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Abstract. The datasets of face recognition contain an enormous num-
ber of identities and instances. However, conventional methods have dif-
ficulty in reflecting the entire distribution of the datasets because a mini-
batch of small size contains only a small portion of all identities. To over-
come this difficulty, we propose a novel method called BroadFace, which
is a learning process to consider a massive set of identities, comprehen-
sively. In BroadFace, a linear classifier learns optimal decision boundaries
among identities from a large number of embedding vectors accumulated
over past iterations. By referring more instances at once, the optimality
of the classifier is naturally increased on the entire datasets. Thus, the
encoder is also globally optimized by referring the weight matrix of the
classifier. Moreover, we propose a novel compensation method to increase
the number of referenced instances in the training stage. BroadFace can
be easily applied on many existing methods to accelerate a learning pro-
cess and obtain a significant improvement in accuracy without extra
computational burden at inference stage. We perform extensive ablation
studies and experiments on various datasets to show the effectiveness of
BroadFace, and also empirically prove the validity of our compensation
method. BroadFace achieves the state-of-the-art results with significant
improvements on nine datasets in 1:1 face verification and 1:N face iden-
tification tasks, and is also effective in image retrieval.
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1 Introduction

Face recognition is a key technique for many applications of biometric authenti-
cation such as electronic payment, lock screen of smartphones, and video surveil-
lance. The main tasks of face recognition are categorized into face verification
and face identification. In face verification, a pair of faces are compared to verify
whether their identities are the same or different. In face identification, the iden-
tity of a given face is determined by comparing it to a pre-registered gallery of
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Fig. 1. (a) In typical mini-batch learning, the parameter θ of encoder f and the
parameter W of linear classifier are optimized on a small mini-batch X. (b) In
the proposed method, the parameter of the encoder is optimized on a small mini-
batch, but the parameter of the classifier is optimized on both the mini-batch
and the large queue E that contains embedding vectors e- of past iterations.

identities. Many researches [1, 3, 4, 19, 27, 34, 38, 44, 47] on face recognition have
been conducted for decades. The recent adoption [6, 7, 22, 32, 37, 39–41] of Con-
volutional Neural Networks (CNNs) has dramatically increased recognition ac-
curacy. However, many difficulties of face recognition still remain to be solved.

Most previous studies focus on improving the discriminative power of an em-
bedding space, because face recognition models are evaluated on independent
datasets that include unseen identities. The mainstream of recent studies [6,
22, 39, 40] is to introduce a new objective function to maximize inter-class dis-
criminability and intra-class compactness; they try to consider all identities by
referring an identity-representative vector, which is the weight vector of the last
fully-connected layer for identity classification.

However, conventional methods still have difficulty in covering a massive set
of identities at once, because these methods use a small mini-batch (Fig. 1a)
much less than the number of identities due to memory constraints. Inspecting
tens of thousands of identities with the mini-batch of the small size requires
numerous iterations, and this complicates the task of learning optimal decision
boundaries in an embedding space while considering all of the identities, com-
prehensively. Increasing the size of the mini-batch may alleviate some of the
problem, but in general, this solution is impractical because of memory con-
straints; it also does not guarantee improved accuracy [9, 12, 18, 48].

We propose a novel method, called BroadFace, which is a learning process
to consider a massive set of identities, comprehensively (Fig. 1b). BroadFace
has a large queue to keep a massive number of embedding vectors accumulated
over past iterations. Our learning process increases the optimality of decision
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boundaries of the classifier by considering the embedding vectors of both a given
mini-batch and the large queue for each iteration. The parameters of the model
are updated iteratively, so after a few iterations the error of enqueued embedding
vectors gradually increases. Therefore, we introduce a compensation method that
reduces the expected error between the current and enqueued embedding vectors
by referencing the difference of the identity-representative vectors of current
and past iterations. Our BroadFace has several advantages: (1) the identity-
representative vectors are updated with a large number of embedding vectors to
increase the portion of the training set that is considered for each iteration, (2)
the optimality of the model is increased on the entire dataset by referring to the
globally well-optimized identity-representative vectors, (3) the learning process
is accelerated. We summarize the contributions as follows:

• We propose a new way that allows an embedding space to distinguish nu-
merous identities in a broad perspective by learning identity-representative
vectors from a massive number of instances.

