
HALO: Hardware-Aware Learning to Optimize
Supplement

Chaojian Li1∗, Tianlong Chen2∗, Haoran You1,
Zhangyang Wang2, and Yingyan Lin1

1 Rice University, Houston TX 77005, USA
2 The University of Texas at Austin, Austin TX 78712, USA

{cl114,hy34,yingyan.lin}@rice.edu,{tianlong.chen,atlaswang}@utexas.edu

A More Baselines: SGD with Momentum and Stepwise
Learning Rate Decay

We here evaluate the proposed HALO over another handcrafted optimizer, which
is SGD paired with momentum and a stepwise learning rate decay following
[4,11]. Specifically, this set of baselines adopt a momentum of 0.9 together with
the stepwise learning rate decay, in which the initial learning rate is divided by 10
at the 50th and 75th epochs, respectively, for a total of 100 adaptation training
epochs. As shown in Fig. 1, we manually tune the baseline’s initial learning rate
η from 10−1 to 10−5. We can see that (1) the automatically generated optimizer
by our proposed HALO even outperforms (e.g., ↑1.67% in terms of average
adaptation/test accuracy) the best manually designed baseline (i.e., η = 10−4);
and (2) the baseline’s performance is highly dependent on η, e.g., the test accuracy
varies from about 20% to 65% when η changes from 10−1 to 10−5, limiting its
applicability for wide adoption, whereas our proposed HALO does not require
such a manual and time-consuming hyperparameter tuning in addition to its
advantageous one-for-all generalization capability (i.e., one generated optimizer
works for different optimizees with different datasets) as described in Section 4.1
of the main content.

B More Structural Sparsity Schemes for Traditional
Hand-crafted Optimizers

Since Section 4.2.2 in the main content shows that applying our structural sparsity
regularizer to the most competitive baseline, Adam, does not lead to benefits. To
add more support to this conclusion, a grid search to find the optimal structural
sparsity schedule of Adam, SGD, and Adagrad are conducted with the same
experiment settings in Section 4.2.2 of the main content. As shown in Table 1,
traditional handcrafted optimizers cannot show competitive results even with
the most carefully designed updating structural sparsity schemes (to our best

∗The first two authors Chaojian Li and Tianlong Chen contributed equally. Corre-
spondence should be addressed to Zhangyang Wang and Yingyan Lin.



2 C. Li et al.

HALO (Ours)

(a) (b)

Fig. 1: HALO for a wider optimizee over the baseline of SGD with
momentum and stepwise learning rate decay: (a) The average training
loss and (b) adaptation/test accuracy vs. the energy cost over ten runs, on
CIFAR-10-A.

Table 1: Grid search on structural sparsity schemes for traditional hand-crafted
optimizers

Method

Avg. Test Acc. (%)

Energy = 2.0 kJ Energy = 4.0 kJ

SGD Adagrad Adam SGD Adagrad Adam

“100%-100%-100%” scheme 65.61 65.71 56.51 65.44 66.15 56.91
“10%-10%-10%” scheme 62.21 63.43 37.20 64.51 64.71 41.47
“30%-30%-30%” scheme 65.45 65.32 58.07 65.63 66.12 58.67
“50%-50%-50%” scheme 65.11 65.24 53.39 65.68 65.98 58.39
“50%-30%-10%” scheme 60.98 62.40 56.91 64.03 63.94 59.53
“10%-30%-50%” scheme 65.70 66.17 55.78 65.55 66.42 57.70

HALO (Ours) 67.50 67.57
HALO Acc. Improv. ↑1.33 - ↑30.30 ↑1.15 - ↑26.10

possible effort). HALO outperforms all other optimizers with an obvious higher
accuracy (i.e., ↑1.15% - ↑30.30%) under the same energy cost.

C HALO Also Benefits the Convergence Speed

As described in the main content, the proposed HALO is the first learning-
to-optimize framework that is dedicated to on-device adaptation applications,
i.e., explicitly design to improve the two key metrics of on-device adaptation
including the energy efficiency and the required adaptation time. We here evaluate
HALO in terms of the convergence speed (i.e., the required adaptation time
on an Edge GPU [5]) in addition to the evaluation experiments in Section 4 in
terms of the required energy consumption. Specifically, we re-evaluate all the
optimizers in terms of the average training loss and adaptation/test accuracy



HALO: Hardware-Aware Learning to Optimize 3

P

0.15

HALO (Ours)

+ 3.51% Acc

(a) (b)

Fig. 2: HALO for a wider and deeper optimizee over all the baseline
optimizers: (a) The average training loss and (b) adaptation/test accuracy vs.
the running time over ten runs, on CIFAR-10-A.

verus the real-device running time, on the wider and deeper optimizees (see
Section 4.3.1 of the main content) with the CIFAR-10-A dataset over ten random
initialization settings. As shown in Fig. 2, HALO outperforms (e.g., ↑3.51%
average adaptation/test accuracy over the best baseline) all other optimizers
after 9 minutes (see the point marked as P in Fig. 2) running time in terms of
the average adaptation/test accuracy under the same running time budget.

