
Supplementary Material: Spatially Aware
Multimodal Transformers for TextVQA

A Training and Model Parameters:

All the 6-layer models have 96.6 million parameters and the 4-layer models have
82.4 million parameters. We train our models using Adam optimizer [3] with
a linear warmup and with a learning rate of 1e-4 and a staircase learning rate
schedule, where we multiply the learning rate by 0.1 at 14000 and at 19000
iterations. We train for 36.1K total iterations (100 epochs) on 2 NVIDIA Titan
XP GPUs for 12 hours and use a batch-size of 96 and d = 768 as dimensionality
for encoding all multi-modal features. We use the PyTorch [4] deep-learning
framework for all the experiments.

We list the hyper-parameters used in our experiments for both SA-M4C and
M4C models in Table A. We keep these hyper-parameters fixed across all the
ablations for both TextVQA [5] and STVQA [1] datasets.

Table A: Hyperparameter choices for models.
# Hyperparameters Value # Hyperparameters Value

1 Maximum question tokens 20 2 Maximum object tokens 100
3 Maximum OCR tokens 50 4 Maximum decoding steps 12
5 Embedding size 768 6 Number of Multimodal layers 6N/2N→4S
7 Multimodal layer intermediate size 3072 8 Number of attention heads 12
9 Types of spatial relationships 12 10 Multimodal layer dropout 0.1
11 Context size 1/2 12 Optimizer Adam
13 Batch size 128 14 Base Learning rate 1e-4
15 Warm-up learning rate factor 0.2 16 Warm-up iterations 1000
17 Vocabulary size 5000 18 Gradient clipping (L-2 Norm) 0.25
19 Number of epochs 100 20 Learning rate decay 0.1
21 Learning rate decay steps 14000, 19000 22 Number of iterations 36000

B List of spatial-prepositions

We used the following list of spatial prepositions to form the subset of questions
that involve spatial reasoning: north, south, east, west, up, down, left, right,
under, top, bottom, middle, center, above, below, beside, beneath.

C Ablations with varying Spatial Layers

We also study the affect of using spatially aware self-attention layers in a multi-
modal transformer. We gradually start replacing the self-attention layers of M4C
with our spatially aware self-attention layers. We observe from Table B that,
as we replace more layers, the performance gradually increases. However, it is
important to keep a couple of normal self-attention layers at the bottom to allow
different modalities to attend to the entire context available to them. Since the
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spatially aware self-attention layers do not modify the question representations,
the self-attention layers in the bottom allow the question tokens to attend to other
question tokens as well as object and OCR tokens. Indeed, we see a significant
drop as we remove self-attention layers from the bottom.

Table B: Ablations with varying number of spatially aware self-attention layers.
Method Model Structure Context Accuracy on Val.

1 M4C [2]† 6N - 42.70
2 SA-M4C 5NÕ1S 1 42.61
3 SA-M4C 4NÕ2S 1 43.19
4 SA-M4C 3NÕ3S 1 43.16
5 SA-M4C 2NÕ4S 1 43.80
6 SA-M4C 1NÕ5S 1 43.07

D Deforming/Reversing Spatial Graph during Inference

To understand the role of the spatial graph in our approach, using our best
model (SA-M4C), we experiment by modifying the spatial graph during inference.
For this, we reverse every edge type in the spatial graph (Table C, Row3: SA-
M4C Rev). For instance, the relationship 〈obj1 − right − obj2〉 now becomes
〈obj1 − left− obj2〉. Similarly, we also experiment by randomly perturbing the
spatial graph (Table C, Row-4: SA-M4C Rand). For this, we replace each existing
relationship between two objects with a random one. We observe a significant
performance drop in both the experiments which emphasizes the importance of
encoding the spatial relations correctly.

Table C: Effect of randomizing and reversing spatial graph during inference.
Method Model Structure Context Spatial Graph w/

ST-VQA
Beam
size

Acc.
on Val.

1 M4C [2]†† 6N 2 - 3 1 43.80
2 SA-M4C (ours) 2NÕ4S 2 Normal 3 1 45.10

3 SA-M4C Rev 2NÕ4S 2 Reversed 3 1 41.08
4 SA-M4C Rand 2NÕ4S 2 Randomized 3 1 42.10

Performance on questions that involve spatial reasoning: Additionally,
similar to our analysis in the main manuscript, we specifically look at the perfor-
mance of questions that involve spatial reasoning. On this subset Dspa (∼14%
of the dataset), the performance drops by 4.1% when the spatial graph is re-
versed (SA-M4C Rev), and drops by 2.6% when the spatial graph is randomly
perturbed (SA-M4C Rand). Importantly, on Dspa+ocr which consist of questions
that require spatial reasoning and have a majority answer encoded in the OCR
tokens, the performance drops drastically by 10% for SA-M4C Rev and 6.6% for
SA-M4C Rand.

Visual Grounding: As a proxy to analyze visual grounding of our model, we
look at instances in which models predict the answer using the list of OCR tokens
without relying on the vocabulary. Our model (SA-M4C) picks an answer from
the list of OCR tokens for 368/701 questions from the Dspa subset, and achieves
52.85% accuracy. In contrast, the SA-M4C Rev and SA-M4C Rand models
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achieve 39.47% and 42.43% accuracy respectively. Similarly, on Dspa+ocr SA-M4C
achieves an accuracy of 67.95%, whereas SA-M4C Rev and SA-M4C Rand achieve
56.54% and 52.46% respectively.

In our model, each of the attention heads specializes in encoding a different
spatial context. Consequently, we observe that reversing or randomly changing
the spatial context for these heads by deliberate perturbations to the spatial
graph has a notable affect on performance.

E Additional Experiments

ST-VQA Weakly Contextualized Task: We train SA-M4C with 30k vocab-
ulary and achieve 49.7% ANLS accuracy beating the previous SoTA by 18.68%
on the Weakly Contextualized Task of ST-VQA.

Adding fully connected heads in the spatial layer: We experimented with a
model that extends the 12-head spatially-aware layer by adding 6 fully-connected
heads that model all spatial relations while keeping the number of parameters
comparable to the proposed approach. The performance drops from 43.8% to
43.41%.
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F Qualitative Samples

Fig. 1: Qualitative Examples: The figure shows the output of M4C and our method
on several image-question pairs. Bold and italics text denote words chosen
from OCR tokens, otherwise it was chosen from the vocabulary. The VQA score
for each prediction is mentioned inside parenthesis.
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Fig. 2: Qualitative Examples: The figure shows the output of M4C and our method
on several image-question pairs. Bold and italics text denote words chosen
from OCR tokens, otherwise it was chosen from the vocabulary. The VQA score
for each prediction is mentioned with parenthesis.
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Fig. 3: Qualitative Examples: The figure shows the output of M4C and our method
on several image-question pairs. Bold and italics text denote words chosen
from OCR tokens, otherwise it was chosen from the vocabulary. The VQA score
for each prediction is mentioned with parenthesis.
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Fig. 4: The figure shows examples where we flipped the spatial relation in the
original question to see whether the models change their answers. We observe
that our spatially aware multimodal transformer correctly reasons about the
spatial relationships mentioned in the question and predict the answer more
accurately than M4C. Green text denote correct predictions. Red text denote
incorrect predictions while orange text denote partially correct answers.
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