• We perform extensive ablation studies on its behaviors, and experiments on
various datasets to show the effectiveness of the proposed method, and to
empirically prove the validity of our compensation method.

• BroadFace can be easily applied on many existing face recognition methods
to obtain a significant improvement. Moreover, during inference time, it does
not require any extra computational burden.

2 Related Works

Recent studies of face recognition tend to introduce a new objective function
that learns an embedding space by exploiting an identity-representative vector.
NormFace [39] reveal that optimization using cosine similarity between identity-
representative vectors and embedding vectors is more effective than optimization
using the inner product. To increase the discriminative abilities of learned fea-
tures, SphereFace [22], CosFace [40] and ArcFace [6] adopted different kinds of
margin into the embedding space. Futhermore, some works adopted an addi-
tional loss function to regulate the identity-representative vectors. RegularFace
[52] minimized a cosine similarity between identity-representative vectors, and
UniformFace [8] equalized distances between all the cluster centers. However,
those methods can suffer from an enormous number of identities and instances
because they are based on a mini-batch learning. Our BroadFace overcomes the
limitation of a mini-batch learning, and, it can be easily applied on those face
recognition methods.

In terms of preserving knowledge of model on previously visited data, the
continual learning [13, 20] shares the similar concept with BroadFace. However,
BroadFace is different from continual learning, as BroadFace preserves knowl-
edge of previous data from the same dataset while continual learning preserves
knowledge of previous data from different datasets.
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Fig. 2. Our learning refers more instances to learn the classifier in training stage.

3 Proposed Method

We describe the widely-adopted learning scheme in face recognition, and then
illustrate the proposed BroadFace in detail.

3.1 Typical Learning

Learning of Face Recognition. In general, a face recognition network is di-
vided into two parts: (1) an encoder network that extracts an embedding vector
from a given image and (2) a linear classifier that maps an embedding vector
into probabilities of identities. An evaluation is performed by comparing embed-
ding vectors on images of unseen identities, so the classifier is discarded at the
inference stage. Here, f is the encoder network that extracts a D-dimensional
embedding vector e from a given image x: e = f(x; θ) with a model parameter θ.
The linear classifier performs classification for C identities from an embedding
vector e with a weight matrix W of C×D-dimensions. For a mini-batch X, the
objective function such as a variant of angular softmax losses [6, 22, 39] is used
to optimize the encoder and the classifier:

L(X) =
1

|X|
∑
i∈X

l(ei, yi), (1)

l(ei, yi) = − log
exp(ŴT

yi
êi)∑C

j=1 exp(ŴT
j êj)

, (2)

where yi is an labeled identity of xi and ·̂ indicates that a given vector is L2

normalized (e.g., ‖ê‖2 = 1). In Eq. 2, Ŵyi acts as an representative instance of
the given identity yi that maximizes the cosine similarity with an embedding
vector ei. Thus, Ŵy can be regarded as the identity-representative vector, which
is the expectation of instances belong to y:

Ŵy = Ex

[
êi
∣∣yi = y

]
. (3)

Limitations of Mini-batch. The parameters of the model are updated in an
iterative process that considers a mini-batch that contains only a small portion
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of the entire dataset for each step (Fig. 2). However, use of a small mini-batch
may not represent the entire distribution of training datasets. Moreover, in face
recognition, the number of identities is very large and each mini-batch only
contains few of them; for example, MSCeleb-1M [10] has 10M images of 100k
celebrities. Therefore, each parameter update of a model can be biased on a small
number of identities, and this restriction complicates the task of finding optimal
decision boundaries. Enlarging the mini-batch size may mitigate the problem,
but this solution requires heavy computation of the encoder, proportional to the
batch-size.

3.2 BroadFace

We introduce BroadFace, which is a simple yet effective way to cover a large num-
ber of instances and identities. BroadFace learns globally well-optimized identity-
representative vectors from a massive number of embedding vectors (Fig. 2). For
example, on a single Nvidia V100 GPU, the size of a mini-batch for ResNet-100
is at most 256, whereas BroadFace can utilize more than 8k instances at once.
The following describes each step.
(1) Queuing Past Embedding Vectors. BroadFace has two queues of pre-
defined size: E stores embedding vectors; W stores identity-representative vec-
tors from the past. For each iteration, after model update, embedding vectors
of a given mini-batch {ei}i∈X are enqueued to E, and corresponding identity-
representative vectors {Wyi