D Ablation Studies of HALO’s Jacobian Regularizer

HALO (Ours) with λ1 = 10-6
HALO (Ours) with λ1 = 10-5
HALO (Ours) with λ1 = 10-4
HALO (Ours) with λ1 = 10-3
HALO (Ours) with λ1 = 10-2
HALO (Ours) with λ1 = 101
HALO (Ours) with λ1 = 100

(a) (b)

Fig. 3: Ablation studies of HALO’s Jacobian regularizer in terms of the
hyperparameter λ1: the average training loss (a) and adaptation accuracy (b) vs.
the required energy cost over ten runs, on CIFAR-10-A.

We next presents an ablation study of HALO’s hyperparameter λ1 in the
Jacobian regularizer, as introduced in Section ??, based on the wider optimizee
(Fig. ?? (b)) and CIFAR-10 dataset and using an updating probability schedule
of “10%-30%-50%”. As shown in Fig. 3, we decrease λ1 of the Jacobian regularizer



4 C. Li et al.

from 1 to 10−6, without loss of generality. The experiment results show that (1)
our proposed Jacobian regularizer is insensitive to hyper parameters since 85.71%
of them result in a small convergent accuracy range (i.e., 64.01% - 65.48%); (2)
λ1 = 10−3 leads to the best performance, i.e., higher adaptation/test accuracy
with the same energy (e.g., up to ↑2.81% higher), among all variants.

E Train/test subset splitting

For datasets other than TDP, we follow their default experiment settings [3,2,9,1];
for the TDP dataset which doesn’t provide uniform data pre-processing, we
divide the 3221 thyroid cases into four classes (negative, hypothyroid, sick, and
hyperthyroid) with each sample including a 26-dimensional diagnostic vector for
disease prediction, where we use 75% of the data to train and the remaining
to test for each domain and re-sampling to adjust the class distributions since
negative cases dominate in the original dataset.

F Details of Optimizer Design

The proposed HALO adopts a hierarchical RNN in a SOTA learning to optimize
work [10] as the optimizer network and follows its network parameters. One
notable advantage of HALO is that its generated optimizers have a one-for-all
generalization capability, i.e., optimizers can be designed under the same
settings (including the network structure, dataset, and training hyper-parameters)
for various targeted tasks, datasets, and optimizees. Specifically, the HALO
optimizer in this paper is trained using: (1) the aforementioned adaptation setting
(see Section ??) on the MNIST dataset; (2) a simple 2-layer CNN introduced in
[10] and shown in Fig. ?? (a); (3) 50 training epochs each of which consists of 100
iterations with a batch size of 64; (4) an optimal hyperparameter λ1 = 1× 10−3

which is resulted from a grid search as shown in the Section D; and (5) an
updating probability of 10%, 30% and 50% for the first third, the middle third,
and the last third network layers, respectively.

G The Energy Measurement Setup

As described in this supplementary and main content, we evaluate the required
energy cost and running time of the proposed HALO and the baseline optimizers
based on real-device measurement results except for experiments with quantized
optimizees that have been described in Section 4.1 of the main content. Fig. 4
shows the energy/running-time measurement setup using an Egde GPU (i.e.,
NVIDIA JETSON TX2) [5] (to the right of the figure) or a Raspberry Pi for
general IoT applications [8] (to the left of the figure). Specifically, the Edge GPU
is connected to a laptop, and the real-time energy consumption and running
time are obtained using the sysfs [6] of the embedded INA3221 [7] power rails
monitor. For the experiments with the Raspberry Pi, the setup is the same as



HALO: Hardware-Aware Learning to Optimize 5

Edge GPU
JETSON TX2 Developer Kit

SSH

Training Settings

Measurement Result

Raspberry Pi for IoT with
Power Monitor Meter

Training Settings

Measurement Result

SSH

Laptop

Fig. 4: The energy/running-time measurement setup with a laptop, a state-of-
the-art Edge GPU [5] and a popular IoT device [8]

that of the Edge GPU except that the energy/time consumption is obtained using
an external power monitor meter because of its lack of corresponding on-board
power rail monitor.

