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Abstract. There has been an explosive demand for bringing machine
learning (ML) powered intelligence into numerous Internet-of-Things
(IoT) devices. However, the effectiveness of such intelligent functionality
requires in-situ continuous model adaptation for adapting to new data
and environments, while the on-device computing and energy resources
are usually extremely constrained. Neither traditional hand-crafted (e.g.,
SGD, Adagrad, and Adam) nor existing meta optimizers are specifi-
cally designed to meet those challenges, as the former requires tedious
hyper-parameter tuning while the latter are often costly due to the
meta algorithms’ own overhead. To this end, we propose hardware-aware
learning to optimize (HALO), a practical meta optimizer dedicated to
resource-efficient on-device adaptation. Our HALO optimizer features the
following highlights: (1) faster adaptation speed (i.e., taking fewer data or
iterations to reach a specified accuracy) by introducing a new regularizer
to promote empirical generalization; and (2) lower per-iteration complex-
ity, thanks to a stochastic structural sparsity regularizer being enforced.
Furthermore, the optimizer itself is designed as a very light-weight RNN
and thus incurs negligible overhead. Ablation studies and experiments on
five datasets, six optimizees, and two state-of-the-art (SOTA) edge AI
devices validate that, while always achieving a better accuracy (↑0.46% -
↑20.28%), HALO can greatly trim down the energy cost (up to ↓60%) in
adaptation, quantified using an IoT device or SOTA simulator. Codes
and pre-trained models are at https://github.com/RICE-EIC/HALO.

Keywords: On-Device Learning, Learning to Optimize, Meta Learning,
Efficient Training, Internet-of-Things

1 Introduction

The record-breaking success of machine learning (ML) algorithms has fueled an
explosive demand for bringing ML-powered intelligent functionality into numerous
Internet-of-Things (IoT) devices [39,37]. For practical deployment, many of them
(such as autonomous vehicles, drones, mobiles, and wearables) require on-site
in-situ learning for enabling them to continuously learn from new data and adapt
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to new environments [50]. However, the realization of on-device continuous model
adaptation remains a bottleneck challenge because powerful performance of ML
algorithms often comes at a prohibitive training cost while IoT devices are often
extremely resource constrained. To tackle this challenge, existing efficient training
techniques such as low-precision and pruning training can largely fall short as
they are not designed and optimized for on-device model adaptation. Specifically,
in contrast to standard training, on-device adaptation needs to (1) achieve fast
model convergence (i.e., reduced training iterations) given that limited data is
available or can be stored on IoT devices and (2) be realized with much boosted
training energy/time efficiency for possibly wide adoption.

To close the aforementioned gap, we explore from a promising yet unexplored
perspective motivated by the observation that neither traditional hand-crafted
(e.g., SGD, Adagrad, and Adam) nor existing meta optimizers are dedicated to
meet the on-device adaptation challenges. This is because the former requires
tedious and manual hyper-parameter tuning, while the latter can be automated,
they are often more costly due to the meta algorithms’ own overhead. Specifically,
we propose, develop, and experimentally validate a hardware-aware learning to
optimize (HALO) framework, targeting to aggressively trim down the energy
cost of on-device ML adaptation. This paper makes the following contributions:

• We for the first time introduce learning to optimize to a practical and
explosively demanded application of resource-efficient, on-device ML adap-
tation, and demonstrate that it largely outperforms the most competitive
SOTA optimizers. The proposed HALO framework is achieved using a Long
Short-Term Memory (LSTM) aided with an innovative Jacobian regularizer
that is dedicated for faster adaptation.

• To further ensure that the proposed HALO can be practically deployed for
model adaptation on numerous resource-limited IoT devices, we next intro-
duce (stochastic) structural sparsity as an extra regularizer for the learning
optimizer, so that it can be efficiently implemented on hardware. Thanks
to the aforementioned two regularizers, the HALO generated optimizers are
enforced to naturally achieve the critical specification of on-device adaptation,
i.e., both faster adaptation speed and reduced per-iteration complexity.

• We have evaluated and demonstrated the HALO optimizers on various models,
datasets, and experiment settings (including going-wider, going-deeper, going-
sparser, and going-lower bits), by exhaustively comparing it with existing off-
the-shelf traditional hand-crafted and meta-optimizers. Extensive experiments
and ablation studies show that HALO consistently outperforms others, by
largely reducing on-device adaptation energy consumption (i.e., the energy it
takes to adapt for achieving the specified accuracy) while always maintaining
a better accuracy given the same energy budget.

