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Abstract. In this work we target the problem of estimating accurately
localised correspondences between a pair of images. We adopt the recent
Neighbourhood Consensus Networks that have demonstrated promising
performance for difficult correspondence problems and propose modifi-
cations to overcome their main limitations: large memory consumption,
large inference time and poorly localised correspondences. Our proposed
modifications can reduce the memory footprint and execution time more
than 10×, with equivalent results. This is achieved by sparsifying the corre-
lation tensor containing tentative matches, and its subsequent processing
with a 4D CNN using submanifold sparse convolutions. Localisation ac-
curacy is significantly improved by processing the input images in higher
resolution, which is possible due to the reduced memory footprint, and
by a novel two-stage correspondence relocalisation module. The proposed
Sparse-NCNet method obtains state-of-the-art results on the HPatches
Sequences and InLoc visual localisation benchmarks, and competitive
results on the Aachen Day-Night benchmark.
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1 Introduction

Finding correspondences between images depicting the same 3D scene is one of
the fundamental tasks in computer vision [24, 29, 35] with applications in 3D
reconstruction [50, 51, 57], visual localisation [15, 47, 53] or pose estimation [14,
18, 40]. The predominant approach currently consists of first detecting salient
local features, by selecting the local extrema of some form of feature selection
function, and then describing them by some form of feature descriptor [7, 28,
45]. While hand-crafted features such as Hessian affine detectors [30] with SIFT
descriptors [28] achieve impressive performance under strong viewpoint changes
and constant illumination [31], their robustness to illumination changes is lim-
ited [31, 63]. More recently, a variety of trainable keypoint detectors [26, 27, 33,
56] and descriptors [5, 6, 22, 32, 54, 59] have been proposed, with the purpose of
obtaining increased robustness over hand-crafted methods. While this approach
has achieved some success, extreme illumination changes such as day-to-night
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(a) Input images (b) Output matches (c) Match confidence

Fig. 1: Correspondence estimation with Sparse-NCNet. Given an input image
pair (a), we show the raw output correspondences produced by Sparse-NCNet (b)
which contain groups of spatially coherent matches. These groups tend to form around
highly-confident matches, which are shown in yellow shades (c).

matching combined with changes in camera viewpoint remain a challenging
open problem [4, 13, 15]. In particular, all local feature methods, whether hand-
crafted or trained, suffer from missing detections under these extreme appearance
changes.

In order to overcome this issue, the detection stage can be avoided and, instead,
features can be extracted on a dense grid across the image. This approach has been
successfully used for both place recognition [1, 15, 36, 55] and image matching [44,
47, 57]. However, extracting features densely comes with additional challenges: it
is memory intensive and the localisation accuracy of the features is limited by
the sampling interval of the grid used for the extraction.

In this work we adopt the dense feature extraction approach. In particular,
we build on the recent Neighbourhood Consensus Networks (NCNet) [44], that
allow for jointly trainable feature extraction, matching, and match-filtering to
directly output a strong set of (mostly) correct correspondences. Our proposed
approach, Sparse-NCNet, seeks to overcome the limitations of the original NCNet
formulation, namely: large memory consumption, high execution time and poorly
localised correspondences.

Our contributions are the following. First, we propose the efficient Sparse-
NCNet model, which is based on a 4D convolutional neural network operating on
a sparse correlation tensor, which is obtained by storing only the most promising
correspondences, instead of the set of all possible correspondences. Sparse-NCNet
processes this sparse correlation tensor with submanifold sparse convolutions [21]
and can obtain equivalent results to NCNet while being several times faster (up
to 10×) and requiring much less memory (up to 20×) without decrease in perfor-
mance compared to the original NCNet model. Second, we propose a two-stage
relocalisation module to improve the localisation accuracy of the correspondences
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output by Sparse-NCNet. Finally, we show that the proposed model significantly
outperforms state-of-the-art results on the HPatches Sequences [3] benchmark
for image matching with challenging viewpoint and illumination changes and
the InLoc [53] benchmark for indoor localisation and camera pose estimation.
Furthermore, we show our model obtains competitive results on the Aachen Day-
Night benchmark [47], which evaluates day-night feature matching for the task of
camera localisation. An example of the correspondences produced by our method
is presented in Fig. 1. Our code and models are available online [43].

