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Abstract. Visual reasoning is crucial for visual question answering (VQA).
However, without labelled programs, implicit reasoning under natural
supervision is still quite challenging and previous models are hard to in-
terpret. In this paper, we rethink implicit reasoning process in VQA, and
propose a new formulation which maximizes the log-likelihood of joint
distribution for the observed question and predicted answer. According-
ly, we derive a Temporal Reasoning Network (TRN) framework which
models the implicit reasoning process as sequential planning in latent
space. Our model is interpretable on both model design in probabilist
and reasoning process via visualization. We experimentally demonstrate
that TRN can support implicit reasoning across various datasets. The
experimental results of our model are competitive to existing implicit
reasoning models and surpass baseline by a large margin on complicated
reasoning tasks without extra computation cost in forward stage.

Keywords: Visual Question Answering · Implicit Reasoning · Temporal
Reasoning Network · Explanable Machine Learning

1 Introduction

Recent advances in deep learning allow us to investigate emerging research
themes lying at the intersection between vision and language. Visual Question
Answering (VQA) [3] is a representative task that aims to get an open-ended an-
swer given an image and a natural language question. Since VQA requires high-
level understanding of images and the associated questions, visual reasoning is
required to provide primitives for deriving a good answer and make VQA model
more interpretable for better human understanding [2,26,48,27,58,31,23,36,55].

Existing study towards interpretable visual reasoning can be divided in-
to two groups. One group of work are conducted on synthetic datasets, e.g.,
CLEVR [26], making use of external knowledge. Explicit “functional program-
s” are adopted by modular networks [2,21,20] and neural symbolism [58,49,53]
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Fig. 1. Comparison between our work and previous work. We regard the question as
a hint for reasoning programs, and formulate a Bayesian probabilistic framework for
visual reasoning under natural supervision. The highlights in images are sampled from
inferred Concrete distribution latent states, which can indicate the most critical image
part that should be attended to at each time step

to generated questions and nearly perfect answers are achieved. These explicit
reasoning methods are quite interpretable, but they largely rely on strong as-
sumptions like having labelled programs on questions or labelled entity relation-
s. In another research direction, to solve real-world problem, implicit reasoning
via stacked attention modules [48,45,8,15] or graph reasoning [43,22,52,49,36]
establish specially designed “black box” neural architectures. Changing in at-
tention maps is thought to be implicit reasoning evidence, and is somewhat a
kind of “side effect” of answer classifier optimization. Taking a comparison be-
tween implicit and explicit reasoning, it can be found that existing real-world
reasoning methods only maximize the likelihood of predicted answers without
an understandable reasoning procedure. The multi-hoop attention, obtained by
back-propagation, identify components that support a predicted answer, still
lacks the ability to explain the reasoning process that achieves a specific answer.

It is known that Bayesian models fall below the ceiling of interpretable ma-
chine learning, since they convey a clear representation of the relationships be-
tween features and targets. For example, Deep Kalman Filters (DKFs) [38] and
Deep Variational Bayes Filters (DVBFs) [30] endow deep models with inter-
pretability inherent to probabilistic graphical models, to make them much more
explainable as “Bayesian hybrid transparent” [4]. To unveil the black box of im-
plicit reasoning, we view VQA task from a probabilistic perspective and reformu-
late a new general Bayesian interpretation for visual reasoning under real-world
setting. We pay primary attention to the basic visual reasoning problem formu-
lation and expect to enhance the interpretability of implicit reasoning methods.

Specifically, we reinvestigate the question generation process on synthetic
datasets [26,24], which infers that questions clearly convey reasoning programs
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and vice versa. Considering that no program labeling is available on real-world
data, we assume that there is a set of discrete latent states lying behind input
question words, and use them to sequentially describe which part of the im-
age should be attended to at each time step. These latent states act similarly
as labelled programs in explicit reasoning models. Based on the latent states,
the questions can be regarded as implicit supervision for underlying reasoning
programs, as shown in Fig. 1. Instead of only maximizing answer likelihood in
previous works, we reformulate an alternative probabilistic interpretation formu-
lation, which maximizes the log-likelihood of joint distribution for the observed
question and predicted answer. In this way, the answer predictor and latent
states indicating reasoning evidence can be directly optimized simultaneously.