2 Related Works

Model Adaptation. Model adaptation techniques are commonly exploited to:
(1) continuously improve a model’s performance in the same domain, as more data
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Fig. 1: The overall framework of our proposed hardware-aware learning to optimize
(HALO) method. For each time step t, the optimizer will first take the previous
hidden vector ht−1 and the relative input vector (mθtj

, γθtj , ηθtj ) which contains the

gradient information from the optimizees, and then output a parameter update
rule ∆θtj for the optimizees. The layers to be updated are selected according to
the probability (p1, · · · , pk), i.e., the structural sparsity regularizer. After (n+ 1)
optimization iterations (in our case, n = 10), we update the optimizer with the
averaged optimizee loss L and the Jacobian regularizer LJacobian.

is collected; or (2) further tune a model already trained on one domain (source
domain) to adapt to a new domain (target domain), assuming the source and
target domains to have a certain mismatch (either data distribution or task types)
[7]. Many adaptation algorithms have been explored for various ML algorithms,
from aligning data distributions [10] to utilizing feature or module transferability
[16,41,5], for which [59] provides a comprehensive literature review.

Adaptation algorithm is the cornerstone for many intelligent edge platforms
to perceive and react to the changing new environments (such as drones and
outdoor robots) and for wearable devices to personalize their functionality to
individual users [29], and so on.

Learning to Optimize. Using machine learning algorithms to design an
optimizer is a promising direction towards replacing tedious algorithm crafting
and/or hyperparameter tuning. [2] first employs a coordinate-wise LSTM as a
learnable optimizer for training neural networks. It takes the gradient of optimizee
parameters as inputs and outputs the parameters’ update rule. [11] introduces
the history of objective values for inputs, and outputs gradients as the actions of
reinforcement learning agents. [42] introduces two practical techniques of random
scaling and objective convexifying to boost generalization ability. [66] designs
a hierarchical RNN architecture, augmenting the inputs with the log gradient
magnitudes and the log learning rate; its results remain to be a SOTA among
learned optimizers. Lately, [8] combines both point-based and population-based
optimization algorithms, and further incorporates the posterior into meta-loss to
balance the exploitation-exploration trade-off.
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3 The Proposed HALO Framework

In this section, we introduce our HALO framework with two innovations dedicated
to the resource-efficient adaptation goal. First, a Jacobian regularizer is designed
to boost the empirical generalization and convergence speed. Second, we introduce
structural sparsity as the desired property to be enforced on the optimizer output,
such that the resulting update is more hardware friendly and energy-efficient.
Both are shown to be experimentally effective in Section 4.

3.1 Faster and Better: A Jacobian-Regularized Learned Optimizer

The backbone of HALO follows the classical setting in [66]. We adopt a similar
hierarchical RNN as the learned optimizer. Specifically, the hierarchical RNN
architecture contains three levels, named “Parameter RNN”, “Tensor RNN”,
and “Global RNN” from the low to high levels. Specifically, the “Parameter
RNN” deals with the inputs and outputs update rules for each parameter of
the optimizees; the “Tensor RNN” takes as inputs all hidden states from the
“Parameter RNN” which processes parameters belonging to the same tensor and
returns a bias term to them; and the “Global RNN” takes as inputs all hidden
states from the “Tensor RNN” and returns a bias term. The RNN parameters
are shared within each level. In this way, the learned optimizer is able to capture
the inter-parameter dependencies.

As shown in Fig. 1, following the prior wisdom of learned optimizers [66,42], the
inputs of our optimizer are (mθtj

, γθtj , ηθtj ), corresponding to the scaled averaged

gradients mθtj
, the relative log gradient magnitudes γθtj , and the relative log

learning rate ηθtj of layer j’s parameter θj in iteration t, respectively, more details

of which can be found in the supplement. The output is the parameter update ∆θtj .
Our learnable optimizer performs a coordinate-wise update on the parameter θ
so that the learned optimizer can scale to training optimizees with any number of
parameters: an important “one-for-all” feature desired by mobile applications
where a number of different models are typically configured to meet different
platforms’ resource constraints. Between different coordinates, the weights of the
optimizer are shared. In HALO, the optimizer is updated by LHALO, which is
the sum of the average optimizee loss L, plus a new Jacobian regularizer term
LJacobian (λ1 is a hyperparameter, more ablation studies are provided in the
supplement): LHALO = L+ λ1LJacobian.