}i∈X of each instance are enqueued to W. By referring
to the past embedding vectors in the queue to compute the loss L(X ∪ E), the
network increase the number of instances and identities explored at each update.
(2) Compensating Past Embedding Vectors. As the model parameter θ
of the encoder is updated over iterations, past embedding vectors e- ∈ E conflict
with the embedding space of the current parameter (Fig. 3a); ε = e − e- where
θ- is the past parameter of the encoder and e- = f(x; θ-). The magnitude of
the error ε is relatively small when few iterations have been passed from the
past. However, the error is gradually accumulated over iterations and the error
hinders appropriate training. We introduce a compensation function ρ(y) for
each identity to reduce the errors as an additive model; e∗i = e-

i + ρ(y) where
e∗i is a compensated past embedding vector to a current embedding vector (Fig.
3b). The compensation function should minimize an expected squared error J
between the current embedding vectors and the compensated past embedding
vectors that belong to y:

minimize J
(
ρ(y)

)
=Ex

[(
e∗i − ei

)2∣∣yi = y
]
,

=Ex

[(
e-
i + ρ(y)− ei

)2∣∣yi = y
]
.

(4)

The partial derivative of J with respect to ρ(y) is:

∂J

∂ρ(y)
= Ex

[
2
(
e-
i + ρ(y)− ei

)∣∣yi = y
]
. (5)
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Fig. 3. (a) enqueued embedding vectors (gray circles) at the past are further
away from the embedding vectors (blue circles) at the current iteration due
to the parameter update and this indicates significant errors. (b) the compen-
sated embedding vectors (orange circles) closely approach to the embedding vec-
tors at the current iteration, by considering the difference between the identity-
representative vectors (class centers) at the past and the current iteration.

Thus, the optimal compensation function is the difference between the expecta-
tions of current embedding vectors and past embedding vectors:

ρ(y) = Ex

[
ei
∣∣yi = y

]
− Ex

[
e-
i

∣∣yi = y
]
,

≈ λ(Wy −W -
y),

(6)

where W -
y ∈ W is an identity-representative vector, which is enqueued to the

queue during the same iteration as e-
i ∈ E. As explained in Eq. 3, the identity-

representative vector and the expected embedding vector point in the same di-
rection when the vectors are projected onto a hyper-sphere, but the vectors are
different in scale. Thus, we deploy a simple normalization term per each instance
to adjust these scales: λ = ‖e-

i‖/
∥∥W -

yi

∥∥. Then the compensated embedding vec-
tor e∗ is computed as:

e∗i = e-
i +

‖e-
i‖∥∥W -
yi

∥∥ (Wyi −W -
yi

). (7)

In empirical studies, the compensation function reduces the error significantly.
(3) Learning from Numerous Embedding Vectors. By executing the pre-
ceding two steps, BroadFace generates additional large-scale embedding vectors
from the past. In our method, the encoder is trained on a mini-batch as before
and the classifier is trained on both a mini-batch and the additional embedding
vectors. The objective functions for the encoder and the classifier are defined as:

Lencoder(X) =
1

|X|

{∑
i∈X

l(ei)

}
, (8)



BroadFace for Face Recognition 7

N-2th Iteration…
Previous Iterations Current Nth Iteration

Mini-batch: 𝐗

𝐗 × 3 × 112 × 112

E
n

co
d

e
r

From 
Mini-Batch

|𝐗| × 512

From 
Queue

(|𝐗|+Queue Size)× 512

Compensate

Compensated 

Embedding: 𝑒∗

Corresponding
Identity

Identity-representative Vectors
𝐶 × 512

𝑊

ℒ(𝐗)

Loss for Encoder

Loss for Classifier

ℒ(𝐗 ∪ 𝔼)

: Direction of gradients

E
n

co
d

e
r

Mini−batch: 𝐗 Embedding: 𝑒

𝑊∗

E
n

co
d

e
r

Mini−batch: 𝐗 Embedding: 𝑒

𝑊∗

Queue 𝔼

…

Queue 𝕎

…

N-1th Iteration

Enqueue 𝑒𝑖 𝑖∈𝐗

Enqueue 𝑊𝑦𝑖 𝑖∈𝐗

Dequeue

Dequeue

Fig. 4. Learning process of the proposed method. BroadFace deploys large queues
to store embedding vectors and their corresponding identity-representative vec-
tors per iteration. The embedding vectors of the past instances stored in the
queues are used to compute loss for identity-representative vectors. BroadFace
effectively learns from tens of thousands of instances for each iteration.