By decomposing the probabilistic formulation, we show that an interpretable
reasoning process should have three basic modules, i.e., State Transition, State
Inference and Generative Reconstruction. We also show that recent develop-
ments in implicit reasoning can be steadily explained by our probabilistic frame-
work, from one-step State Inference (one-stage fusion [1,16,13,32]) to multi-step
State Inference (stacked attention [39,31]) and then to multi-step State Infer-
ence with dependent transitions (relation-based methods [14,52,54,22,36]). As a
practitioner of the probabilistic framework, we derive a latent sequence mod-
el parametrized by a VAE-based neural network, named Temporal Reasoning
Network (TRN). We integrate TRN module into existing representative model-
s, such as the one-stage VQA model UpDn [1] and stack-attention model BAN
[31]. The injection of TRN on existing models can be regarded as a regularization
term in the training stage, and it can be removed in the testing stage without
extra computational cost. The results demonstrate that compared to the base-
line models, the enhanced models with TRN achieve improved performance and
better interpretability without using extra fusion strategies.

It is worth noting that both architecture and loss function in our work are
naturally derived from the basic probabilistic formulation and corresponding
graphical model. Every term in TRN is conceptually and mathematically in-
terpretable, which further guarantees the interpretability of the whole model.
With Generative Reconstruction module and latent state sampling, we can also
visualize the reasoning process along with question words, which demonstrates
that answer prediction procedure of our model is also interpretable. Major con-
tributions are three folds:

– We formulate a new probabilistic interpretation for visual reasoning in the
real-world VQA task under natural supervision.

– Following the new probabilistic framework, we propose a sequential latent
state model TRN, which is interpretable on both model design and answer
prediction.

– TRN can well collaborate with existing models. It can help shallow models
like UpDn achieves comparable result compared to state-of-the-art implicit
reasoning methods on VQA v2, CLEVR, and CLEVR-Human datasets, and
enhance the explanation to existing black-box reasoning models like BAN.
Code is available at https://github.com/GeraldHan/TRN.

https://github.com/GeraldHan/TRN
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2 Related Work

2.1 Visual Question Answering and Reasoning

The task of visual question answering is to infer the answer based on the input
question and image. Primary methods for VQA mainly focus on better attention
mechanisms [56,57,39,14,31] and multi-modal fusion strategies [16,13,32,6,59].
Recent research efforts towards VQA have changed from multi-modal matching
to visual reasoning. Existing methods of visual reasoning can be categorized into
explicit reasoning and implicit reasoning.

Explicit reasoning are mainly conducted on CLEVR [26] with compo-
sitional reasoning procedure. Andreas et al. [2] first propose Neural Modular
Networks (NMN), which explicitly decompose the reasoning procedure into a
sequence of sub-tasks handled by specialized modules. Consequent studies im-
prove this work by proposing better layout policy [21,20], or designing more
specific modules [42,27]. Similar to our work, Vedantam et al.[53] propose Prob-
abilistic NMN, which provides a probabilistic formulation of NMN and requires
a smaller number of teaching examples for layouts. Different from [53], our work
focuses on more natural supervision. A more explicit symbolic reasoning method
over the object-level structural scene representation is introduced in [58,49,41],
which divides the perception and reasoning into two specific stages. Nevertheless,
“expert layouts” are needed to supervise the layout policy to get composition-
al behaviour and good accuracy, which limits their performance on real-world
datasets and human asked questions.

Implicit reasoning is extensively studied on real-world datasets like VQA
[3]. Bottom-up [1] with object and attribute features extracted by Faster R-CNN
[46] is a common baseline. A widely-used approach is to perform reasoning by
sequential interactions between image representations and question embeddings
[57,23,31,14,15]. Another research line focus on relation reasoning, which can
be conducted on a fully-connected graph of objects [48,8]. To better model the
interactions between multiple objects, labelled relation or question-conditioned
graph representations for images are adopted, then a GCN [34] is used to im-
plicitly infer the interactive representation of objects [43,52,54,22,36]. Implicit
reasoning is suitable for real-world setting but much less interpretable.