2 Related work

In this section, we review the relevant related work.

Matching with trainable local features. Most recent work in trainable local features
has focused on learning more robust keypoint descriptors [5, 6, 22, 32, 54, 59].
Initially these descriptors were used in conjunction with classic hand-crafted
keypoint detectors, such as DoG [28]. Recently, trainable keypoint detectors where
also proposed [26, 27, 33, 56], as well as methods providing both detection and
description [12, 13, 37, 41, 58]. From these, some adopt the classic approach of first
performing detection on the whole image and then computing descriptors from
local image patches, cropped around the detected keypoints [37, 58], while the
most recent methods compute a joint representation from which both detections
and descriptors are computed [12, 13, 41]. In most cases, local features obtained
by these methods are independently matched using nearest-neighbour search with
the Euclidean distance [5, 6, 32, 54], although some works have proposed to learn
the distance function as well [22, 59]. As discussed in the previous section, local
features are prone to loss of detections under extreme lighting changes [15]. In
order to alleviate this issue, in this work we adopt the usage of densely extracted
features, which are described next.

Matching with densely extracted features. Motivated by applications in large-
scale visual search, others have found that using densely extracted features
provides additional robustness to illumination changes compared to local features
extracted at detected keypoints, which suffer from low repeatability under strong
illumination changes [55, 62]. This approach was also adopted by later work [1, 36].
Such densely extracted features used for image retrieval are typically computed
on a coarse low resolution grid (e.g . 40× 30). However, such coarse localisation
of the dense features is not an issue for visual retrieval, as the dense features are
not directly matched, but rather aggregated into a single image-level descriptor,
which is used for retrieval. Recently, densely extracted features have been also
employed directly for 3D computer vision tasks, such as 3D reconstruction [57],
indoor localisation and camera pose estimation [53], and outdoor localisation
with night queries [15, 47]. In these methods, correspondences are obtained by
nearest-neighbour search performed on extracted descriptors, and filtered by the
mutual nearest-neighbour criterion [38]. In this work, we build on the NCNet
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method [44], where the match filtering function is learnt from data. Recent
methods for learning to filter matches are discussed next.

Learning to filter incorrect matches. When using both local features extracted
at keypoints or densely extracted features, the obtained matches by nearest-
neighbour search contain a certain portion of incorrect matches. In the case
of local features, a heuristic approach such as Lowe’s ratio test [28] can be
used to filter these matches. However the ratio threshold value needs to be
manually tuned for each method. To avoid this issue, filtering by mutual nearest
neighbours can be used instead [13]. Recently, trainable approaches have also
been proposed for the task of filtering local feature correspondences [9, 34, 46,
60]. Yi et al . [34] propose a neural-network architecture that operates on 4D
match coordinates and classifies each correspondence as either correct or incorrect.
Brachmann et al . [9] propose the Neural-guided RANSAC, which extends the
previous method to produce weights instead of classification labels, which are
used to guide RANSAC sampling. Zhang et al . [60] also extend the work of Yi et
al . in their proposed Order-Aware Networks, which capture local context by
clustering 4D correspondences onto a set of ordered clusters, and global context
by processing these clusters with a multi-layer perceptron. Finally, Sarlin et
al . [46] describe a graph neural network followed by an optimisation procedure to
estimate correspondences between two set of local features. These methods were
specifically designed for filtering local features extracted at keypoint locations
and not features extracted on a dense grid. Furthermore, these methods are
focused only on learning match filtering, and are decoupled from the problem of
learning how to detect and describe the local features.

In this paper we build on the NCNet method [44] for filtering incorrect
matches, which was designed for dense features. Furthermore, contrary to the
above described methods, our approach performs feature extraction, matching
and match filtering in a single pipeline.