Lclassifier(X ∪ E) =
1

|X ∪ E|

∑
i∈X

l(ei) +
∑
j∈E

l(e∗j )

 . (9)

The parameter θ of the encoder is updated w.r.t. Lencoder(X) while the parameter
of the classifier W is updated w.r.t. Lclassifier(X ∪ E). The large number of em-
bedding vectors in the queue helps to learn highly precise identity-representative
vectors that show reduced bias on a mini-batch and increased optimality on
the entire dataset. The precise identity-representative vectors can accelerate the
learning procedure. Moreover, our method can be easily implemented by adding
several queues in the learning process (Fig. 4) and significantly improves accu-
racy in face recognition without any computational cost at inference stage.

3.3 Discussion

Effectiveness of Compensation. We show that the compensation method
is empirically effective. After a small number of iterations, the error of the en-
queued embedding vectors is also small and the compensation method is not
necessary. However, after a large number of iterations, the error increases and
the compensation method becomes necessary to keep a large number of em-
bedding vectors (Fig. 5a). A large accumulated error may degrade the training
process of the network (Fig. 7a and Fig. 7b). We illustrate how the compensation
function reduces the difference between past and current embedding vectors in
2-dimensional space by t-SNE [24] (Fig. 5b). The past embedding vectors ap-
proach to current embedding vectors after applying compensation. This shows
that the proposed compensation function works properly in practice.
Memory Efficiency. We compare BroadFace with enlarging the size of a mini-
batch in terms of memory consumption (Fig. 6). A näıve mini-batch learning
requires a huge amount of memory to forward and backward the entire network.



8 Y. Kim, W. Park and J. Shin

Degradation of Learning

Passed Iteration

C
o
s
in

e
 S

im
il
a
ri

ty

0

1.0

32 64

0.5

without
Compensation

with
Compensation

(a) Averaged Error

Past (!")         Current (!)          Compensate (!∗)

(b) Scatter Plot
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(b) the scatter plot of the past (before 64 iterations), current and compensated
embedding vectors for 64 instances.

The maximum size of a mini-batch is about 240 instances when a model based on
ResNet-100 is trained on NVidia V100 of 32 GB. However, BroadFace requires
only a matrix multiplication between the embedding vectors in E and the weight
matrix W (Eq. 2). The marginal computational cost of BroadFace enables a
classifier to learn decision boundaries from a massive set of instances, e.g., 8192
instances for a single GPU. Note that, enlarging the size of a mini-batch to 8192
requires about 952 GB of memory which is infeasibly large for a single GPU.

4 Experiments

4.1 Implementation Details

Experimental Setting. As pre-processing, we normalize a face image to 112×
112 by warping a face-region using five facial points from two eyes, nose and two
corners of mouth [6, 22, 40]. A backbone network is ResNet-100 [11] that is used
in the recent works [6, 15]. After the res5c layer of ResNet-100, a block of batch
normalization, fully-connected and batch normalization layers is deployed to
compute a 512-dimensional embedding vector. The computed embedding vectors
and the weight vectors of the linear classifier are L2-normalized and trained by
the ArcFace [6]. Our model is trained on 4 synchronized NVidia V100 GPUs and
a mini-batch of 128 images is assigned for each GPU. The queue of BroadFace
stores up to 8,192 embedding vectors accumulated over 64 iterations for each
GPU, thus the total size of the queues is 32,768 for 4 GPUs. To avoid abrupt
changes in the embedding space, the network of BroadFace is trained from the
pre-trained network that is trained by the softmax based loss [6]. We adopted
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Fig. 6. Illustration on memory consumption of a conventional mini-batch learning
(blue line) and the proposed BroadFace (red line) depending on the size of a mini-
batch. The blue dotted line indicates memory consumption that is estimated for
a large size of mini-batch by linear regression.

stochastic gradient descent (SGD) optimizer, and a learning rate is set to 5 ·10−3

for the first 50k, 5 ·10−4 for the 20k, and 5 ·10−5 for the 10k with a weight decay
of 5 · 10−4 and a momentum of 0.9.
Datasets. All the models are trained on MSCeleb-1M [10], which is composed
of about 10M images for 100k identities. We use the refined version [6], which
contains 3.8M images for 85k identities by removing the noisy labels of MSCeleb-
1M. For the test, we perform evaluations on the following various datasets:

• Labeled Faces in the Wild (LFW) [14] contains 13k images of faces that are
collected from web for 5,749 different individuals. Cross-Age LFW (CALFW)
[54] provides pairs with age variation, and Cross-Pose (CPLFW) [53] pro-
vides pairs with pose variation from the images of LFW.