We build a bridge between implicit and explicit reasoning by introducing la-
tent states behind question words. Thus, the implicit reasoning can be performed
with comparable interpretability to explicit reasoning under natural supervision.

2.2 Hybrid Transparent with Bayesian interpretation

The ideas behind variational auto-encoders (VAEs) [33,47] have enabled com-
plex latent dynamical systems like SVAE [29], non-linear SSMs [11,28,12,9] or
parametrized deep Markov models [35,51]. These methods combine Bayesian
probabilistic graphical models in the embedding space with neural networks to
enhance the interpretability of deep models. More similar to our work, model-
based reinforcement learning [5,10,7,18] planning in latent space typically as-
sumes access to the low-dimensional states of the environment and plan the
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Fig. 2. Temporal Reasoning Model. (a) is the overall stochastic graphical model
for reasoning process, which constructs a latent state zt underlying each question item
xt conditioned on the given image v (image is constructed as a graph in practice),
simulating labelled programs in explicit models. (b) is the implementation detail for
a single reasoning step (the dash block in (a)). Entity Cell models the intra-block
reasoning, which infers q(zt|ht,v) and p(xt|zt,v) based on node features ve and entity
phrase embedding he. Trans Cell infers the prior p(zt|zt−1,v) for the next time block
with a transition function T

dynamics directly in continuous state space, which can be more efficient com-
pared to Bellman backups of traditional reinforcement learning. Recent works
TD-VAE [17] and PlaNet [19] further extend to time-sequential planning to solve
more complex problems with sequential state observations.

To look inside the implicit reasoning procedure, we formulate a latent se-
quence model generating implicit policies along with sequential question word
inputs. In this way, we construct a deep model with Bayesian hybrid transparent
[4] and explicitly model the reasoning procedure without extra-label efforts.

3 Method

3.1 Model Definition

Let v be image representations and x is a question comprised of a sequence of
L words. The goal of VQA is to predict the best answer â ∈ A, where A is the
answer set. As common practice in the VQA literature, answer prediction can
be defined as a classification problem:

â = arg max
a∈A

pγ(a|v,x) (1)

where pγ denotes the trained classification model.
However, this kind of optimization does not explicitly model the reasoning

process. In order to investigate the reasoning process behind the classifier, we
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assume there is a sequence of state variable z = {zt}Ti=1 that indicates reasoning
procedure underlying question x. This time-dependent latent state zt is decided
by the current question item and conditioned on image representations. Fig 2(a)
gives a detailed illustration of the whole graphical model for the above reasoning
process. According to the graphical model, we treat image representation v as
a global condition, question words x as sequential observations and assume a
general form of fully Bayesian state space model. Our probabilistic formulation
specifies the joint distribution p(a,x, z|v), and our goal is to find an approxi-
mation for model evidence p(a,x|v) with respect to the posterior distribution
p(z|x,v). The log marginal evidence probability can be decomposed as

log p(a,x|v) = log p(x|v) + log p(a|x,v) (2)

Thus, the above model can be divided into two separate parts. The latter part is
the answer classifier, similar to traditional VQA models. The former part models
the Temporal Reasoning process optimized by maximum data likelihood of
observed question x, where the underlying latent states z can be optimized as
latent variables via variational inference. Explicitly modelling reasoning process
with such a fully probabilistic formulation and injecting it into existing methods
are the main contributions of this work. The learning diagram will be detailed
in Section 3.2.

3.2 Learning

Temporal Reasoning is to optimize log-likelihood of the question log p(x|v).
Following Bayesian rule, it can be auto-regressively decomposed as log p(x|v)=∑
tlog p(xt|x1:t−1,v). For a given time step t, we decompose the log marginal

probability with respect to the variational posterior q(zt, zt−1|xt,v, x1:t−1) as

log p(xt|x1:t−1,v) = KL(q(zt, zt−1)‖p(zt, zt−1)) + Lt (3)

where q(zt, zt−1) is the short form of q(zt, zt−1|v, x1:t) which is a inference pos-
terior distribution for latent states zt, while p(zt, zt−1) is the abbreviation for
p(zt, zt−1|v, x1:t−1) which is a corresponding generative prior distribution.1 Lt
is the evidence lower bound (ELBO) of data likelihood at time step t, which is

