
Supplementary Material:
Conditional Image Repainting via

Semantic Bridge and Piecewise Value Function

A Appendix

A.1 The optimality of D(ȳ|y)

To supplement §3.2 at L206-208, we provide the following proof.
Proposition. For G fixed, the optimal discriminator D(ȳ|y) is D∗G(ȳ|y) = 0.
Proof. The training criterion for the discriminator D(ȳ|y), given any generator
G, is to maximize the quantity V (D,G)1

V (D,G) =

∫
y

pdata(y) log(1−D(ȳ|y)) + pg(y) log(1−D(ȳ|y))dy∫
y

(pdata(y) + pg(y)) log(1−D(ȳ|y))dy

(1)

For any (a, b) ∈ R2\{0, 0}, the maximum of the function y → (a+ b) log(1− y)
has nothing to do with the values of (a, b), but it is achieved when y = 0. The
discriminator does not need to be defined outside of supp(pdata) ∪ supp(pg),
concluding the proof.

A.2 Supplemental network architecture design

Conditional content generator Gcg. The overall architecture is shown in
Fig. 1 in which we visualize two stages. In practice, we implementGcg to be three-
stage, which synthesizes 256× 256 images. The implementation of the geometry
encoder Encg and texture encoder Enct is shown in Fig. 2. For the color encoder
Encc, we directly adopt the bidirectional LSTM based text encoder used in [25].
We also use the same training mechanism as in [25] for training Encc. The GAIN
ResBlk is implemented as in Fig. 3(a).
Gated Adaptive INstance (GAIN) normalization (Fig. 3(b)) is designed
based on AdaIN [10] (Fig. 3(c)) and SPADE [13]. We also visualize the imple-
mentation of SPADE w/ UniTex (Table 1) in Fig. 3(d).
Compositing model Gcc is implemented as in Fig. 4(a). We also show the
implementation of the image-to-image translation baseline Pix2pix in Fig. 4(b).
Discriminators are designed as in Fig. 5. Their functionalities in supervising
the generation model Gcg and the compositing model Gcc are presented in §A.3.
The comparison between the proposed classification based compositing discrim-
inator Dcc (§4.3) and the segmentation based discriminator (§4.2) can be found
in Fig. 5(c) and (d). Their convergence comparison is presented in §A.3.
1 For the notion simplification, we omit the mean-reduction function ξ used in (3).
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Fig. 1. The multistage conditional content generator Gcg. Each stage outputs an image
ẏi of a specific resolution. Parentheses in module names enclose the number of output
channels of a module. “Upsample 2×” means upsampling the resolution of a feature
map by 2 times.
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(b) Encg

Fig. 2. (a) The encoder for the input texture condition. (b) The encoder for the input
geometry condition. The square brackets enclose the stride and padding information
of the convolutional layers.
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Fig. 4. (a) Compositing model Gcc for Category Seg and Cls in Table 1, where (ρ, τ)
denote the inferred affine parameters. (b) Compositing model for Pix2pix in Table 1.
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Fig. 5. (a) Joint-conditional-unconditional patch discriminators and (b) shape discrim-
inators in [11], where 〈ȳ, y〉 represents the composition of the innate content ȳ and the
transformed generated content y. (c) Patch-wise classification based discriminators Dcc

in §4.3, and also those for Category Cls in Table 1. (d) Segmentation-based adversarial
discriminator mentioned in §3.2, and also those for Category Seg in Table 1.

A.3 Supplemental learning

Losses. We present the overall minimax optimization problem in (10), which
includes four losses Lcg, Lcm, Lcc and Lr. We define Lcc in (11), and directly
adopt the DAMSM loss Lcm in [25]. So, we focus on introducing Lcg and Lr.

In Eq. (10), Dcg = {(Dpat
1 , Dshp

1 ), . . . , (Dpat
i , Dshp

i ), . . . , (Dpat
n , Dshp

n )} is a set
of discriminators [11] for each stage of Gcg, where Dpat

i is a joint-conditional-

unconditional patch discriminator (conditioned on the color condition), and Dshp
i

is a discriminator conditioned on the geometry condition. Dpat
i and Dshp

i are
elaborated in detail in [11], so we directly borrow their symbols to ease readers’
references.

