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Abstract. In this paper, we propose an effective and efficient pyramid
multi-view stereo (MVS) net with self-adaptive view aggregation for ac-
curate and complete dense point cloud reconstruction. Different from
using mean square variance to generate cost volume in previous deep-
learning based MVS methods, our VA-MVSNet incorporates the cost
variances in different views with small extra memory consumption by
introducing two novel self-adaptive view aggregations: pixel-wise view
aggregation and voxel-wise view aggregation. To further boost the ro-
bustness and completeness of 3D point cloud reconstruction, we extend
VA-MVSNet with pyramid multi-scale images input as PVA-MVSNet,
where multi-metric constraints are leveraged to aggregate the reliable
depth estimation at the coarser scale to fill in the mismatched regions at
the finer scale. Experimental results show that our approach establishes
a new state-of-the-art on the DTU dataset with significant improve-
ments in the completeness and overall quality, and has strong general-
ization by achieving a comparable performance as the state-of-the-art
methods on the Tanks and Temples benchmark. Our codebase is at
https://github.com/yhw-yhw/PVAMVSNet

Keywords: Multi-view Stereo, Deep Learning, Self-adaptive View Ag-
gregation, Multi-metric Pyramid Aggregation

1 Introduction

Multi-view Stereo (MVS) aims to recover dense 3D representation of scenes
using stereo correspondences as the main cue given multiple calibrated im-
ages [28,23,32,35]. Although they have achieved great success on MVS bench-
marks [1,22,31], many of them still have limitations in handling matching am-
biguity and usually have a low completeness of 3D reconstruction. Recently, the
deep neural network has made tremendous progress in multi-view stereo [17,43,18].
These methods learn and infer the information hardly obtained by stereo corre-
spondences in order to handle matching ambiguity. However, they do not learn
and utilize the following important information.

* Equal Contribution
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Fig. 1. VA-MVSNet performs an efficient and effective multi-view stereo with self-
adaptive view aggregation to generate an accurate depth map. Cast in pyramid images
additionally, PVA-MVSNet aggregates multi-scale depth maps with multi-metric con-
straints to boost the point cloud reconstruction with high accuracy and completeness.

First, the one-stage end-to-end deep MVS architectures [43,44,18] that di-
rectly learn from images all follow the philosophy that all view images con-
tribute equally to the matching cost volume [13]. For instance, MVSNet [43]
and R-MVSNet [44] both apply the mean square variance operation on multiple
cost volumes, and DPSNet [18] selects the mean average operation. However,
images from different views lead to heterogeneous image capture characteris-
tics due to different illumination, camera geometric parameters, scene content
variability, etc. Based on this observation, we propose a self-adaptive view aggre-
gation module to learn the different significance in multiple matching volumes
among images from different views. Our module benefits from the aggregated
features by a self-adaptive fusion, where better element-wise matched regions
are enhanced while the mismatched ones suppressed.

Second, the multi-scale information is not leveraged well to improve the ro-
bustness and completeness of 3D reconstruction. Unlike ACMM [40] where pyra-
mid images are processed progressively to regress the depth map in a coarse-to-
fine manner, we propose a novel way to aggregate multi-scale pyramid depth
maps which are generated in parallel by multi-metric constraints to a refine
depth map. In particular, to correct the mismatched regions at the finer depth
map, we progressively aggregate the reliable depth at the coarser level to refine
the finer depth map but do not introduce quantization errors benefiting from
our multi-metric constraints.

To this end, we propose a novel efficient and effective pyramid multi-view
stereo network with self-adaptive view aggregation, denoted as PVA-MVSNet.
Our method constructs multi-scale pyramid images and processes them in paral-
lel by VA-MVSNet to produce pyramid depth maps. To regularize 3D warping
feature volumes from different views, we propose two self-adaptive element-wise
view aggregation modules to learn different variance of different views in an
order-independent manner. Through a depth map estimator, 3D cost volume
is utilized to estimate the corresponding depth map. To further improve the
robustness and completeness of 3D reconstruction generated by VA-MVSNet,
our proposed multi-metric pyramid depth aggregation corrects the mismatched
regions at finer depth maps using the reliable depths at coarser depth maps by
checking photometric and geometric consistency.

Our main contributions are listed below:
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– We propose self-adaptive view aggregation to incorporate the element-wise
variances among images from different views, guiding the multiple cost vol-
umes to aggregate a normalized one.