• YouTube Faces (YTF) [43] contains 3,425 videos of 1,595 different people.
• MegaFace [17] contains more than 1M images from 690k identities to evaluate

recognition-accuracy with enormous distractors.
• Celebrities in Frontal-Profile (CFP) [33] contains 500 subjects; each subject

has 10 frontal and 4 profile images.
• AgeDB-30 [26], which contains 12,240 images of 440 identities with age varia-

tions, is suitable to evaluate the sensitivity of a given method in age variation.
• IARPA Janus Benchmark (IJB) [25, 42], which is designed to evaluate un-

constrained face recognition systems, is one of the most challenging datasets
in public. IJB-B [42] is composed of 67k face images, 7k face videos and
10k non-face images. IJB-C [25], which adds additional new subjects with
increased occlusion and diversity of geographic origin to IJB-B, is composed
of 138k face images, 11k face videos and 10k non-face images.

4.2 Evaluations on Face Recognition

We conduct experiments on the described various datasets to show the effective-
ness of the proposed method.
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Table 1. Verification accuracy (%) on LFW and YTF.

Method LFW YTF Method LFW YTF

DeepID [36] 99.47 93.2 DeepFace [37] 97.35 91.4

VGGFace [28] 98.95 97.3 FaceNet [32] 99.64 95.1

CenterLoss [41] 99.28 94.9 RangeLoss [51] 99.52 93.7

MarginalLoss [7] 99.48 95.9 SphereFace [22] 99.42 95.0

RegularFace [52] 99.61 96.7 CosFace [40] 99.81 97.6

UniformFace [8] 99.80 97.7 AFRN [15] 99.85 97.1

ArcFace [6] 99.83 97.7 BroadFace 99.85 98.0

Table 2. Verification accuracy (%) on CALFW, CPLFW, CFP-FP and AgeDB-
30.

Method CALFW CPLFW CFP-FP AgeDB-30

CenterLoss [41] 85.48 77.48 - -

SphereFace [22] 90.30 81.40 - -

VGGFace2 [2] 90.57 84.00 - -

CosFace [40] 95.76 92.28 98.12 98.11

ArcFace [6] 95.45 92.08 98.27 98.28

BroadFace 96.20 93.17 98.63 98.38

Table 3. Identification and verification evaluation on MegaFace [17]. Ident indi-
cates rank-1 identification accuracy (%) and Verif indicates a true accept rate
(%) at a false accept rate of 1e-6.

Method
MF-Large MF-Large-Refined [6]

Ident Verif Ident Verif

RegularFace [52] 75.61 91.13 - -

UniformFace [8] 79.98 95.36 - -

SphereFace [22] - - 97.91 97.91

AdaptiveFace [21] - - 95.02 95.61

CosFace [40] 80.56 96.56 97.91 97.91

ArcFace [6] 81.03 96.98 98.35 98.49

BroadFace 81.33 97.56 98.70 98.95

LFW and YTF are widely used to evaluate verification performance under
the unrestricted environments. LFW, which contains pairs of images, evaluates
a model by comparing two embedding vectors of a given pair. YTF contains
videos that are sets of images; from the shortest clip of 48 frames to the longest
clip of 6,070 frames. To compare a pair of videos, YTF compares a pair of video-



BroadFace for Face Recognition 11

Table 4. Verification evaluation with a True Accept Rate at a certain False
Accept Rate (TAR@FAR) from 1e-4 to 1e-6 on IJB-B and IJB-C. † denotes
BroadFace trained by CosFace [40].