Improved feature localisation. Recent methods for local feature detection and
description which use a joint representation [12, 13] as well as methods for dense
feature extraction [44, 57] suffer from poor feature localisation, as the features
are extracted on a low-resolution grid. Different approaches have been proposed
to deal with this issue. The D2-Net method [13] follows the approach used in
SIFT [28] for refining the keypoint positions, which consists of locally fitting a
quadratic function to the feature detection function around the feature position
and solving for the extrema. The Superpoint method [12] uses a CNN decoder
that produces a one-hot output for each 8×8 pixel cell of the input image (in case
a keypoint is effectively detected in this region), therefore achieving pixel-level
accuracy. Others [57] use the intermediate higher resolution features from the
CNN to improve the feature localisation, by assigning to each pooled feature the
position of the feature with highest L2 norm from the preceding higher resolution
map (and which participated in the pooling). This process can be repeated up to
the input image resolution.
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The relocalisation approach of NCNet [44] is based on a max-argmax operation
on the 4D correlation tensor of exhaustive feature matches. This approach can
only increase the resolution of the output matches by a factor of 2. In contrast,
we describe a new two-stage relocalisation module that builds on the approach
used in NCNet, by combining a hard relocalisation stage that has similar effects
to NCNet’s max-argmax operation, with a soft-relocalisation stage that obtains
sub-feature-grid accuracy via interpolation.

Sparse Convolutional Neural Networks were recently used for the purpose of
processing sparse 2D data, such as handwritten characters [20]; 3D data, such as
3D point-clouds [19]; or even 4D data, such as temporal sequences of 3D point
clouds [10]. These models have shown great success in 3D point-cloud processing
tasks such as semantic segmentation [10, 21] and point-cloud registration [11, 17].
In this work, we use networks with submanifold sparse convolutions [21] for the
task of filtering correspondences between images, which can be represented as a
sparse set of points in a 4D space of image coordinates. In submanifold sparse
convolutions, the active sites remain constant between the input and output of
each convolutional layer. As a result, the sparsity level remains fixed and does
not change after each convolution operation. To the best of our knowledge this is
the first time these models are applied to the task of match filtering.

3 Sparse Neighbourhood Consensus Networks

In this section we detail the proposed Sparse Neighbourhood Consensus Networks.
We start with a brief review of Neighbourhood Consensus Networks [44] identifying
their main limitations. Next, we describe our approach which overcomes these
limitations.

3.1 Review: Neighbourhood Consensus Networks

The Neighbourhood Consensus Network [44] is a method for feature extraction,
matching and match filtering. Contrary to most methods, which operate on
local features, NCNet operates on dense feature maps (fA, fB) ∈ Rh×w×c with
c channels, which are extracted over a regular grid of h× w spatial resolution.
These are obtained from the input image pair (IA, IB) ∈ RH×W×3 by a fully
convolutional feature extraction network. The resolution h× w of the extracted
dense features is typically 1/8 or 1/16 of the input image resolution H ×W ,
depending on the particular feature extraction network architecture used.

Next, the exhaustive set of all possible matches between the dense feature
maps fA and fB is computed and stored in a 4D correlation tensor cAB ∈
Rh×w×h×w. Finally, the correspondences in cAB are filtered by a 4D CNN. This
network can detect coherent spatial matching patterns and propagate information
from the most certain matches to their neighbours, robustly identifying the
correct correspondences. This last filtering step is inspired by the neighbourhood
consensus procedure [8, 48, 49, 52, 61], where a particular match is verified by
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analysing the existence of other coherent matches in its spatial neighbourhood in
both images.

Despite its promising results, the original formulation of Neighbourhood
Consensus Networks has three main drawbacks that limit its practical application:
it is (i) memory intensive, (ii) slow, and (iii) matches are poorly localised. These
points are discussed in detail next.

High memory requirements. The high memory requirements are due to the
computation of the correlation tensor cAB ∈ Rh×w×h×w which stores all matches
between the densely extracted image features (fA, fB) ∈ Rh×w×c. Note that the
number of elements in the correlation tensor (h×w× h×w) grows quadratically
with respect to the number of features (h×w) of the dense feature maps (fA, fB),
therefore limiting the ability to increase the feature resolution. For instance, for
dense feature maps of resolution 200×150, the correlation tensor would require by
itself 3.4GB of GPU memory in the standard 32-bit float precision. Furthermore,
processing this correlation tensor using the subsequent 4D CNN would require
more than 50GB of GPU memory, which is much more than what is currently
available on most standard GPUs. While 16-bit half-float precision could be used
to halve these memory requirements, they would still be prohibitively large.