– We investigate to incorporate multi-scale information by our multi-metric
pyramid depth maps aggregation in PVA-MVSNet, to further improve the
robustness and completeness of 3D reconstruction.

– Our method establishes a new state-of-the-art on the DTU and a comparable
performance as the state-of-the-art methods on the Tanks and Temples.

2 Related Work

Traditional MVS Reconstruction: Traditional MVS reconstruction algorithms
can be divided into four types: voxel based [33,38], surface based [15,6], patch
based [11,9] and depth map based methods [9,2,36,10,45,29]. Among those meth-
ods, the depth map based approaches are more concise and flexible. Recently,
many advanced MVS algorithms estimate high quality depth maps by view selec-
tion, local propagation and multi-scale aggregation strategies. Zheng et al. [45]
propose a depth map estimation method by solving a probabilistic graphical
model. Schönberger et al. [29] present a new MVS system named COLMAP
where geometric priors are used to better depict the probability of their graph-
ical model. Xu et al. [41] propose a multi-scale MVS framework with adaptive
checkerboard propagation and multi-hypothesis joint view selection to improve
the performance. These works utilize predefined criteria for pixel-wise view se-
lection, which cannot be adaptive for different scenes.

Learning Based Stereo Matching: Recently, the convolutional neural network
(CNN) has made tremendous progress in many vision tasks [20,7,42,27,34],
including several attempts on multi-view stereo. Early learning-based meth-
ods [17,8,19] pre-warp the images to generate plane-sweep volumes as the input.
Two promising approaches [43,18] both propose the differential homography
warping, which implicitly encodes multi-view camera geometries into the net-
work and enables an end-to-end training fashion. Furthermore, R-MVSNet [44]
replaces 3D-CNN in MVSNet [44] by the gated recurrent unit (GRU) to reduce
memory consumption during the inference phase. Gu et al. [12] and Cheng et
al. [5] both propose a cascaded MVS network through constructing coarse-to-
fine cost volume which eases the memory limitation of the volume resolution
in comparison with uniformly sampled cost volume [43,44,4]. P-MVSNet [24]
proposes a patch-wise matching module to learn the isotropic matching confi-
dence inside the cost volume. Particularly, those methods follow the philosophy
that the feature volumes from different view images contribute equally, neglect-
ing heterogeneous image capturing characteristics due to different illumination,
camera geometric parameters and scene content variability. PointMVSNet [3] is
a two-stage coarse-to-fine method which needs a coarse depth map by a lower-
resolution version MVSNet [43].

Based on the above analysis, we propose a self-adaptive view aggregation
module to incorporate the different significance in multiple feature volumes
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Fig. 2. Overview of PVA-MVSNet. We firstly input multi-scale pyramid images to
VA-MVSNet to generate corresponding pyramid depth maps in parallel. Then we pro-
gressively replace the mismatched depths in the finer depth map with more reliable
depths from a coarser level to achieve a refined depth map. Finally, we reconstruct the
point cloud by filter and fusion through all estimated depth maps of the image set.

from different views, where better element-wise matched features can be en-
hanced while the mismatched errors can be suppressed. To further improve the
robustness and completeness of 3D reconstruction point cloud, we propose a
multi-metric pyramid depth aggregation to aggregate multi-scale information in
pyramid images. The mismatched depth value generated by the original image
can be filled-in by the reliable depth value from the downsized image under
photometric and geometric consistency.

3 Method

We first describe the overall architecture of PVA-MVSNet in Sec. 3.1. Then, we
introduce the details of VA-MVSNet in Sec. 3.2. Finally, we present the multi-
metric pyramid depth aggregation in Sec. 3.4.

3.1 Overall

Given a reference image Ii=0 and Ii=1,··· ,N−1 neighboring images and corre-
sponding calibrated camera parameters Qi=0 and Qi=1,··· ,N−1, where N repre-
sents the number of multi-view images, our goal is to estimate the depth map for
each reference image. Afterwards, we filter and fuse all estimated depth maps to
reconstruct 3D point clouds.