Lt = E(zt−1,zt)∼q(zt,zt−1) [log p(xt|zt, zt−1, x1:t−1,v)

+ log p(zt, zt−1|v, x1:t−1)− log q(zt, zt−1|v, x1:t)]
(4)

Considering the Markov assumption underlying the graphical model in Fig. 2(a),
we can simplify p(xt|zt, zt−1, x1:t−1,v) = p(xt|zt,v). Moreover, following the
Bayes rule, we can decompose q(zt, zt−1|v, x1:t) and p(zt, zt−1|v, x1:t−1) as

p(zt, zt−1|v, x1:t−1) = p(zt−1|x1:t−1,v)p(zt|zt−1,v)

q(zt, zt−1|v, x1:t) = q(zt|x1:t,v)q(zt−1|zt, x1:t,v)
(5)

1 Following equations will use the same shorten expressions for convenience. Both
distributions are parametrized as neural networks in our work. p indicates generate
distributions, while q refers to inference distributions.



Interpretable Visual Reasoning via Probabilistic Formulation 7

Similar to [19], to simplify the model, joint representation p(x1:t) is determinis-
tically encoded with a Recurrent Neural Networks (RNNs) as

ht = RNN(xt, ht−1) (6)

where ht ∈ Rdq is a deterministic variable encoding all history observations.
Therefore, Eq. 4 can be decomposed as:

Lt = E zt∼q(zt)
zt−1∼q(zt−1)

[
log p(xt|zt,v) + log p(zt−1|ht−1,v) + log p(zt|zt−1,v)

− log q(zt|ht,v)− log q(zt−1|zt, ht,v)
] (7)

where q(zt) and q(zt−1) abbreviate q(zt|ht,v) and q(zt−1|zt, ht,v) respectively.
Answer Classification is similar to existing methods. After Temporal Rea-

soning, the final state bT is fed into a Multi-layer Perception (MLP) to predict
the answer. Thus, the likelihood of answer can be approximated by a determin-
istic classifier:

log p(a|x,v) , U = f(a|bT ) (8)

The training objective is to maximize the lower bound of joint data likelihood:

arg max
θ,φ,ν

[
U(f ; ν) +

T∑
t=1

Lt(p, q; θ, φ)

]
(9)

where the Answer Classifier is parametrized as fν , generative distribution and
inference distribution in Temporal Reasoning are parametrized as pθ and qφ
respectively.

As shown above, all terms in the loss function are completely derived by
variational inference applied to Eq. 2 under a basic latent state assumption.
Therefore, all parts of our framework can be mathematically explained from
probabilistic perspective, which achieves our interpretability on model design.

3.3 Intuitive Explanation

Eq. 7 derived from the graphical model is parametrized as four different mod-
ules. This section will provide a more intuitive explanation behind mathematical
derivation. It can further reveal the interpretability of our method.
Generative Reconstruction log p(xt|zt,v) indicates that currently observed
word xt can be reconstructed from corresponding latent state zt and global con-
dition v. We measure it by Binary Cross Entropy (BCE) between input xt and
reconstructed x̃t. This term performs external supervision via the input ques-
tions.
State Transition log p(zt|zt−1,v) predicts a prior distribution for zt based on
former state zt−1. It can be regarded as forward transition in latent space un-
der Markovian assumption. It can guarantee the time-dependency in reasoning
process.
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State Inference log q(zt|ht,v) indicates that the posterior of latent state dis-
tribution q(zt) depends on history observations ht and visual features v. Since
p(zt−1|ht−1,v) has a consistent dependency with the posterior q(zt−1|ht−1,v) at
former time step t−1, we approximate generative distribution p(zt−1|ht−1,v) =
qφ(zt−1|ht−1,v) without loss of information.
Backward Transition log q(zt−1|zt, ht,v) indicates the former state zt−1 can
be re-inferenced from the current state and observations. This term has a simi-
lar facility with State Inference but is hard to model, so we ignore this term in
practice to simplify our model.