Method
IJB-B IJB-C

FAR=1e-6 FAR=1e-5 FAR=1e-4 FAR=1e-6 FAR=1e-5 FAR=1e-4

VGGFace2 [2] - 0.671 0.800 - 0.747 0.840

CenterFace [41] - - - - 0.781 0.853

ComparatorNet [46] - - 0.849 - - 0.885

PRN [16] - 0.721 0.845 - - -

AFRN [15] - 0.771 0.885 - 0.884 0.931

CosFace [40] 0.3649 0.8811 0.9480 0.8591 0.9410 0.9637

BroadFace† 0.4092 0.8997 0.9497 0.8596 0.9459 0.9638

ArcFace [6] 0.3828 0.8933 0.9425 0.8906 0.9394 0.9603

BroadFace 0.4653 0.9081 0.9461 0.9041 0.9411 0.9603

representative embedding vectors that are averaged embedding vectors of images
collected from each video. Even though both datasets are highly-saturated in
accuracy, our BroadFace outperforms other recent methods (Table 1).

CALFW, CPLFW, CFP-FP and AgeDB-30 are also widely used to verify
that methods are robust to pose and age variation. CALFW and AgeDB-30 have
multiple instances for same identity of different ages and CPLFW and CFP-FP
have multiple instances for same identity of different poses (frontal and profile
faces). BroadFace shows better verification-accuracy on all datasets (Table 2).

MegaFace is designed to evaluate both face identification and verification tasks
under difficulty caused by a huge number of distractors. We evaluate our Broad-
Face on Megaface Challenge 1 where the training dataset is more than 0.5 million
images. BroadFace outperforms the other top-ranked face recognition models for
both face identification and verification tasks (Table 3). On the refined MegaFace
[6], where noisy labels are removed, BroadFace also surpasses the other models.

IJB-B and IJB-C are the most challenging datasets to evaluate unconstrained
face recognition. We report BroadFace with CosFace [40] and BroadFace with
ArcFace [6] in verification task without any augmentations such as horizontal
flipping in test time. Our BroadFace shows significant improvements on all FAR
criteria (Table 4). In IJB-B [42], BroadFace improves 8.25 percentage points on
FAR=1e-6, 1.48 percentage points on FAR=1e-5 and 0.36 percentage points on
FAR=1e-4 comparing to the results of ArcFace [6].

4.3 Evaluations on Image Retrieval.

Both face recognition and image retrieval have the same goal that learn an op-
timal embedding space to compare a given pair of items such as face, clothes or
industrial products. To show that BroadFace is widely applicable on other appli-
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Table 5. Recall@K comparison with state-of-the-art methods. For fair compar-
ison, we divide methods according to the dimension (Dim.) of an embedding
vector. The numbers under the datasets refer to recall at K.

Methods Dim.
In-Shop SOP

1 10 20 30 1 10 102 103

Margin [45] 128 - - - - 72.7 86.2 93.8 98.0

MIC+Margin [29] 128 88.2 97.0 - - 77.2 89.4 95.6 -

DC [31] 128 85.7 95.5 96.9 97.5 75.9 88.4 94.9 98.1

ArcFace [6] 128 84.1 94.9 96.2 96.9 73.3 86.4 93.2 97.1

BroadFace 128 89.8 97.4 98.1 98.4 79.7 90.7 95.7 98.4

TML [49] 512 - - - - 78.0 91.2 96.7 99.0

NSM [50] 512 88.6 97.5 98.4 98.8 78.2 90.6 96.2 -

ArcFace [6] 512 87.3 96.3 97.3 97.9 76.9 89.1 95.0 98.2

BroadFace 512 90.1 97.4 98.1 98.4 80.2 91.0 95.9 98.4

cations, we compare BroadFace with recently proposed metric learning methods
for image retrieval.
Experimental Settings. We use ResNet-50 [11] that is pre-trained on ILSVRC
2012-CLS [30] as a backbone network. We use ArcFace [6] as a baseline objective
function and set the size of the queue to 32k for BroadFace. We follow the
standard input augmentation and evaluation protocol [35]. We evaluate on two
large datasets with a large number of classes similar to face-recognition: In-Shop
Clothes Retrieval (In-Shop) [23] and Stanford Online Products (SOP) [35].
In-Shop and SOP are the standard datasets in image retrieval. In-Shop con-
tains 11,735 classes of clothes. For training, the first 3,997 classes with 25,882
images are used, and the remaining 7,970 classes with 26,830 images are split
into query set gallery set for evaluation. SOP contains 22,634 classes of indus-
trial products. For training, the first 11,318 classes with 59,551 images are used
and the remaining 11,316 classes with 60,499 images are used for evaluation.
Our baseline models that are trained with ArcFace [6] underperform comparing
to the other state-of-the-art methods. BroadFace significantly improves the re-
call of the baseline models and the improved model even outperforms the other
methods (Table 5).