We next discuss “what and why” regarding this new regularizer.
Jacobian Regularizer. We propose a powerful regularizer, called Jacobian

regularizer, that controls the update magnitudes of the optimizee (i.e., the model
to be adapted by HALO). Without loss of generalizability, we define our optimizee
with k layers as f(θ), θ = (θ1, θ2, · · · , θk) (k = 1 for shallow models). The Jacobian

of the optimizee loss L can be written as J =
[
∂L
∂θ1

, ∂L∂θ2 , · · · ,
∂L
∂θk

]
, and our new

regularizer term can be defined as LJacobian = ||J ||22. (|| � ||22 is a Frobenius norm)
The Jacobian regularizer encourages the optimizee’s landscape to be smoother

and flatter. Intuitively, such a landscape facilitates an optimizer to explore faster
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and more widely in a neighborhood, which makes it favor our goal of fast adap-
tation. More formally, recent theories have revealed that optimizing in flat minima
leads to more generalizable solutions [21,28]. It is straightforward to see that
the larger the components of the Jacobian are, the more unstable the model
prediction is with respect to input perturbations. Enforcing LJacobian is therefore
a natural way to reduce this instability: it decreases the input-output Jacobian
magnitude, potentially reducing the influence of noisy updates during training.
That robustness is meaningful for practical on-device adaptation whose input
samples are often very noisy [6].

Among past works, [51] constrained the Jacobian matrix of the encoder for
the regularization of auto-encoders. [22] showed that constraining the Jacobian
increases classification margins of neural networks and therefore enhances the
model stability. While the above works exploit Jacobian regularizer in classical
optimizers, to our best knowledge, we are the first to extend this line of ideas
into the learning to optimize field. Our results demonstrate its effectiveness in
improving generalization performance (i.e., adaptation/test accuracy) of the
learned optimizer, in addition to the faster empirical convergence speed.

Besides, the analysis in [57] found that a bounded spectral norm of the
network’s Jacobian matrix is more directly related to the generalization of neural
networks. We tested and verified that replacing the Frobenius norm with the
spectral norm will yield similar empirical performance and convergence benefits,
sometimes the spectral norm being better. However, computing the spectral norm
is much more expensive and goes against our goal of resource efficiency: that is
why we stay with the Frobenius norm in implementing LJacobian.

3.2 More Hardware-Efficient: Stochastic Structural Sparsity

As a learned optimizer, HALO targets faster empirical convergence (e.g., taking
fewer iterations to reach a certain accuracy level), which is further boosted by
the new Jacobian regularizer. We introduce another regularizer, that enhances
the energy efficiency from an orthogonal angle: enforcing structural sparsity on
the learned updates (i.e., the outputs of HALO) at each iteration, such that the
per-iteration complexity and hence resource costs could be trimmed down.

Structural sparsity is a well-explored regularizer that is typically achieved by
weight decay, norm constraints, or various pruning means [65]. In comparison, we
choose an extremely cheap “stochastic” way to enforce that. As shown in Fig. 1,
for each layer j in the optimizee, we set it to have a probability pj to be updated
by HALO, at each iteration. Correspondingly, only the layers that are updated
at the current iteration will back-propagate to update the learned optimizers.

We note that similar ideas of “randomly not updating all layers every time”
were previously exploited for training very deep networks [25] and faster dynamic
inference [67]. Lately, it was demonstrated to be helpful for energy-efficient
training too [64]. We are the first to show this heuristic regularizer to work well
for learned optimizers in efficient training.

Compared to enforcing filter- and parameter-wise structural sparsity, the pur-
posed layer-wise structural sparsity regularizer is particularly hardware-friendly,
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as it requires no massive indexing and gathering processing. As our experiments
in Section 4.2.1 show, this alone can save up to 45.42% training energy per
iteration on average while sacrificing little accuracy or convergence speed.

4 Experiments and Analysis

In this section, we present ablation studies and evaluation results of the proposed
HALO under five datasets, six optimizees (i.e., the wider one in Fig. 2 (b), the
wider and deeper one in Fig. 2 (c), ResNet-18 [20] with quantization and high
sparsity, two multilayer perceptrons (MLPs), and a CNN+LSTM [52]), and two
SOTA edge AI computing devices.

4.1 Experiment Setup

Here we summarize our experiment details including the datasets and baselines,
adaptation/test experiment setting, and evaluation metrics, and details of the
optimizer design can be found in the supplement.