Long processing time. In addition, Neighbourhood Consensus Networks are slow
as the full dense correlation tensor must be processed. For instance, processing
the 100× 75× 100× 75 correlation tensor containing matches between a pair of
dense feature maps of 100× 75 resolution takes approximately 10 seconds on a
standard Tesla T4 GPU.

Poor match localisation. Finally, the high-memory requirements limit the max-
imum feature map resolution that can be processed, which in turn limits the
localisation accuracy of the estimated correspondences. For instance, for a pair
images with 1600×1200px resolution, where correspondences are computed using
a dense feature map with a resolution of 100×75, the output correspondences are
localised within an error of 8 pixels. This can be problematic if correspondences
are used for tasks such as pose estimation, where small errors in the localisation
of correspondences in image-space can yield high camera pose errors in 3D space.

In this paper, we devise strategies to overcome the limitations of the original
NCNet method, while keeping its main advantages, such as the usage of dense
feature maps which avoids the issue of missing detections, and the processing
of multiple matching hypotheses to avoid early matching errors. Our efficient
Sparse-NCNet approach is described next.

3.2 Sparse-NCNet: Efficient Neighbourhood Consensus Networks

In this section, we describe the Sparse-NCNet approach in detail. An overview is
presented in Fig. 2. Similar to NCNet, the first stage of our proposed method
consists in dense feature extraction. Given a pair of RGB input images (IA, IB) ∈
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Fig. 2: Overview of Sparse-NCNet. From the dense feature maps fA and fB , their
top K matches are computed and stored in the one-sided sparse 4D correlation tensors
cA→B and cB→A, which are later combined to obtain the symmetric sparse correlation
tensor cAB . The raw matching score values in cAB are processed by the 4D Sparse-NCNet
N̂(·) producing the output tensor c̃AB of filtered matching scores.

RH×W×3, L2-normalized dense features (fA, fB) ∈ Rh×w×c are extracted via a
fully convolutional network F (·):

fA = F (IA), fB = F (IB). (1)

Then, these dense features are matched and stored into a sparse correlation
tensor. Contrary to the original NCNet formulation, where all the pairwise
matches between the dense features are stored and processed, we propose to keep
only the top K matches for a given feature, measured by the cosine similarity.
In detail, each feature fAij: from image A at position (i, j) is matched with its K

nearest-neighbours in fB , and vice versa. The one-sided sparse correlation tensor,
matching from image A to image B (A→ B) is then described as:

cA→B
ijkl =

{
〈fAij:, fBkl:〉 if fBkl: within K-NN of fAij:
0 otherwise

. (2)

To make the sparse correlation map invariant to the ordering of the input
images, we also perform this in the reverse direction (B → A), and add the
two one-sided correlation tensors together to obtain the final (symmetric) sparse
correlation tensor :

cAB = cA→B + cB→A. (3)

This tensor uses a sparse representation, where only non-zero elements need to
be stored. Note that the number of stored elements is, at most, h× w ×K × 2
which is in practice much less than the h × w × h × w elements of the dense
correlation tensor, obtaining great memory savings in both the storage of this
tensor and its subsequent processing. For example, for a feature map of size
100× 75 and K = 10, the sparse representation takes 3.43MB vs. 215MB of the
dense representation, resulting in a 12× reduction of the processing time. In the
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case of feature maps with 200× 150 resolution, the sparse representation takes
13.7MB vs. 3433MB for the dense representation. This allows Sparse-NCNet to
also process feature maps at this resolution, something that was not possible with
NCNet due to the high memory requirements. The proposed sparse correlation
tensor is a compromise between the common procedure of taking the best scoring
match and the approach taken by NCNet, where all pairwise matches are stored.
In this way, we can keep sufficient information in order avoid early mistakes,
while keeping low memory consumption and processing time.