Comparing with recent proposed VQA methods, this probabilistic formula-
tion can help explain recent developments in implicit reasoning. The attention
mechanism can be viewed as a type of State Inference in latent space. From
one-stage attention/fusion model [16,1] to stacked attention methods [39,31],
the performance is largely improved due to the introduction of multi-step S-
tate Inference. Recent proposed relation-based methods [14,52,54,22,36] further
strengthen the dependences between stacked modules, that can collaborate with
the function of State Transition in our formulation. Moreover, stronger fusion
strategies can help establish a more informative latent space. From this perspec-
tive, implicit reasoning is indeed sequentially supervised by both question and
answer but has not been explicitly modelled before.

3.4 Parametrization and Implementation

Following the instruction of probabilistic formulation, we implement the tempo-
ral reasoning process as a VAE based latent sequence model, named Temporal
Reasoning Network (TRN). It should be stressed that TRN is not a fixed net-
work. We implement it as complementary modules upon existing baseline models
based on the proposed graphical model.

Latent State distribution. In order to reveal the reasoning procedure un-
derlying question words and fairly compare with attention-based baselines, we
assume latent states following Concrete distribution [40]

q(zt) = C(πt, τ) (10)

where πt ∈ RK indicates the decision evidence at time step t and τ is the super-
parameter for temperature. In practice, we use Exponential Concrete distribu-
tion for more stable calculation of logarithm probability. We sample z̃t from q(zt)
using Gumbel Softmax trick [25] for gradient back-propagation. The distribu-
tion function and calculation of log-probability will be provided in supplementary
material.

Feature Parametrization. To better implement the reasoning process, we
reformulate the image representation as a graph, where vn ∈ RK×dn are node
features indicating K objects, and vr ∈ RK×K×dr denote edge features of re-
lations between nodes. Moreover, regarding every question word as a state is
time-consuming and hard to ground in v. We extract noun phrases from the in-
put question by open-sourced spaCy as entity phrases, while the phrase between
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noun chunks as transition phrases. Parsing question by phrases can obtain more
semantic information and save computational cost. Following [37], this phrase
representation is encoded by Bi-directional Gated Recurrent Unit (BiGRU) to
capture the context information.

(
→
w1:L;

←
w1:L) = Bi-GRU(x)

hte = [
→
wet ;

←
wst ], h

t
r =[

→
wst+1

;
←
wet ], h

T
e = [

→
wL;

←
w0]

(11)

where et and st are start and end location of the t-th entity phrase, hte ∈ Rdq
and htr ∈ Rdq denote entity embeddings and transition embeddings at time step

t. We treat the global GRU output [
→
wL;

←
w0] as the last entity embedding hTe .

Since the number of entity phrases are much smaller than that of the question
words, parsing by phrase not only largely save computational cost but obtain
more semantic information that can be grounded in the image as well.

Implementation Details. We implement TRN as an injected module to
both classical one stage method Bottom-up Top-down Attention (UpDn) [1]
and widely used implicit reasoning method Bilinear Attention Network (BAN)
[31]. A single Temporal Reasoning cell is divided into two cells, i.e., Entity Cell
and Trans Cell. As shown in Fig. 2(b), Entity Cell models the State Inference
q(zt|ht,v) and Generative Reconstruction term log p(xt|zt,v). Trans Cell infers
State Transition term p(zt|zt−1,v) for the next time block, which is modelled
as one-step Markovian transition on the graph. More implement details can be
found in Section 3.4 and Algorithm 1 in supplementary material.

It can be seen that the only connection between each reasoning block is just
the K-L Divergence of p(zt|zt−1,v) and q(zt|ht,v). For a fair comparison with
baseline, no more extra fusion strategies are used in TRN. Therefore, the whole
TRN can be regarded as a regularization term in the training stage and can be
removed in test stage, which would not bring extra computational cost compared
to original methods.