Datasets and Baselines. To evaluate the potential of the proposed HALO
in handling on-device adaptation under different applications and scenarios, we
consider a total of five datasets, including (1) MNIST [34], (2) CIFAR-10 [32],
(3) Thyroid Disease Prediction (TDP) [12], (4) Gas Sensor Array Drift (GSAD)
[62], and (5) Smartphones (SP) [3] (more details on the train/test subset splitting
could be found in the supplement). These five diverse sets of datasets can emulate
on-device ML applications for tasks of object recognition, healthcare monitoring,
environmental monitoring, and activity recognition

For benchmarking, we evaluate HALO’s generated optimizers against five
baselines of SOTA optimizers, including three traditional hand-crafted optimiz-
ers (i.e., SGD, Adagrad [13], and Adam [31]) and two meta-optimizers (i.e., the
DM-L2O [2] and Hierarchical-L2O [66]).
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Fig. 2: The convolutional networks
adopted for (a) training all the evaluated
optimizers, and the optimizee networks
including (b) a wider one and (c) a wider
and deeper one, as compared to (a).

Table 1: A summary of the splitting de-
tails for all the considered datasets.

Dataset Subset Domain

MNIST [34]
A {1, 3, 5, 7, 9}
B {0, 2, 4, 6, 8}

CIFAR-10 [32]
A {plane, bird, deer, frog, ship}
B {car, cat, dog, horse, truck}

TDP [12]
A Female

B Male

GSAD [62]
A {Acetaldehyde, Acetone, Toluene}
B {Ethanol, Ethylene, Ammonia}

SP [3]
A {Walking Upstairs, Sitting, Laying}
B {Walking, Walking downstairs, Standing}
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Adaptation/Test Setting. To evaluate each optimizer under a given dataset,
we split the dataset into two non-overlapping subsets following the prepossessing
in [23,30,18], which are termed as A and B, respectively, with samples from differ-
ent domains and each consisting of non-overlapping classes. Table 1 summarizes
the splitting details for all our considered datasets. Following the strategy in
real-world deployments [4,49,19], we first pre-train the model on one subset, and
then start from the pre-trained model to retrain it on the other subset to see
how accurately and efficiently the corresponding optimizee can adapt to the new
domain. The same splitting is applied to the test set for accuracy validation
in both the pre-train and adaptation training processes. We observe that the
accuracy of the optimizee in the TDP dataset, which is trained on the subset B
for the male domain and achieves an accuracy of 73.92%, drops to 55.74% when
directly applying to the female domain without adaptation, motivating the need
of adaptation.

Evaluation Metrics. We evaluate all optimizers in terms of the hardware
energy consumption in addition to the optimizees’ averaged training loss and
adaptation/test accuracy over ten random initialization settings. Specifically, for
the full-precision optimizees, we obtain the real-measured energy consumption on
two SOTA edge AI computing devices, i.e., NVIDIA TX2 [45] (for more complex
CNNs in Fig. 3 - Fig. 6 and Table 4) and Raspberry Pi [61] (for simpler MLPs in
Tables 2 - 3); for the quantized optimizees, we adopt a SOTA hardware energy
simulator, Bit Fusion [55], to obtain the energy consumption (the one in Fig.
7). The real-device energy measurement setup and energy simulation details are
provided in the supplement.

4.2 Ablation Studies of the Proposed HALO

Here we perform ablation studies of HALO’s effectiveness (Section 4.2.1) and
structural sparsity regularizer (Section 4.2.2).

4.2.1 Ablation Studies on the Effectiveness of HALO’s Regularizers

For evaluating the effectiveness of HALO’s regularizers, we perform a set of
experiments using the wider optimizee (see Fig. 2 (b)) and CIFAR-10 dataset.
Specifically, the optimizee is evaluated when enforcing the two regularizers
of HALO in an incremental manner, with the corresponding optimizer being
trained from scratch. Fig. 3 shows the average training loss and adaptation/test
accuracy versus the corresponding real-device measured energy over ten random
initialization settings, from which we can make the following observation:

First, the vanilla HALO without the two regularizers can not surpass the
SOTA traditional hand-crafted optimizer, Adam [31], in terms of both the training
loss and adaptation/test accuracy after convergence, while at the same time
suffering from a larger variance;

Second, after adding the Jacobian regularizer, the corresponding optimizee
achieves a better adaptation/test accuracy after convergence, which verifies the
flatten local minima found by HALO with the help of the Jacobian regularizer
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Adam

HALO (Ours) without structural sparsity and Jacobian regularizers

HALO (Ours) without structural sparsity regularizer

HALO (Ours) 