Given a pair of image and color condition (global sentence embedding), i.e.,
(y, ē), Dpat

i can be written as: pu[y]i = Dpat
i (y), pc[y, ē]i = Dpat

i (y, ē), where
the superscript u and c indicate the “unconditional” and “conditional”. p =
{p1, . . . , pj , . . . , pNpat} is a set of probabilities with each indicating the realness
of a patch. The input to Dpat

i is indicated within the square brackets. Given
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Fig. 6. Pixel-wise segmentation accuracy vs. patch-wise classification accuracy for re-
gions of the innate content. The absolute values of these two accuracies are incompa-
rable because of different settings, so they are adjusted to a similar scale for better
revealing the comparison in the convergence speed between the segmentation-based
discriminator Seg V2(4) and the proposed classification-based discriminator Cls V3(9).

a pair of image and geometry condition, i.e., (y, xg), Dshp
i can be written as:

pg[y, xg]i = Dshp
i (y, xg) where the superscript g indicate the conditioning on

the geometry. Lcg helps both Gcg and Gcc to produce realistic images, which is
defined as follows:

Lcg(Gcg, Gcc, Dcg) =

−
n∑

i=1

1

2Npat
i

Npat
i∑

j=1

(
λu log puj [ẏi]i + log pcj [ẏi, ē]i + log pgj [ẏi, x

g
i ]i
)

− 1

2Npat
n

Npat
n∑

j=1

(
λu log puj [〈ȳ, y〉]n + log pcj [〈ȳ, y〉, ē]n + log pgj [〈ȳ, y〉, x

g
n]n
)
,

(2)

where ẏi is the generated image at the i-th stage of Gcg, and ẏi is transformed
by Gcc to form yi. 〈ȳ, y〉 represents an image composited of the innate content
ȳ and the transformed generated content y. λu is a balancing hyperparameter
which is set to 4.0.
Lr is a pixel-wise L1 loss to regularize the training so as to anchor the trans-

formed generated content y to the original ẏ which is generated by Gcg. Lr is
defined as follows:

Lr(F
C) =

1

N fpix

N fpix∑
j=1

|y[j]− ẏ[j]| , (3)

where N fpix denotes the number of composited pixels. y[j] and ẏ[j] are the j-th
pixel of an image.
Convergence comparison. In Fig. 6, we visualize the accuracy evolution
throughout the training process for the segmentation-based discriminator Seg
V2(4) and the proposed classification-based discriminator Cls V3(9). It shows
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that Seg V2(4) (green in Fig. 6) becomes successful much faster than Cls V3(9)
(yellow in Fig. 6). This demonstrates the effectiveness of our proposed com-
positing discriminator Dcc in impeding the convergence, which paves the way
for using piecewise value function (8) to improve the compositing performance
(see Limitation 2).

A.4 Supplemental qualitative study

Alternation of input conditions. To supplement Fig. 4, we provide more bird
results by alternating input conditions in Fig. 7 and 8.
Comparison with the modified GauGAN. As mentioned in §5.3, by directly
incorporating SEBE and the proposed compositing techniques into GauGAN
[13], it cannot effectively vary the gray-scale textures. This conclusion can be
reached by comparing Fig. 8 (our results) and Fig. 9 (results of the modified
GauGAN). This is because in GauGAN, the gray-scale texture condition (a
Gaussian noise) is provided at the very beginning of the network, which might
be washed away by the normalization layers.
Iterative image editing in the wild. To supplement Fig. 6, we provide more
results in Fig. 10, 11, 12, 13 and 14.
Object removal. To supplement Fig. 5, we provide Fig. 15 and 16. The results
show that the inpainting method [27] tends to yield artifacts for cases where
the image is a clutter. We observe that our method can achieve great removal
performance if given an entire object mask covering the object to be removed
(right column in Fig. 15 and 16). However, we also observe that if only given a
precise mask enclosing the object to be removed, it is difficult for our method
to make the generated content indistinguishable from the innate content of the
same class, e.g., sky in Fig. 15 and lawn in Fig. 16. This might be because the
proposed generation and compositing techniques do not condition on the innate
content of the same class. We leave this sub-direction for future exploration.
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Fig. 7. Alternation of input geometry and color conditions for birds.
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Fig. 8. Alternation of input gray-scale texture condition for birds.
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Fig. 9. Alternation of input gray-scale texture condition for birds, given by directly
incorporating SEBE and the proposed compositing techniques into GauGAN [13].
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The white clouds are 

contained in the picture.