4 Experiments

4.1 Datasets
VQA 2.0 is a commonly used VQA dataset composed of real-world images from
MSCOCO with the same train/validation/test splits. Following previous works,
we take the answers that appeared more than 9 times in the training set as
candidate answers, which produces 3129 answer candidates.
CLEVR is a synthetic dataset, consisting of visual scenes with simple geometric
shapes with complicated relational questions like “What size is the cylinder that
is left of the brown metal thing that is left of the big sphere? ”. It is the most
commonly used dataset for visual reasoning that requires the model’s long-chain
reasoning ability. Since this work focuses on VQA under natural supervision, we
only use question-answer pairs annotation in CLEVR to evaluate our reasoning
ability in complicated questions.
CLEVR Human dataset consists of human-generated questions for CLEVR
images, which can test the model generalization for real-world questions, since
all the questions are generated from programs in the original dataset.
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Question: Is the battery looking at the ball? UpDn+TRN: noGround-truth: no

UpDn: yest = 1 t = 2 t = 3

Question: Do the elephants have tusks? 

t = 1 t = 2 t = 3

BAN
+

TRN

BAN

t = 1 t = 2 t = 3

Predict: yesGround-truth: yes

Fig. 3. Examples from VQA v2.0 val, which visualize the change of latent states
across TRN Blocks. The highlighted regions are the most important areas that tend to
be sampled. The upper example is from UpDn+TRN, the model first finds the batter
and then searches the area that he is looking at (no balls). In practice, our model can
directly output t = 3 and the answer no. UpDn gives a wrong answer and attends at the
bat. The lower example is from BAN+TRN. The model first finds the elephants and
tusks, then finds elephants with tusks. Without dependence between stacked modules,
the attention maps of BAN almost remain unchanged. Overlooking the elephants and
directly locating tusks may lead to over-fitting on dataset bias and be prone to fail in
queries like “tigers with tusks”. More examples can be found in the Supplementary

4.2 Evaluation on Real-world Datasets

Experiment Settings. We use the object proposal feature provided by [1].
The node features vn ∈ R36×2048 consists of 36 objects features, each object
feature vi is a local visual feature vector oi ∈ R2048 extracted by Faster R-CNN
[46]. The edge features vr ∈ R36×36×1024 are concatenation of corresponding
node feature transforming to 1024-dim. For question x, each word xt is first
initialized by 300-dim GloVe word embeddings [44], then fed into a Bi-GRU.
The final representation hte and htr are 1024-dim phrase embeddings with context
information. The number of Temporal Reasoning Blocks is set as 3.
Comparison with Baseline Models. Since real-world dataset VQA v2.0 does
not contain too many questions that need reasoning, our TRN only sightly im-
proves the performance compared to baselines, as shown in Table 1. The primary
function of TRN in VQA v2.0 is to obtain an interpretable reasoning process.

As shown in Fig. 3, one-stage models like UpDn does not perform well on
questions considering multiple objects, our model can deal with this drawback
and improve the performance on questions that require reasoningDespite inte-
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Table 1. Model accuracy on the VQA v2.0 benchmark (open-ended setting on
the test-dev and test-std split). Methods with * are reimplemented by ourselves. Red
colour highlights the best performance, and blue numbers are the second place

Method
test-dev

test-std
Y/N Num. Other All

MUTAN [6] 82.88 44.54 56.50 66.01 66.38
MuRel [8] 84.77 49.84 57.85 68.03 68.41
Dyna Tree [52] 84.28 47.78 59.11 68.19 68.49
DFAF [14] 86.09 53.53 60.49 70.22 70.34
QCG [43] 82.91 47.13 56.22 56.45 66.17
RAMEN [50] - - - - 65.96

UpDn* [1] 82.64 45.51 57.21 65.82 65.91
BAN-3* [31] 84.68 50.71 58.56 68.43 68.47

UpDn + TRN 83.83 45.61 57.44 67.00 67.21
BAN-3 + TRN 84.59 50.23 58.64 68.38 68.76

grate multi-step attention, the stacked attentions in BAN are almost indepen-
dent. Although attending to the right objects, it cannot provide explainable
evidence for reasoning. With the help of TRN, the visualization of sampling in
latent spaces from BAN+TRN are closer to human understanding.
Comparison with Other Methods. We compare with two recently proposed
reasoning models with multi-step attention and fusion strategy (MUTAN [6],
MuRel [8]), three models focus on relation reasoning (QCG [43], Dyna Tree
[52], DFAF [14]) and RAMEN [50] that claims to work on both real-world and
synthetic datasets. All methods are trained with both train and validation s-
plit without model ensemble.Our method achieves comparable performance and
BAN-3+TRN is the second place in VQA v2.0 test-std split.