(kJ) (kJ)
(a) (b)

Fig. 3: Ablation studies on the effectiveness of HALO’s regularizers: (a)
The average training loss and (b) adaptation/test accuracy vs. the required
energy cost over ten runs, on CIFAR-10-A.

is beneficial for generalization ability as introduced in Section 3.1, while always
performing worse under the same energy budget in the early stage, as compared
to the optimizee trained using Adam;

Third, our proposed HALO always leads to a lower training loss (e.g., up to
↓16.72% lower under the same energy) and higher accuracy (e.g., up to ↑11.70%
higher under the same energy) while having a smaller variance, as compared to all
baselines, which seems to align with recent observations that compressing gradient
during training can benefit the efficiency without hurting the performance [64,14].

This set of experiments validate that the two regularizers integrated into
HALO lead to not only faster adaptation with reduced energy cost, but
also offer a bonus benefit of improving convergence stability.

4.2.2 Ablation Studies of HALO’s Structural Sparsity Regularizer

Here we present ablation studies on the schedule schemes of HALO’s updating
probability in the structural sparsity regularizer using the wider optimizee (see
Fig. 2 (b)) and CIFAR-10 dataset. Specifically, different updating probability
can be adopted for the first, second, and third layers of the optimizee.

For example, “10%-30%-50%” means the corresponding updating probability
are 10%, 30%, and 50%, respectively. For HALO, we consider three schedule
schemes for the updating probability, i.e., “progressively increased”, “uniformly
equal”, and “progressively decreased”; For Adam, we consider the schedule scheme
of updating probability under which HALO performs the best (i.e., “progressively
increased”, more schemes for Adam and other optimizers could be found in the
supplement).

The experiment results in Fig. 4 show that: (1) comparing Adam with Adam
+ structural sparsity regularizer, we find that the hand-crafted optimizer, Adam,
does not benefit from this regularizer, as evidenced by the corresponding decreased
adaptation/test accuracy; and (2) comparing the three schedule schemes of
updating probability for HALO, we observed that the “progressively increased”,



HALO: Hardware-Aware Learning to Optimize 9

Adam

Adam with 10%-30%-50% scheme

HALO (Ours) with 10%-30%-50% scheme

HALO (Ours) with 30%-30%-30% scheme

Adam train from scratch
HALO (Ours) with 50%-30%-10% scheme

(kJ) (kJ)

+ 20.28% Acc

(a) (b)

Fig. 4: Ablation studies of HALO’s structural sparsity regularizer in
terms of the updating probability: (a) The average training loss and (b) adaptation
accuracy vs. the required energy cost over ten runs, on CIFAR-10-A.

e.g., “10%-30%-50%”, significantly outperforms the other two schedule schemes
by offering a higher adaptation/test accuracy under the same energy cost.

Note that the advantage of such a “progressively increased” schedule scheme
for HALO is consistently observed under different datasets and models, which
seems to coincide with recent findings [1,36,69,17,63] that (1) different stages
of DNN training call for different treatments and (2) not all layers are equally
important for training convergence.

4.3 HALO under Different Datasets/Optimizees

4.3.1 HALO on the CIFAR-10 Dataset

In this subsection, we evaluate HALO’s performance and generalization capability
when being applied to various optimizees, which are (1) wider (Fig. 2 (b)), (2)
wider and deeper (Fig. 2 (c)), and (3) wider, deeper, highly sparse and quantized
(pruned and quantized ResNet-18 [20]), as compared to the networks used to
train the optimizers.

Experiment settings. For all the aforementioned three optimizees, experi-
ments are performed using the CIFAR-10 dataset. And for all the experiments
using the optimizee (3) mentioned above, a compressed ResNet-18 [20] is trained
and pruned under a pruning ratio of 70.0%, which leads to a reduction of 43.5%
and 61.5% in the computational cost (i.e., FLOPs) and model size over the
unpruned one, respectively, while performing quantization-aware training [26]
in the optimizee (3) during adaptation. Note that we consider a pruned and
quantized optimizee because the current practice often compresses ML models
before deploying them into IoT devices [15,46,64].

Experiment results and observations. For each optimizer on the three
considered optimizees, we evaluate the optimizees’ averaged training loss and
adaptation/test accuracy under ten random initialization settings. The corre-
sponding results are plotted in Figures 5 - 7, from which we can make the
following five observations:
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Adam
Adagrad
SGD
DM-L2O
Hierarchical-L2O
HALO (Ours)
Adam train from scratch

(kJ) (kJ)
(a) (b)

Fig. 5: HALO for the wider optimizee: (a) The average training loss and (b)
adaptation/test accuracy vs. the energy cost over ten runs, on CIFAR-10-A.