The sky shown in the picture 

is white and blue.

The color of clouds in this 

picture is gray and blue.

The sand in the picture is 
white gray and yellow.

In the picture, the grass is 
yellow and green.

There is gray sand in this 
picture.

There is a picture containing 
the green grass.

There is a picture with the 
green and brown grass is in it.

In the picture, the grass is 
green and yellow.

In the picture, there is brown 
and orange dirt.

The green grass is in the 
picture.

There is gray and brown dirt 
in the picture.

Fig. 10. Alternation of input conditions in the wild. Column 1 show the real images,
and Columns 2-4 show the results by alternating input conditions.
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There is gray dirt in the 

picture.

A gray pavement shown in the 

picture.

There is gray and white dirt in 

the picture.

Clouds in this picture are
white and blue.

The picture contains a white 
sky.

There are white and blue 
clouds.

There is a gray road in this
picture.

The green grass is portrayed 
in the picture.

There is a gray road in this
picture.

There is a picture with the 
gray sand.

The sea in blue and white is 
drawn in the picture.

The color of sand is white gray 
and yellow.

Fig. 11. Alternation of input conditions in the wild. Column 1 show the real images,
and Columns 2-4 show the results by alternating input conditions.
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There is a gray and blue sea in 

this picture.

The green grass is portrayed 
in the picture.

In this picture, the sea is cyan 
and white.

There is a blue sky in the 
picture.

There are blue and white 
clouds in the picture.

The picture contains a blue 
sky.

The gray bush is in the picture. there are gray clouds in the 
picture.

The gray bush is in the picture.

The green grass is portrayed 
in the picture.

There is a picture with the 
blue and white sea.

There is green grass in this 
picture.

Fig. 12. Alternation of input conditions in the wild. Column 1 show the real images,
and Columns 2-4 show the results by alternating input conditions.
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There is white and gray sand 

in the picture.

In the picture, the clouds are 

blue.

There is a picture with gray 

and blue sea in it.

The color of bush in this 
picture is green.

There is green grass in the 
picture.

The clouds in the picture are 
blue.

The white and yellow sand is 
portrayed in the picture.

The white and yellow sand is 
portrayed in the picture.

Clouds in the picture are gray 
and yellow.

The picture is about a gray 
pavement.

There is a picture with the 
gray clouds.

The content of the picture is a 
gray road.

Fig. 13. Iterative editing in the wild. Column 1 show the real images, and Columns
2-4 show the iterative editing.



Conditional image repainting 29

1 2 3 4

1

2

3

4

The grass in this picture is 
green and brown.

In this picture, there is green 
grass.

The white and blue clouds are 
contained in the picture.

In this picture, there is green 
grass.

The clouds in this picture are
white and blue.

In this picture, there is blue 
and cyan sea.

There is a picture in which the 
grass is white and green.

In this picture, there is a blue 
and cyan sea.

In this picture, the clouds are
gray and yellow.

The picture is about a blue sky. A picture in which the grass is 
yellow and gray.

In this picture, the road is gray.

Fig. 14. Iterative editing in the wild. Column 1 show the real images, and Columns
2-4 show the iterative editing.
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Fig. 15. Comparison with [27] for mask based object removal. Masks are shown at Row
1, where the gray indicates regions to be filled. Column 1 shows the real image. Row
2 and Row 3 show results edited following the given masks by [27] and our method,
respectively.
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Fig. 16. Comparison with [27] for mask based object removal. Masks are shown at Row
1, where the gray indicates regions to be filled. Column 1 shows the real image. Row
2 and Row 3 show results edited following the given masks by [27] and our method,
respectively.


