, the 3D location of
the same landmarks is not necessarily as accurate. In particular, the 2D land-
mark estimation of our method on 51 landmarks is ∼39% better than the next
best method. The 3D estimation is ∼21% better than the next best method for
single-frame and ∼39% better for multi-frame. Note that the morphable model
that we used for fitting in the experiments on the Synthesized dataset (i.e.,
Basel’09) is also the model that was used to generate the images of the dataset.
This may be seen as a possible explanation of our method’s superiority in this
experiment. To alleviate this concern, we re-run experiments using our method
with the Basel’17 model and results (see Supplementary material) show that our
method attains similar results even when we use a different morphable model.

Dense shape estimation. Fig. 6 and Fig. 7 show the dense shape estima-
tion performance of the compared methods on the Synthesized and BU-4DFE
datasets, respectively. Dense estimation is performed on a facial shape mesh
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with ∼23,000 points that cover the facial region and ignore the ear, neck etc.
Results show that our method outperforms existing methods; in particular, our
method’s mean NME is ∼34% (∼21%) lower compared to the next best method
on the BU-4DFE (Synthesized) dataset, when we use multiple frames.

Ablation study. We performed an ablation study to show the effect of our
formulation’s two critical components, namely the two inequality constraints.
Our ablation study is conducted on 2D/3D landmark detection (L=68). When
we omit the first constraint, mean NME increases by 17.4% for 2D points and
45% for 3D points on the AFLW2000-3D dataset; and by 16.7% for 2D points and
11.1% for 3D points on the Synthesized dataset. When we omit the second con-
straint, mean NME increases by 9.5% for 2D points and 12.5% for 3D points on
the AFLW2000-3D dataset; and by 19.3% for 2D points and 8.6% for 3D points
on the Synthesized dataset. Another component that can be subjected to abla-
tion is GC—it can be replaced by a simpler objective function such as squared
pixel-wise difference. However, the latter proved inadequate in uncontrolled con-
ditions with illumination variations and occlusions as was shown in studies of
3DMM fitting [7] or the closely related problem of image alignment [34].

4 Conclusions and Future Work

This paper proposes a new and theoretically compelling formulation to a well-
established computer vision problem, namely 3D morphable model (3DMM) fit-
ting. We show that when 3DMM fitting is formulated as an inequality-constrained
optimization problem with a robust objective function, the resulting approach
performs on par with top-performing deep learning (DL) methods on “in-the-
wild” data where ground truth is not exact, and outperforms those methods on
more controlled data with exact ground truth. Moreover, this approach enjoys
the versatility of standard optimization approaches, as it is capable of working
with multiple frames of arbitrary sizes. The results of this paper strongly encour-
age future research to evaluate the efficiency of existing inequality-constrained
minimization algorithms (e.g., the log-barrier method, primal-dual interior-point
methods [8]), which, unlike unconstrained methods, remain unexplored in the
context of 3DMM fitting and similar problems.
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P., Zollhofer, M., Theobalt, C.: Fml: Face model learning from videos. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 10812–10822. IEEE (2019)
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C.: Self-supervised multi-level face model learning for monocular reconstruction
at over 250 hz. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 2549–2559. IEEE (2018)

30. Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2face:
Real-time face capture and reenactment of rgb videos. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 2387–2395. IEEE
(2016)

31. Tran, L., Liu, F., Liu, X.: Towards high-fidelity nonlinear 3D face morphable model.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. pp. 1126–1135. IEEE (2019)

32. Tzimiropoulos, G., Argyriou, V., Stathaki, T.: Subpixel registration with gradient
correlation. IEEE Transactions on Image Processing 20(6), 1761–1767 (2010)



Inequality-Constrained and Robust 3D Face Model Fitting 17

33. Tzimiropoulos, G., Alabort-i Medina, J., Zafeiriou, S., Pantic, M.: Generic active
appearance models revisited. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z.
(eds.) Asian Conference on Computer Vision. pp. 650–663. Springer (2012)

34. Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Robust and efficient parametric face
alignment. In: Proceedings of the International Conference on Computer Vision.
pp. 1847–1854. IEEE (2011)

35. Upton, G., Cook, I.: A dictionary of statistics 3e. Oxford University Press (2014)
36. Valstar, M., Schuller, B., Smith, K., Eyben, F., Jiang, B., Bilakhia, S., Schnieder,

S., Cowie, R., Pantic, M.: Avec 2013: the continuous audio/visual emotion and
depression recognition challenge. In: Proceedings of the ACM International Work-
shop on Audio/visual Emotion Challenge. pp. 3–10. ACM (2013)
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