First, while SOTA learning to optimize works are merely evaluated in terms
of the optimizees’ training loss [2,42,66], we find that both the training loss and
adaptation/test accuracy need to be considered for adaptation tasks, as a lower
training loss might not guarantee a higher adaptation/test accuracy. For example,
from Fig. 5 we can see that Adam achieves a smaller training loss but a lower
adaptation accuracy, as compared to that of Adagrad.

Second, the HALO optimizer outperforms all other meta-optimizers under
all the three optimizees, while (1) the meta-optimizer, DM-L2O [2], fails under
the evaluation with the wider optimizee as shown in Fig. 5, which is consistent
with observations discussed in prior works of learning to optimize [66,42], thus
won’t be included in the following experiments, and (2) the meta-optimizer,
Hierarchical-L2O [66], always leads to a lower adaptation accuracy (e.g., up
to ↓16.88% lower in the wider optimizee as shown in Fig. 5 under the same
energy budget) and a larger training loss (e.g., up to ↑65.65% larger in the wider
optimizee as shown in Fig. 5 under the same energy budget), as compared to
that of HALO.

Adam

Adagrad
SGD

Hierarchical-L2O

Adam train from scratch
HALO (Ours)

(kJ) (kJ)

P1

P2 + 3.51% Acc

(a) (b)

Fig. 6: HALO for the wider and deeper optimizee: (a) The average training
loss and (b) adaptation/test accuracy vs. the energy cost over ten runs, on CIFAR-
10-A.
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Adam

Adagrad
SGD

Hierarchical-L2O

Adam train from scratch
HALO (Ours)

(a) (b)

Fig. 7: HALO for the wider, deeper, highly sparse, and quantized opti-
mizee: (a) The average training loss and (b) est accuracy vs. the energy cost
over ten runs, on CIFAR-10-A.

Third, as shown in Fig. 6, in the early training stage before the cross-points
P1 or P2, the HALO optimizer does not outperform other optimizers, while in the
later stage after the cross-point P2, HALO significantly surpasses others by a large
performance margin (at least ↑3.51% higher adaptation/test accuracy when the
energy cost is around 30 kJ). For this interesting and expected phenomenon, we
conjecture the possible reasons, which are consistent with empirical observations
in [21,28]: (1) with the assistance of the Jacobian regularizer, HALO in the early
training stage can explore the training landscape to locate a flatter minima,
whereas other optimizers who are not flatness-aware can be easily over-fitting and
get stuck in some narrow local valleys, leading to results that the adaptation/test
accuracy increases quickly at first, and then decays in the later stage; and (2)
flatten local minima found by HALO is beneficial for improving its generalization
capability [21,28], favoring HALO’s large performance advantages.

Forth, wider, deeper, highly sparse and quantized optimizee targets on a
difficult (e.g., exploding gradient is a common issue in training quantized network
with traditional hand-crafted optimizers as described in [24]) yet practical setting
for on-device adaptation [15,46,64]. As shown in Fig. 7, HALO outperforms
all traditional hand-crafted optimizers obviously, regardless of the latter being
extensively tuned, and show a marginal improvement over the Hierarchical-L2O,
indicating the superiority of our purposed HALO (i.e., higher energy efficiency
while having one-for-all generalization capability) even in such stringent cases.

Fifth, while the baseline optimizers don’t have a fixed performance ranking
under various optimizees (e.g., Adam performs better than Adagrad in the wider
and deeper optimizee but worse in the wider optimizee, as shown in Fig. 6 and
5), HALO always achieves both a comparable or lower training loss (e.g., up to
↓16.72% lower in the wider optimizee as shown in Fig. 5 under the same energy
budget) and a comparable or higher adaptation/test accuracy (e.g., up to ↑3.51%
in the deeper optimizee as shown in Fig. 6 under the same energy budget) among
all considered optimizers (including both traditional hand-crafted and mete-
optimizers), indicating HALO’s consistently best capability in balancing
the models’ accuracy and on-device adaptation cost in various optimizees. Notably,
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Table 2: The evaluation results of the trained HALO on the TDP dataset.