For the depth estimation of a reference image, our main architecture is illus-
trated in Fig. 2. We construct an image pyramid with K multiple scales for all
images with a downsampling scale factor η. We denote k-level pyramid images
and corresponding camera parameters as Iki=0,··· ,N−1 and Qk

i=0,··· ,N−1 respec-
tively, where k = 0, · · · ,K − 1. The scale k = 0 of the pyramid represents the
original image. We process each level images in the pyramid by VA-MVSNet to
obtain depth maps of different scales in parallel. Then we progressively prop-
agate the reliable depths from images with the lower resolution, which satisfy
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Fig. 3. The network architecture of VA-MVSNet. Multi-view images go through 2D
U-Net and differentiable homography warping to generate 3D feature volumes. Cost
variances in different views are encoded in self-adaptive view aggregation to aggregate
the 3D cost volumes which is regularized by 3D U-Net to regress the depth map.

multi-metric constraints, to correct the mismatched errors of images with the
higher resolution by replacements. Finally, we obtain the refined depth map of
the raw image. We term our whole method PVA-MVSNet.

3.2 Self-adaptive View Aggregation

In VA-MVSNet in Fig. 3, we first design a 2D U-Net to extract {Fi}N−1i=0 feature
maps with larger receptive fields from the N input images. For efficient com-
putation, the output feature map is downsampled by four to the original image
size with 32 channels.

Then each feature map from different views will be warped to the refer-
ence camera frustum by the differential homography [43,18] with sampling Di

layers to build 3D plane-sweep feature volumes Vi. To handle arbitrary N -
view images input and the variances among images from different sources, we
propose self-adaptive view aggregation to merge Vi=0,··· ,N−1 3D feature vol-
umes into one cost volume C. Let Wi, Hi, Di, Ci denote the width, height,
depth sample number and channel number of the input 3D warping feature
volume from image i respectively, the feature volume size can be represented
as Si = Wi · Hi · Di · Ci, the cost volume Ci aggregation can be defined as a
function: M : RSi × · · · × RSN−1︸ ︷︷ ︸

N

→ RS . In previous work [43,44,18], this is a

constant function where all views contribute equally, which is the mean square
error of all input feature volumes. However, it is not reasonable due to different
illumination, camera position, occlusion and image content etc, where a near
reference image with no occlusion can provide more accurate geometric and
photometric information than a far one with partial occlusion. Thus, we propose
to employ self-adaptive view aggregation as this function to flexibly learn the
potential different view variance from training data. To achieve this goal, we
develop and investigate two different self-adaptive view aggregation modules in
Fig. 4, which shows how the self-adaptive view selection incorporates the vari-
ance between different views. We introduce the attention mechanism [37,39] for
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Fig. 4. Illustration of two different self-adaptive element-wise view aggregation mod-
ules, a) pixel-wise view aggregation, b) voxel-wise view aggregation.

guiding the network to select important matching information in different views.
In the point-wise view selection, similar as ACMM [40], we consider that each
pixel in the height and width dimension of 3D cost volume has different saliency
but is consistent in the depth dimension. The voxel-wise view selection module
is a 3D attention-guided mechanism to guide each voxel in 3D feature volumes
to learn its own weight.

Pixel-wise View Aggregation. The pixel-wise view aggregation introduces a selec-
tive weighted attention map in the height and width dimension which considers
the depth number hypothesis sharing common focusing weight. Given multi-
view feature volumes Vi=0···N−1, our regularized cost volumes are aggregated as
cd,h,w:

v′
i,d,h,w = vi,d,h,w − v0,d,h,w, (1)

cd,h,w =

∑N−1
i=1 (1 + wh,w)� v′

i,d,h,w

N − 1
, (2)

where wh,w represents a 2D weighted attention map to encode the various pixel-
wise saliency among images from different sources and the reference view, and
� represents element-wise multiply operation.

To generate a 2D weighted attention map, we design a PA-Net in Tab. 1
which consists of several 2D convolutional filters and a ResNet block [14] with
the squeezing 2D features from V ′i as input to learn the wh,w:

wh,w = PA-Net(fh,w), (3)

fh,w = CONCAT(max pooling(
∥∥v′

d,h,w

∥∥
1
), avg pooling(

∥∥v′
d,h,w

∥∥
1
)), (4)

where both max pooling and avg pooling are used to extract the highest and
average cost matching information in the depth dimension, and CONCAT(·)
denotes the concatenation operation.
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Voxel-wise View Aggregation. The voxel-wise view aggregation module considers
that each pixel with different depth layer hypothesis d is treated differently,
where each voxel in 3D feature volume learns its own importance. Based on
this, we design a VA-Net as shown in Tab. 1 to directly learn the 3D weighted
attention map with 3D convolutional filters for selecting useful cost information.
The regularized 3D cost volumes cd,h,w are aggregated by v′

i,d,h,w:

cd,h,w =

∑N−1
i=1 (1 + wd,h,w)� v′

i,d,h,w

N − 1
. (5)

3.3 Depth Map Estimator

We design a 3D convolutional U-Net by leveraging different level information
and expanding receptive fields to generate the probability volume P with a
softmax operation along the depth dimension. The details of 3D U-Net are in
the supplementary material.