Then the sparse correlation tensor is processed by a permutation-invariant
CNN (N̂(·)), to produce the output filtered correlation map c̃AB :

c̃AB = N̂(cAB). (4)

The permutation invariant CNN N̂(·) consists of applying the 4D CNN N(·)
twice such that the same output matches are obtained regardless of the order of
the input images:

N̂(cAB) = N(cAB) +
(
N
(
(cAB)T

))T
, (5)

where by transposition we mean exchanging the first two dimensions with the
last two dimensions, which correspond to the coordinates of the two input images.
The 4D CNN N(·) operates on the 4D space of correspondences, and is trained to
perform the neighbourhood consensus filtering. Note that while N(·) is a sparse
CNN using submanifold sparse convolutions [21], where the active sites between
the sparse input and output remain constant, the convolution kernel filters are
dense (i.e. hypercubic).

While in the original NCNet method, a soft mutual nearest-neighbour oper-
ation M(·) is also performed, we have removed it as we noticed its effect was
not significant when operating on the sparse correlation tensor. From the output
correlation tensor c̃AB , the output matches are computed by applying argmax at
each coordinate:

(
(i, j), (k, l)

)
a match if


(i, j) = argmax

(a,b)

c̃AB
abkl, or

(k, l) = argmax
(c,d)

c̃AB
ijcd

, (6)

where (i, j) is the match coordinate in the sampling grid of fA, and (k, l) is the
match coordinate in the sampling grid of fB .

3.3 Match relocalisation by guided search

While the sparsification of the correlation tensor presented in the previous section
allows processing higher resolution feature maps, these are still several times
smaller in resolution than the input images. Hence, they are not suitable for
applications that require (sub)pixel feature localisation such as camera pose
estimation or 3D-reconstruction.
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(a) Hard relocalisation (b) Soft relocalisation

Fig. 3: Two-stage relocalisation module. (a) The hard relocalisation step allows to
increase by 2× the localisation accuracy of the matches m outputted by Sparse-NCNet,
which are defined on the h× w feature maps fA and fB . This is done by keeping the
most similar match mh between two 2 × 2 local features f̂A,L and f̂B,L, cropped from
the 2h × 2w feature maps f̂A and f̂B . (b) The soft relocalisation step then refines
the position of these matches in the 2h× 2w grid, by computing sub-feature-grid soft
localisation displacements based on the softargmax operation.

To address this issue, in this paper we propose a two-stage relocalisation
module based on the idea of guided search. The intuition is that we search for
accurately localised matches on 2h× 2w resolution dense feature maps, guided by
the coarse matches output by Sparse-NCNet at h× w resolution. For this, dense
features are first extracted at twice the normal resolution (f̂A, f̂B) ∈ R2h×2w×c,
which is done by upsampling the input image by 2× before feeding it into the
feature extraction CNN F (·). Note that these higher resolution features are used
for relocalisation only, i.e. they are not used to compute the correlation tensor
or processed by the 4D CNN for match-filtering, which would be too expensive.
Then, these dense features are downsampled back to the normal h×w resolution
by applying a 2×2 max-pooling operation with a stride of 2, obtaining fA and fB .
These low resolution features (fA, fB) ∈ Rh×w×c are processed by Sparse-NCNet,
which outputs matches in the form m =

(
(i, j), (k, l)

)
, with the coordinates (i, j)

and (k, l) indicating the position of the match in fA and fB, respectively, as
described by (6).

Having obtained the output matches in h× w resolution, the first step (hard
relocalisation) consists in finding the best equivalent match in the 2h × 2w
resolution grid. This is done by analysing the matches between two local crops
of the high resolution features f̂A and f̂B , and keeping the highest-scoring one.
The second step (soft relocalisation) then refines this correspondence further, by
obtaining a sub-feature accuracy in the 2h× 2w grid. These two relocalisation
steps are illustrated in Fig. 3, and are now described in detail.