Among these methods, DFAF uses at most 100 region proposals and achieves
the best single model performance2. MuRel is a variant of BAN, and the rea-
soning process can also be visualized. The major module DynamicIntraMAF
in DFAF and Pairwise module proposed in MuRel play similarily as the State
Transition term in TRN. Our probabilistic formulation can help enhance their
interpretability with Bayesian transparency.

4.3 Evaluation on Synthetic Datasets

Experiment Settings. For CLEVR dataset, The node representations vn ∈
R15×18 include at most 15 proposal features, each object feature vi is an 18-
dim output of object attribute extractor provided in NS-VQA [58], which refers
to the shape, colour, material, and 3-dim coordinate position of the proposal
object. Since this representation contains enough semantics and the relationships

2 Our reproduction with 36 proposals only gets 67.69% accuracy on test-std.
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Question: Does the large red rubber object have the same shape as the tiny red 

thing on the right side of the large cube?

UpDn: no UpDn + TRN: yesGround-truth: green

Question: Is there a big cylinder made of the same material as the blue object?

UpDn: yes UpDn + TRN: noGround-truth: no

Question: What is the material of the brown thing that is on the right side of the tiny matte thing that is behind the blue matte sphere?

BAN
+

TRN

BAN

Answer:

rubber

Answer:

rubber

Labelled 
Programs

Filter color[‘blue’] Filter material[‘rubber’] Filter shape[‘sphere’] Relate[‘behind’]

Filter size[‘small’] Filter material[‘rubber’] Relate[‘right’] Filter color[‘brown’] Query material

DFAF
+

TRN

Answer:

rubber

Fig. 4. Examples from our TRN on validation split of CLEVR and CLEVR-
Humans. The upper row shows the last latent state between UpDn and UpDn+TRN.
The latter two examples are reasoning process visualization of BAN, BAN+TRN, and
DFAF+TRN. The depth of colour indicates sample value from latent space. Though
outputting the same answers, BAN provides the right answer but wrong evidence,
while our model can catch up with the right piece of evidences that is much closer to
labelled programs. DFAF+TRN can better locate informative objects, but the time
dependence in reasoning process is relatively worse due to strong fusion strategy

between objects are simple, the edge feature vi,jr ∈ R18 are just defined as vin −
vjn. Question x is randomly initialized, and we get final phrase representations
ht ∈ R600 after the same operations with real-world setting. The temperature
of Concrete distribution is 2.0. The maximum entity number is set to be 5 in
experiments. For CLEVR, we train on CLEVR train split and test on validation
split. For CLEVR-Humans, we first pre-train our model on CLEVR train split,
and then fine-tune on CLEVR-Humans train split.

Comparison with Baseline Models. Most questions in CLEVR deal with
multiple objects and require long-time reasoning ability. As shown in Table 2,
TRN can surpass one-stage baseline UpDn by a large margin on both CLEVR
and CLEVR-Humans. With help of the additional reasoning process in TRN,
many failure cases in UpDn can be corrected. The visualizations of the last latent
state in Fig. 4 further demonstrate the effectiveness of our method. Moreover,
TRN can be removed in the test stage, which means this improvement does not
require extra computational cost.
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Table 2. Model accuracy comparison
on CLEVR and CLEVR-Humans.
Methods with * is reproduced by our-
selves. Red colour highlights the best per-
formance, and blue numbers are the second
place

Method CLEVR CLEVR-Humans

Film [45] 97.6% 75.9%
RN [48] 95.5% 57.6%
MAC [23] 98.0% 50.2%
RAMEN [50] 96.9% 57.8%
LCGN [22] 97.9% -

UpDn*[1] 78.1% 56.6%
BAN-5* [45] 83.1% 60.5%
DFAF-5* [14] 95.5% 63.2%

UpDn + TRN 87.7% 69.5%
BAN-5 + TRN 85.2% 65.4%
DFAF-5 + TRN 96.7% 72.9%

Table 3. Ablation study for
UpDn+TRN on CLEVR vali-
dation set. SI, ST and GR stand
for State Inference, State Transi-
tion and Generative Reconstruction,
respectively. Components in TRN
are indivisible. On CLEVR val,
UpDn+TRN degrades to original
UpDn without State Inference or
State Transition. UpDn+TRN without
Generative Reconstruction is similar
with BAN, which can improve to
82.3% accuracy but poor visualization