Methods

Avg. Test Acc. (%) Avg. Loss Energy (kJ)

# of Iters. # of Iters. # of Iters.

1k 2k 3k Final 1k 2k 3k 1k 2k 3k

Adam 79.41 79.85 79.85 79.85 0.49 0.44 0.43 0.04 0.09 0.13
Adagrad 75.81 75.81 75.82 75.83 0.77 0.73 0.71 0.04 0.09 0.13
SGD 77.08 78.07 78.29 78.29 0.73 0.69 0.67 0.04 0.09 0.13
Hierarchical-L2O 78.42 78.92 79.17 79.19 0.56 0.50 0.48 0.22 0.44 0.66
HALO 79.42 79.88 80.16 80.28 0.58 0.53 0.50 0.15 0.30 0.45

Improv. over SOTA L2O ↑1.00% ↑0.96% ↑0.99% ↑1.09% -0.02 -0.03 -0.02 ↓31.8% ↓31.8% ↓31.8%

even in some cases HALO outperforms other optimizers marginally (e.g., HALO
and Adadgrad in Fig. 5), the latter ones need massive manual hyperparameters
tuning while the former one could be used without any hyperparameter tuning
while having the one-for-all generalization capability.

4.3.2 HALO on the Thyroid Disease Prediction Dataset (TDP)

In this subsection, we evaluate HALO’s performance on the TDP dataset, the
tasks of which can emulate on-device healthcare monitoring applications, one of
the most popular applications on resource-limited IoT devices [54,43,33].

Experiment settings. As introduced in Section 4.1, the input data of the
TDP dataset is a 26-dimensional vector, we thus adopt a three-layer MLP for
the optimizee. Specially, we evaluate HALO in terms of the average training
loss and adaptation/test accuracy under the same training iterations, where the
adaptation energy budget is set to be no more than 0.5 kJ in Raspberry Pi [61]
which is 2% of the most commonly-used Li-Po battery’s capacity (27 kJ) [47]
adopted by massive IoT devices [56].

Experiment results and observations. Table 2 summarizes the experi-
ment results, from which we can see that (1) HALO outperforms all the baseline
optimizers (both traditional hand-crafted and automatically learned ones) in
terms of the achieved average adaptation/test accuracy under the same number
of iterations; and (2) HALO achieves a higher adaptation/test accuracy (i.e.,
↑0.96% - ↑1.00%) while requiring ↓31.8% less adaptation energy as compared
to the SOTA learning to optimize optimizer, Hierarchical-L2O, thanks to its re-
duced energy cost per iteration, indicating the advantage and effectiveness of the
proposed HALO for on-device adaptation. Note that although the hand-crafted
traditional optimizers require a lower energy cost (e.g., ↓0.32 kJ less energy with
a ↓0.31% lower accuracy) over the proposed HALO, they are not applicable for
widely adopted on-device adaptation into numerous IoT applications due to their
required tedious and manual hyper-parameter tuning.
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Table 3: The evaluation results of the trained HALO on the GSAD Dataset.

Methods

Avg. Test Acc. (%) Avg. Loss Energy (kJ)

# of Iters. # of Iters. # of Iters.

1k 2k 3k Final 1k 2k 3k 1k 2k 3k

Adam 69.75 69.91 69.91 69.91 0.42 0.38 0.37 0.02 0.04 0.06
Adagrad 59.06 60.31 61.38 62.16 0.93 0.79 0.71 0.02 0.04 0.06
SGD 58.62 59.66 60.56 60.97 0.78 0.69 0.67 0.02 0.04 0.06
Hierarchical-L2O 77.87 79.34 80.12 80.31 0.44 0.34 0.31 0.15 0.29 0.44
HALO 79.25 85.22 86.81 87.00 0.46 0.30 0.24 0.06 0.12 0.18

Improv. over SOTA L2O ↑1.38% ↑5.88% ↑6.69% ↑6.69% -0.02 0.04 0.07 ↓60.0% ↓58.6% ↓59.1%

4.3.3 HALO on the Gas Sensor Array Drift Dataset (GSAD)

Here we evaluate HALO’s performance on the GSAD dataset, the tasks of which
aim to classify the individual gas components in the gas mixtures based on the
response of various metal oxide collected by the corresponding IoT sensors [27,35].

Experiment settings. The input data of GSAD is a 129-dimensional vector,
we thus adopt a three-layer MLP for the optimizee, which is similar to the one in
Section 4.3.2, except that the first layer’s dimension is increased for adapting to
the increased input dimension. We also evaluate HALO in terms of the average
training loss and adaptation/test accuracy under the same training iterations.
The adaptation energy budget of this set of experiments is 0.2 kJ which is
smaller than that in Section 4.3.2, considering that GSAD’s corresponding tasks
of environmental monitoring applications often face circumstances with a very
limited energy budget for a long time [38,44].