Hard relocalisation. The first step is hard relocalisation, which can improve
localisation accuracy by 2×. For each match m =

(
(i, j), (k, l)

)
, the 2× upsam-

pled coordinates
(
(2i, 2j), (2k, 2l)

)
are first computed, and 2 × 2 local feature

crops f̂A,L, f̂B,L ∈ R2×2×c are sampled around these coordinates from the high
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resolution feature maps f̂A and f̂B :

f̂A,L = (f̂Aab:)2i≤a≤2i+1
2j≤b≤2j+1

, (7)

and similarly for f̂B,L. This is done using a ROI-pooling operation [16]. Finally,

exhaustive matches between the local feature crops f̂A,L and f̂B,L are computed,
and the output of the hard relocalisation module is the displacement associated
with the maximal matching score:

∆mh =
(
(δi, δj), (δk, δl)

)
= argmax

(a,b),(c,d)

〈f̂A,L
ab: , f̂

B,L
cd: 〉. (8)

Then, the final match location from the hard relocalisation stage is computed as:

mh = 2m+∆mh =
(
(2i+ δi, 2j + δj), (2k + δk, 2l + δl)

)
. (9)

Note that the relocalised matches mh are defined in a 2h × 2w grid, therefore
obtaining a 2× increase in localisation accuracy with respect to the initial matches
m, which are defined in a h× w grid. Also note that while the implementation
is different, the effect of the proposed hard relocalisation is similar to the max-
argmax operation used in NCNet [44], while being more memory efficient as it
avoids the computation of the a dense correlation tensor in high resolution.

Soft relocalisation. The second step consists of a soft relocalisation operation that
obtains sub-feature localisation accuracy in the 2h× 2w grid of high resolution
features f̂A and f̂B . For this, new 3×3 local feature crops (f̂A,L, f̂B,L) ∈ R3×3×c

are sampled around the coordinates of the estimated matches mh from the
previous relocalisation stage. Note that no upsampling of the coordinates is
done in this case, as the matches are already in the 2h × 2w range. Then,
soft relocalisation displacements are computed by performing the softargmax
operation [58] on the matching scores between the central feature of f̂A,L and

the whole of f̂B,L, and vice versa:

∆ms =
(
(δi, δj), (δk, δl)

)
where


(δi, δj) = softargmax

(a,b)

〈f̂A,L
ab: , f̂

B,L
11: 〉

(δk, δl) = softargmax
(c,d)

〈f̂A,L
11: , f̂

B,L
cd: 〉

(10)

The intuition of the softargmax operation is that it computes a weighted average
of the candidate positions in the crop where the weights are given by the softmax
of the matching scores. The final matches from soft relocalisation are obtained
by applying the soft displacements to the matches from hard relocalisation:
ms = mh +∆ms.

4 Experimental evaluation

We evaluate the proposed Sparse-NCNet method on three different benchmarks: (i)
HPatches Sequences, which evaluates the matching task directly, (ii) InLoc, which
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targets the problem of indoor 6-dof camera localisation and (iii) Aachen Day-Night,
which targets the problem of outdoor 6-dof camera localisation with challenging
day-night illumination changes. We first present the implementation details
followed by the results on these three benchmarks. Additional 3D reconstruction
results are in the extended version of this work [42].

Implementation details. We train the Sparse-NCNet model following the training
protocol from [44]. We use the IVD dataset with the weakly-supervised mean
matching score loss for training [44]. The 4D CNN N(·) has two sparse convolution
layers with 34 sized kernels, with 16 output channels in the hidden layer. A value
of K = 10 is used for computing cAB (3). The model is implemented using
PyTorch [39], MinkowskiEngine [10] and Faiss [23], and trained for 5 epochs
using Adam [25] with a learning rate of 5×10−4. A pretrained ResNet-101 (up to
conv 4 23) with no strided convolutions in the last block is used as the feature
extractor F (·). This feature extraction model is not finetuned as the training
dataset is small (3861 image pairs) and that would lead to overfitting and loss of
generalisation. The softargmax operation in (10) uses a temperature value of 10.
In the following experiments, all correspondences are first obtained according
to (6), and then only the top-scored correspondences according to the value of
c̃AB are kept (typically between 500-2000).

4.1 HPatches Sequences

The HPatches Sequences [3] benchmark assesses the matching accuracy under
strong viewpoint and illumination variations. We follow the evaluation procedure
from [13], where 108 image sequences are employed, each from a different planar
scene, and each containing 6 images. The first image from each sequence is
matched against the remaining 5 images. The benchmark employs 56 sequences
with viewpoint changes, and constant illumination conditions, and 52 sequences
with illumination changes and constant viewpoint. The metric used for evaluation
is the mean matching accuracy (MMA) [13]. Further details about this metric
are provided in the extended version [42].