SI ST GR CLEVR val

X X 78.1%
X X 77.6%

X X 84.3%
X X X 87.7%

Visualization of the reasoning process reveals that BAN does not really un-
derstand the question. As shown in Fig. 4, although giving correct answers, BAN
cannot provide understandable reasoning process3, and sometimes even attends
to wrong evidences. On the contrary, BAN+TRN can offer more explainable
reasoning as visualized which is much closer to labelled programs and human
understanding. The visualization is much more apparent than on VQA v2.0 that
TRN not only grounds noun phrases in image, but illustrates time-dependent
reasoning process. Moreover, the final results of BAN+TRN are worse than
UpDn+TRN. We speculate that the major reason may be the high-level fea-
tures we use for node representation. Since BAN mainly focuses on multi-modal
fusion, this 18-dim vector may be too abstracted for multi-modal fusion.

Comparison with Other Methods. We compare our model with four previous
works (Film [45], RN [48], MAC [23], LCGN [22]) that do not use any functional
program information. Recent proposed method LCGN does not report their
performance on CLEVR-Humans.

Due to long-time fusion strategies, most of these methods are better than our
model on CLEVR. To verify this, we conduct TRN on DFAF [14], which adopts
inter-intra attention fusion strategy across stacked modules. The implementation
details can be found in the Supplementary. As shown in Table 2, DFAF-5+TRN
achieves 96.7% accuracy, which is comparable to state-of-the-art implicit rea-
soning models specially designed for CLEVR. This indicates that stronger fu-
sion strategies can help establish more informative latent space, which would
be a crucial complement for complicated reasoning process. However, visualiza-

3 The object attention is Softmax of the sum of A along question dimension.
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tion of DFAF+TRN shown in Fig. 4 is not as understandable as BAN+TRN,
because complex fusion has overly strong fitting ability that can integrate in-
formation without considering time dependences. Moreover, we achieve better
performance on CLEVR-Humans. Despite not using labelled programs, mod-
els with over-parametrized fusion largely rely on the fixed grammar of input
questions, resulting in over-fitting.

4.4 Discussion

Ablation study. As shown in Table 3, components in TRN are indivisible and
derived from an integrated process with question supervision. Moreover, we set
the number of blocks for VQA/CLEVR as 3/5 because the number of entity
phrases in most questions is no more than 2/4 (with 1 global embedding). A
more detailed ablation study is provided in Section 4.1 in the Supplementary.
Failure cases. Failure cases are provided in Section 6 in the Supplementary.
TRN performs poorly on counting problems. This may be a result of the in-
trinsic weakness of Concrete distribution, which tends to sample one-hot vector
and ignore items that are relatively unimportant. This shortcoming also exists
in attention mechanism. It can still be improved by choosing better latent state
distributions or specially designed modules. Another shortcoming is in dealing
with adverbial problems. Reasoning phrase-by-phrase may fail to catch relation-
ships between entities that are distant in the question. Although stronger fusion
strategies can help catch up with enough information, it may break the chain
of reasoning process due to overly strong fitting ability. How to model the long-
time dependences is a common challenge for latent sequence models. Modelling
an interpretable fusion strategy may be the future work that needs to be done.

5 Conclusion

Reasoning in VQA under natural supervision is a very challenging task due to su-
per asymmetric information. In this work, we analyse real-world VQA task from
a new perspective, and propose a new probabilistic formulation that can explic-
itly model the reasoning process without extra program labeling. Experiments
on both real-world and synthetic datasets demonstrate our model’s effectiveness
and interpretability. We hope such a probabilistic formulation can provide guid-
ance on further advancements in problems with insufficient natural supervision
or other tasks that need multi-step programming. In future work, we will de-
vote our efforts to learning interpretable models for complicated vision-language
tasks by combining knowledges.
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