To produce a continuous depth estimation, we use soft argmin operation [16]
on the output probability volume P to estimate the depth E:

E =

dmax∑
d=dmin

d× P (d), (6)

where P (d) denotes the estimated probability of all pixels for the depth hypoth-
esis d. Following MVSNet [43], the probability map is calculated by the sum
over the nearest four hypotheses in the 3D probability volume to measure the
estimation quality. Comparing the estimated depth map and confidence map in
Fig. 5 with [43], VA-MVSNet generates more reliable and accurate depth map
with higher confidence benefiting from self-adaptive view aggregation.

Input Layer Output Output Size

PA-Net

fh,w ConvGR,K=3,S=1,F=16 wc 0 W ×H × 16
wc 0 ResBlockGR,K=3,S=1,F=16 wres 1 W ×H × 16
wres 1 Conv,K=3,S=1,F=1 wc 2 W ×H × 1
wc 2 Sigmoid weight W ×H × 1

VA-Net

v
′

Conv3DGR,K=3,S=1,F=1 wc3d 0 D ×W ×H × 1
wc3d 0 Conv3D,K=3,S=1,F=1 wc3d 1 D ×W ×H × 1
wc3d 1 Sigmoid weight3d D ×W ×H × 1

Table 1. The details of PA-Net and VA-Net. We denote Conv, Conv3D as 2D and 3D
convolution respectively, and use GR to represent the abbreviation of group normaliza-
tion and the Relu. + and & represent the element-wise addition and concatenation. K,
S, F are the kernel size, stride and output channel number. N, H, W, D denote input
view number, image height, image height and depth hypothesis number.
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Fig. 5. Comparison on the regressed depth map, probability map and probability dis-
tribution with MVSNet [43]. (a) One reference image of Scan 12; (b) the inferred depth
map; (c) the probability map; (d) the distribution of the probability map. Our self-
adaptive view aggregation enhances the multi-view stereo network to generate more
delicate and accurate depth estimations with higher confidence.

Training Loss We use the same training losses in MVSNet [43], which is the
mean absolute error defined as L:

L =
∑

x∈xvalid

∥∥∥d(x)− d̂(x)
∥∥∥
1
, (7)

where xvalid denotes the set of valid pixels in the ground truth, d(x) and d̂(x)
represent the estimated depth map and the ground truth respectively.

3.4 Multi-metric Pyramid Depth Map Aggregation

So far, our proposed network VA-MVSNet generates good-enough depth maps
for the point cloud reconstruction. To further improve the robustness and com-
pleteness of 3D reconstruction, we propose a novel multi-metric pyramid depth
aggregation to aggregate reliable depth estimations in a lower-resolution depth
map into a higher-resolution depth map, by replacing corresponding mismatched
errors.

In a higher-resolution fine estimated depth map, there are still some inac-
curate depths with low confidences due to the matching ambiguity. Note that
the same convolutional filter generally extracts less local-wise, but more global
information due to a larger receptive field from a downsampled image in com-
parison to the original image. Quite different from ACMM [40], which casts a
image pyramid into VA-MVSNet to generate multi-scale depth maps in parallel,
we propose to utilize multi-metric constraints, specifically, geometric and photo-
metric consistency to progressively replace the ambiguous depth estimations at
the higher scale by reliable depths at the lower scale. As a result, we optimize
both depth and probability maps in Fig. 6.

Considering a pyramid depth map Dk=0,··· ,K−1 and a corresponding proba-
bility map P k=0,··· ,K−1 from VA-MVSNet, we use the photometric consistency
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Fig. 6. Illustration of multi-metric pyramid depth map aggregation, where the reliable
depth at a lower scale level k+1 selected by multi-metric constraints, are used to fill-in
the mismatched errors at a higher scale level k by upsampling and aggregation.