Ablations. In Fig. 4 we present ablations and a comparison with NCNet. The
benefits of sparsification are shown by comparing Sparse-NCNet and NCNet
under equal conditions, both without relocalisation (methods A1 vs. A2), and
with hard relocalisation only (methods B1 vs. B2). The results in Fig. 4 show
that Sparse-NCNet can obtain significant reductions in processing time and
memory consumption, while keeping almost the same matching performance.
Furthermore, we show that Sparse-NCNet+hard-relocalisation (B1) produces
superior results to Sparse-NCNet alone (A1). Finally, we show that using the two-
stage relocalisation (C1) produces higher matching accuracy than only using hard
relocalisation (B1), with minimal impact on runtime or memory requirements.
We have also experimented with replacing our relocalisation module with the
one from DenseSfM [57]. This resulted in a drop of 11% of the MMA@5px on
HPatches, from 87% to 76%, showing the superiority of our approach.
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Method
Feature

resolution
Reloc.
method

Reloc.
resolution

Mean
time (s)

Peak
VRAM
(MB)

A1. Sparse-NCNet 100× 75 — — 0.83 251
A2. NCNet 100× 75 — — 9.81 5763

B1. Sparse-NCNet 100× 75 H 200× 150 1.55 1164
B2. NCNet 100× 75 H 200× 150 10.56 7580

C1. Sparse-NCNet 100× 75 H+S 200× 150 1.56 1164
C2. Sparse-NCNet 200× 150 H+S 400× 300 7.51 2391

(a) Time and GPU memory comparison (Tesla T4 GPU)
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(b) MMA on HPatches Sequences

Fig. 4: Ablations and comparison with NCNet. Sparse-NCNet can obtain equiv-
alent results to NCNet, both without relocalisation (c.f . A1 vs. A2), and with hard
relocalisation (H) (c.f . B1 vs. B2), while greatly reducing execution time and memory
consumption. The proposed two-stage relocalisation (H+S) brings an improvement in
matching accuracy with a minor increase in execution time (c.f . C1 vs. B1). Finally,
the reduced memory consumption in Sparse-NCNet allows for processing in higher
resolution, which produces the best results, while still being faster and more memory
efficient than NCNet (c.f . C2 vs. B2).

1 2 3 4 5 6 7 8 9 10
threshold [px]

0.0

0.2

0.4

0.6

0.8

1.0

M
M

A

Illumination

1 2 3 4 5 6 7 8 9 10
threshold [px]

0.0

0.2

0.4

0.6

0.8

1.0

M
M

A

Viewpoint

1 2 3 4 5 6 7 8 9 10
threshold [px]

0.0

0.2

0.4

0.6

0.8

1.0

M
M

A

Overall

Sparse-NCNet R2D2 [41] D2-Net [13] SuperPoint [12]

DELF [36] HessAffNet + HN++ [32, 33]

Affine Det. +
√

SIFT [30, 2]

Fig. 5: Sparse-NCNet vs. state-of-the-art on HPatches. The MMA of Sparse-
NCNet and several state-of-the-art methods is shown. Sparse-NCNet obtains the best
results overall with a large margin over the recent R2D2 method.
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Sparse-NCNet vs. state-of-the-art methods. In addition, we compare the per-
formance of Sparse-NCNet against several methods, including state-of-the-art
trainable methods such as SuperPoint [12], D2-Net [13] or R2D2 [41]. The mean-
matching accuracy results are presented in Fig. 5. For all other methods, the
top 2000 features points where selected from each image, and matched enforcing
mutual nearest-neighbours, yielding approximately 1000 correspondences per
image pair. For Sparse-NCNet, the top 1000 correspondences where selected for
each image pair, for a fair comparison. Sparse-NCNet obtains the best results
for the illumination sequences for thresholds higher than 4 pixels, and in the
viewpoint sequences for all threshold values. Sparse-NCNet obtains the best
results overall, with a large margin over the state-of-the-art R2D2 method. We
believe this could be attributed to the usage of dense descriptors (which avoid
the loss of detections) together with an increased matching robustness from
performing neighbourhood consensus. Qualitative examples and a comparison
with other methods are presented in the extended version of this work [42].