H The Input of HALO

As mentioned in Section 3.1 of the main content, similar to the learned optimizers
in [10], (mθt , γθt , ηθt) are chosen as the optimizer inputs for the parameter θ at
the t-th iteration. Here we provide the details about these parameters, i.e., the
scaled average gradient mθt , the relative log gradient magnitude γθt , and the
relative log learning rate ηθt .

• mθt can be derived from Equations 1, 2, and 3, where s denotes the timescale
index following the same definition in [10], ḡθt+1,s in Equation 1 denotes an
exponential moving averages of the gradient (i.e., gθt) on several timescales,
σ represents the sigmoid function, βg,θt and βλ,θt represent the momentum
logits outputted by our optimizer, λθt+1,s denotes a running average of the
square average gradient, and mθt,s is the scaled average gradients of mθt on
timescale s.

ḡθt+1,s = ḡθt,s · σ(βg,θt)
2−s

+ gθt · (1− σ(βg,θt)
2−s

) (1)

λθt+1,s = λθt,s · σ(βλ,θt)
2−s

+ (ḡθt,s)
2 · (1− σ(βλ,θt)

2−s
) (2)

mθt,s =
ḡθt,s√
λθt,s

(3)

• γθt denotes the relative log gradient magnitude defined below:

γθt = log(λθt,s)− Es[log(λθt,s)] (4)

• ηθt can be be derived from Equations 5, 6, and 7, where η̂θt is the log step
length which is specified relative to an exponential running average η̄θt with



6 C. Li et al.

meta-learned momentum γ for stability reasons, ∆η̂θt is the update outputted
by our optimizer, and ηθt is the relative log learning rate of each parameter
θ.

η̂θt+1 = ∆η̂θt + η̄θt+1 (5)

η̄θt+1 = γ · η̄θt + (1− γ) · η̂θt+1 (6)

ηθt = η̂θt − Eθ[η̂θt ] (7)

References

1. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain
dataset for human activity recognition using smartphones. In: Esann (2013)

2. Krizhevsky, A., et al.: Learning multiple layers of features from tiny images (2009)
3. LeCun, Y.: The mnist database of handwritten digits. http://yann. lecun.

com/exdb/mnist/ (1999)
4. Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T.: Rethinking the value of network

pruning. In: International Conference on Learning Representations (2019), https:
//openreview.net/forum?id=rJlnB3C5Ym

5. NVIDIA Inc.: NVIDIA Jetson TX2, https://www.nvidia.com/en-us/

autonomous-machines/embedded-systems/jetson-tx2/, accessed 2019-09-01
6. Patrick Mochel and Mike Murphy.: sysfs - The filesystem for exporting kernel

objects., https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt,
accessed 2019-11-21

7. Texas Instruments Inc.: INA3221 Triple-Channel, High-Side Measurement, Shunt
and Bus Voltage Monitor, http://www.ti.com/product/INA3221, accessed 2019-
11-21

8. Upton, E., Halfacree, G.: Raspberry Pi user guide. John Wiley & Sons (2014)
9. Vergara, A., Vembu, S., Ayhan, T., Ryan, M.A., Homer, M.L., Huerta, R.: Chemical

gas sensor drift compensation using classifier ensembles. Sensors and Actuators B:
Chemical 166, 320–329 (2012)

10. Wichrowska, O., Maheswaranathan, N., Hoffman, M.W., Colmenarejo, S.G., Denil,
M., de Freitas, N., Sohl-Dickstein, J.: Learned optimizers that scale and generalize.
In: Proceedings of the 34th International Conference on Machine Learning-Volume
70. pp. 3751–3760. JMLR. org (2017)

11. You, H., Li, C., Xu, P., Fu, Y., Wang, Y., Chen, X., Baraniuk, R.G., Wang, Z., Lin,
Y.: Drawing early-bird tickets: Towards more efficient training of deep networks
(2019)

https://openreview.net/forum?id=rJlnB3C5Ym
https://openreview.net/forum?id=rJlnB3C5Ym
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
http://www.ti.com/product/INA3221

	HALO: Hardware-Aware Learning to Optimize Supplement