to measure the matching quality through the probability map and geometric
consistency to measure the depth consistency between multiple images. To se-
lect accurate and well-matched depth value in the lower scale k+ 1 depth maps,
we only select the estimated depth which satisfies both the photometric and
geometric consistency. Firstly, for the photometric consistency, we expect to it-
eratively replace unreliable depth values with low confidence P k(p) < εlow at
the scale k by reliable depths P k+1(p) > εhigh at the downsampling scale k + 1,
where P k(p) denotes the confidence of pixel p in the probability map P k and ε
represent the filtering confidence threshold. After discarding mis-matched errors
through the photometric consistency, we project a reference pixel p of image Ii
to the corresponding pixel pproj in the neighbor image Ij through Di(p) and
camera parameters. In turn, we reproject pproj through Dj(pproj) back to the
reference image as preproj with dreproj . We remain the pixeles which satisfy the
following geometric constraints in at least three neighbor views:

‖p− preproj‖2 < τ1, (8)

‖Di(p)− dreproj‖1 < τ2 ·Di(p). (9)

Through our multi-metric pyramid depth map aggregation, the reliable depths
at a lower scale k+1 can be progressively propagated to replace the mismatched
depths at k scale until it leads to a final refinement at k = 0 scale, which improves
the robustness and completeness of 3D point cloud.

4 Experiments

4.1 Implementation Details

Training We train VA-MVSNet on the DTU dataset [1], which consists of 124
different indoor scenes scanned by fixed camera trajectories in 7 different lighting
conditions. Following the common practices [17,19,43,44,3], we train our network
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Method
Mean Distance (mm)
Acc. Comp. overall

Colmap [29] 0.400 0.664 0.532
Gipuma [10] 0.283 0.873 0.578
MVSNet [43] 0.396 0.527 0.462
R-MVSNet [44] 0.385 0.459 0.422
P-MVSNet [24] 0.406 0.434 0.420
PointMVSNet [3] 0.361 0.421 0.391
PointMVSNet-HiRes [3] 0.342 0.411 0.376

VA-MVSNet 0.378 0.359 0.369
PVA-MVSNet 0.379 0.336 0.357

Table 2. Quantitative results on the DTU evaluation dataset [1] (lower is better).
Our VA-MVSNet and PVA-MVSNet (with voxel-wise view aggregation) outperform all
methods in terms of completeness and overall quality with a significant improvement.

a)Ref. image b)GT depth c)MVSNet d)R-MVSNet e)VA-MVSNet f)PVA-MVSNet

Fig. 7. Comparison of depth map estimations of Scan 13 and 11 in the DTU [1]. Our
VA-MVSNet and PVA-MVSNet achieve more accurate, continuous and complete depth
map in comparison to [43,44] methods [43,44].

on the training split and evaluate on the evaluation part and use the same depth
maps provided by MVSNet [43]. During training, the input image size is set to
W×H = 640×512 and the number of input images N = 5. The depth hypotheses
are sampled from 425mm to 935mm with depth plane number D = 192 in an
inverse manner as illustrated in R-MVSNet [44]. We implement our network on
PyTorch [26] and train it end-to-end for 16 epochs using Adam [21] with an
initial learning rate 0.001 which is decayed by 0.9 every epoch. Batch size is set
to 4 on 4 NVIDIA TITANX graphics cards.

Evaluation For testing, we use N = 7 image views and D = 192 for depth plane
sweeping in an inverse depth setting. We evaluate our methods on DTU with
an original input image resolution: 1600 × 1184. For Tanks and Temples, the
camera parameters are computed by OpenMVG [25] following MVSNet [43] and
the input image resolution is set to 1920× 1056. We use the same multi-metric
constraint parameters, where εlow = 0.5, εhigh = 0.9, τ1 = 1 and τ2 = 0.01.

Filtering and Fusion We fuse all depth maps into a complete point cloud as
in [10,43]. In our experiments, we only consider the reliable depth values with
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MVSNet R-MVSNet Ours                                Groud Truth

Fig. 8. Comparison of reconstruction point clouds for the model Scan 15 in the bench-
mark DTU [1]. Our method generates denser, smoother and more complete point cloud
compared with other methods [43,44].

confidence larger than ε = 0.9 and utilize the aforementioned geometric consis-
tency to select those pixels occurring in more than three neighbor views. Finally,
the depths are projected to 3D space and fused to produce a 3D point cloud.