4.2 InLoc benchmark

The InLoc benchmark [53] targets the problem of indoor localisation. It contains
a set of database images of a building, obtained with a 3D scanner, and a set of
query images from the same building, captured with a cell-phone several months
later. The task is then to obtain the 6-dof camera positions of the query images.
We follow the DensePE approach proposed [53] to find the top 10 candidate
database images for each query, and employ Sparse-NCNet to obtain matches
between them. Then, we follow again the procedure in [53] to obtain the final
estimated 6-dof query pose, which consists of running PnP [14] followed by dense
pose verification [53].

The results are presented in Fig. 6. First, we observe that Sparse-NCNet with
hard relocalisation (H) and a resolution of 100× 75 obtains equivalent results
to NCNet (methods B vs. C), while being almost 7× faster and requiring 6.5×
less memory, confirming what was already observed in the HPatches benchmark
(c.f . B1 vs. B2 in Fig. 4a). Moreover, our proposed Sparse-NCNet method with
two-stage relocalisation (H+S) in the higher 200 × 150 resolution (method A)
obtains the best results and sets a new state-of-the-art for this benchmark. Recall
that it is impossible to use the original NCNet on the higher resolution due to
its excessive memory requirements. Qualitative examples are included in the
extended version [42].

4.3 Aachen Day-Night

The Aachen Day-Night benchmark [47] targets 6-dof outdoor camera localisation
under challenging illumination conditions. It contains 98 night-time query images
from the city of Aachen, and a shortlist of 20 day-time images for each night-time
query. Sparse-NCNet is used to obtain matches between the query and images in
the short-list. The resulting matches are then processed by the 3D reconstruction
software COLMAP [50] to obtain the estimated query poses.
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Table 1: Results on Aachen Day-Night.
Sparse-NCNet is able to localise a similar
number of queries as R2D2 and D2-Net.

Localised (%)

Method
0.5m,

2◦
1.0m,

5◦
5.0m,
10◦

RootSIFT [28, 2] 36.7 54.1 72.5
DenseSfM [47] 39.8 60.2 84.7
HessAffNet + HN++ [32, 33] 39.8 61.2 77.6
DELF [36] 38.8 62.2 85.7
SuperPoint [12] 42.8 57.1 75.5
D2-Net [13] 44.9 66.3 88.8
D2-Net (Multi-scale) [13] 44.9 64.3 88.8
R2D2 (patch = 16) [41] 44.9 67.3 87.8
R2D2 (patch = 8) [41] 45.9 66.3 88.8
Sparse-NCNet (H, 200× 150) 44.9 68.4 86.7
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Fig. 6: Results on the In-
Loc benchmark. Our proposed
method (A) obtains state-of-the-art
results on this benchmark.

The results are presented in Table 1. Sparse-NCNet presents a similar per-
formance to the state-of-the-art methods D2-Net [13] and R2D2 [41]. Note that
the results of these three different methods differ by only a few percent, which
represents only 1 or 2 additionally localised queries, from the 98 total night-time
queries. The proposed Sparse-NCNet obtains state-of-the-art results for the 1m
and 5◦ threshold, being able to localise 68.4% of the queries (67 out of 98).
Qualitative examples are shown in Fig. 1 and in the extended version [42].

5 Conclusion

In this paper we have developed Sparse Neighbourhood Consensus Networks for
efficiently estimating correspondences between images. Our approach overcomes
the main limitations of the original Neighbourhood Consensus Networks that
demonstrated promising results on challenging matching problems, making these
models practical and widely applicable. The proposed model jointly performs
feature extraction, matching and robust match filtering in a computationally
efficient manner, outperforming state-of-the-art results on two challenging match-
ing benchmarks. The entire pipeline is end-to-end trainable, which opens-up the
possibility for including additional modules for specific downstream problems
such as camera pose estimation or 3D reconstruction.
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