Experiment results and observations. This set of experiment results are
shown in Table 3 from which we can see that: (1) HALO outperforms both
the traditional hand-crafted and automatically learned baseline optimizers by
achieving a higher average adaptation/test accuracy given the same number of
iterations; and (2) HALO performs better than the SOTA learning to optimize
optimizer, Hierarchical-L2O, as it achieves a higher average adaptation/test
accuracy (i.e., ↑1.38% - ↑6.69%) while requiring ↓58.6% - ↓60.0% lower adaptation
energy. Similarly, although the hand-crafted optimizers require a lower energy cost
(e.g., ↓0.12 kJ less energy consumption at a cost of a ↓16.90% lower accuracy) over
the proposed HALO, their required tedious and manual hyper-parameter tuning
limits their applicability to on-device adaptation for numerous IoT applications.

4.3.4 HALO on the Smartphones Dataset (SP)

Here we evaluate HALO’s performance on the SP dataset, the tasks of which
aim to predict human activities based on data collected from smartphones [58,9].

Experiment settings. Considering the sequence data in the SP dataset, we
adopt an optimizee with a CNN+LSTM architecture [52], where a CNN of three
convolution layers are used for feature extraction followed by LSTMs to support
sequence prediction. For this set of experiment, (1) HALO’s structural sparsity
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regularizer is only applied to the optimizee’s convolution layers for balancing
adaptation cost and accuracy; and (2) we relax the energy budget to 5 kJ in the
NVIDIA TX2 [45], which is around 8% of the battery capability of commonly
used smartphones (e.g., battery capacity of SAMSUNG Galaxy S20 is around 63
kJ [53]), considering the practicability of smartphone-based applications.

Experiment results and observations. The experiment results of HALO
and the baseline optimizers in Table 4 show that (1) HALO again performs
the best among all the optimizers including both traditional hand-crafted and
automatically learned ones in terms of the achieved average adaptation/test
accuracy under the same number of iterations; and (2) HALO requires a lower
↓44.3% - ↓45.1% energy while achieving a higher (i.e., ↑0.96% - ↑1.00%) aver-
age adaptation/test accuracy, over the SOTA learning to optimize optimizer,
Hierarchical-L2O, thanks to its structural sparsity that enforces reduced energy
cost per iteration. Note that while being automated and thus more applicable
for a wide adoption into numerous IoT applications, the proposed HALO can
achieves higher accuracies than all the hand-crafted optimizers which are limited
when it comes to on-device adaptation due to their required tedious and manual
hyper-parameter tuning needed for changes in data or application.

Table 4: The evaluation results of the trained HALO on the SP Dataset.

Methods

Avg. Test Acc. (%) Avg. Loss Energy (kJ)

# of Iters. # of Iters. # of Iters.

1k 2k 3k Final 1k 2k 3k 1k 2k 3k

Adam 88.57 92.47 95.59 95.66 6.27E-5 1.79E-5 1.21E-5 1.15 2.92 4.62
Adagrad 69.24 72.31 75.64 76.56 1.17E-2 5.99E-3 4.38E-3 1.15 2.92 4.62
SGD 66.47 68.52 68.52 68.52 2.21E-2 1.15E-2 8.01E-3 1.15 2.92 4.62
Hierarchical-L2O 92.31 96.06 97.08 97.20 2.32E-4 5.38E-5 4.81E-5 1.61 4.08 6.44
HALO 93.22 96.52 97.76 98.16 2.49E-3 3.55E-4 3.09E-4 1.17 2.96 4.67

Improv. over SOTA L2O ↑0.91% ↑0.46% ↑0.68% ↑0.96% -2.26E-3 -3.01E-4 -2.61E-4 ↓27.3% ↓27.5% ↓27.5%

5 Conclusions

We propose a learning to optimize framework, HALO, a practical meta-optimizer
dedicated to resource-efficient on-device adaptation. Specifically, Jacobian and
structural sparsity regularizers are integrated in HALO to reduce per-iteration
complexity and enforce faster adaptation speed, thus contribute to the adaptation
efficiency. Furthermore, we demonstrate that HALO outperforms existing off-the-
shelf traditional hand-crafted and meta-optimizers based on extensive experiments
on six optimizees, five datasets, and two SOTA edge AI computing devices.
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