4.4 Analysis of BroadFace

Size of Queue. BroadFace has only one hyper-parameter, the size of the queue,
to determine the maximum number of embedding vectors accumulated over past
iterations. Using the single parameter makes our method easy to tune and the
parameter plays a very important role in determining recognition-accuracy. As
the size of the queue grows, the performance increases steadily (Table 6a). Es-
pecially, without our compensation method, accuracy degradation occurs when
the size of the queue is significantly large. However, our compensation method
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Table 6. Effects of BroadFace varying the size of the queue and the type of the
backbone network on IJB-B dataset in face recognition.

(a) Total Size of Queue

Size of Queue

TAR

FAR=1e-6 FAR=1e-5
without

Compensation
with

Compensation
without

Compensation
with

Compensation

0 (Baseline) 0.3828 0.3828 0.8933 0.8933

2048 (512× 4 GPUs) 0.4310 0.4255 0.9061 0.9077

8192 (2048× 4 GPUs) 0.4346 0.4394 0.9071 0.9085

32768 (8192× 4 GPUs) 0.4259 0.4653 0.9078 0.9081

(b) Backbone Network

Dim.

TAR

GFlopsFAR=1e-6 FAR=1e-5

ArcFace BroadFace ArcFace BroadFace

MobileFaceNet [5] 128 0.3552 0.3665 0.8456 0.8458 0.9G

ResNet-18 [11] 128 0.3678 0.3808 0.8588 0.8638 5.2G

ResNet-34 [11] 512 0.3981 0.4325 0.8798 0.8828 8.9G

ResNet-100 [11] 512 0.3828 0.4653 0.8933 0.9081 24.1G

alleviates the degradation by correcting the enqueued embedding vectors. We
show another experiment on the enormous size of the queue from 0 to 32, 000
in image retrieval (Fig. 7a). With the proposed compensation, the recall is con-
sistently improved as the size of the queue is increased. However, without the
proposed compensation, the recall of the models degrades when the size of the
queue is more than 16k.

Generalization Ability. Our BroadFace is generally applicable to any objec-
tive functions and any backbone networks. We apply BroadFace to two widely
used objective functions of CosFace [40] and ArcFace [6]. For both CosFace
and ArcFace, BroadFace increases recognition-accuracy (Table 4). We also ap-
ply BroadFace to several backbone networks such as MobileFaceNet [5], ResNet-
18 [11] and ResNet-34 [11]. We set the dimensions of embedding vector to 128
for light backbone networks such as MobileFaceNet and ResNet-18, and 512 for
heavy backbone networks such as ResNet-34 and ResNet-100. BroadFace is sig-
nificantly effective for all backbone networks (Table 6b). In particular, ResNet-34
trained with BroadFace achieves comparable performance to ResNet-100 trained
only with ArcFace, even though ResNet-34 has much less GFlops.

Learning Acceleration. Our BroadFace accelerates the learning process of
both face recognition and image retrieval. In face recognition, many iterations
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Fig. 7. (a) the recall depending on the size of the queue in BroadFace with and
without our compensation function; the red line indicates the recall of ArcFace
(baseline) on the test set. (b) the learning curve for the test set when the size
of the queue is 32k; ArcFace reaches the highest recall at the 45th epoch, our
BroadFace reaches the highest recall at the 10th epoch, and the learning process
collapses without our compensation function.

are still needed to overcome a small gap of performance among the methods
on the highly-saturated datasets. Thus, we experiment the acceleration of the
learning process in image retrieval to clearly show the effectiveness (Fig. 7b). Our
BroadFace reaches peak performance much faster and higher than the baseline
model. Without our compensation method, the model gradually collapses.

5 Conclusion

We introduce a new way called BroadFace that allows an embedding space to
distinguish numerous identities in a broad perspective by increasing the opti-
mality of constructed identity-representative vectors. BroadFace is significantly
effective for face recognition and image retrieval where their datasets consist of
numerous identities and instances. BroadFace can be easily applied on many
existing face recognition methods to obtain a significant improvement without
any extra computational cost in the inference stage.
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