4.2 Benchmarks Results

DTU Dataset We evaluate our proposed method on the DTU [1] evaluation
set. Quantitative results are shown in Tab. 2. The accuracy and completeness
are calculated using the official matlab script provided by the DTU [1] dataset.
The overall reconstruction quality is evaluated by calculating the average of the
accuracy and completeness, as mentioned in [43,1]. While Gipuma [10] performs
the best regarding to accuracy, our PVA-MVSNet and VA-MVSNet establish a
new state-of-the-art both in completeness and overall quality with a significant
margin compared with all previous methods [36,43,44,3]. We compare our depth
maps with [43,44] in Fig. 7. VA-MVSNet predicts a more accurate, delicate and
complete depth map by introducing different variances in multi-views through
our proposed self-adaptive view aggregation. Moreover, PVA-MVSNet further
fill-in the mismatched errors with reliable depths in the pyramid depth maps
by our multi-metric pyramid depth map aggregation. Benefiting from more ac-
curate, smooth and complete depth map estimation, our method can generate
denser and more complete and delicate point clouds in Fig. 8.

Tanks and Temples Benchmark To explore the generalization of PVA-MVSNet,
we compare our method without any fine-tuning with other baselines [43,44,3,4]
on the Tanks and Temples, which is a more complicated outdoor dataset. Tab. 3
summarizes the results. The mean f-score increases from 43.48 to 54.46 (larger
is better, date: Mar. 5, 2020) compared with MVSNet [43], which demonstrates
the efficacy and strong generalization of PVA-MVSNet. Our method outper-
forms Point-MVSNet [3] significantly with a higher 13% mean f-score, which
is the best baseline on DTU dataset. And we achieve a comparable result with
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Method Rank Mean Family Francis Horse L.H. M60 Panther P.G. Train

MVSNet [43] 52.75 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69
R-MVSNet [44] 42.62 48.40 69.96 46.65 32.59 42.95 51.88 48.80 52.00 42.38
Point-MVSNet [3] 40.25 48.27 61.79 41.15 34.20 50.79 51.97 50.85 52.38 43.06
P-MVSNet [24] 17.00 55.62 70.04 44.64 40.22 65.20 55.08 55.17 60.37 54.29

PVA-MVSNet 21.75 54.46 69.36 46.80 46.01 55.74 57.23 54.75 56.70 49.06

Table 3. Quantitative Results on the Tanks and Temples benchmark [22]. The evalu-
ation metric is f-score which higher is better. (L.H. and P.G. are the abbreviations of
Lighthouse and Playground dataset respectively. )

0
3m

m
6m

m
9m

m

Our point clouds Ours P./R. R-MVSNet P./R. MVSNet P./R.

Fig. 9. The visualization of our partial point cloud results and the comparison
with [43,44] on the Precision and Recall of Horse dataset on the Tanks and Tem-
ples [22] benchmark. The darker means the bigger error.

P-MVSNet [24]. The simple fusion process we adopted achieves a comparable re-
sult with P-MVSNet [24], which uses an extra refinenet and more depth filtering
process to pursue better performance. Our partial reconstructed point clouds are
shown in Fig. 9, and we compare the Precision and Recall of the Horse dataset
with [43,44], which is provided by the Tanks and Temples [22] benchmark. Our
method generates more accurate and complete point clouds with higher pre-
cision and recall than the others [43,44], due to the enhanced accuracy from
self-adaptive view aggregation and the increased completeness and robustness
from our multi-metric pyramid depth map aggregation.

4.3 Ablation Studies

In this section, we provide ablation experiments to analyze the strengths of the
key components of our architecture. For following studies, to eliminate the non-
learning influence, all experiments use the same consistency-check parameters in
Sec. 4.1 and are tested on the evaluation and validation DTU [1] dataset.

Self-adaptive View Aggregation As shown in Tab. 4, compared with our baseline
method which is using the same mean square error as cost volume aggregation
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Fig. 10. Validation results of the mean
average depth error with different com-
ponents in VA-MVSNet during training.
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Table 4. Contributions of different com-
ponents in our architecture on the evalu-
ation DTU [1].

Components Acc. Comp. Overall

baseline 0.454 0.372 0.413
+PixelVA 0.390 0.369 0.379
+VoxelVA 0.378 0.359 0.369
+PixelVA+MMP 0.392 0.341 0.366
+VoxelVA+MMP 0.379 0.336 0.357

Number of views Number of
pyramid

Acc.
(mm)

Comp.
(mm)

Overall
(mm)training test

N = 3 N = 2 \ 0.415 0.467 0.441
N = 3 N = 3 \ 0.380 0.379 0.380
N = 3 N = 5 \ 0.381 0.361 0.371
N = 3 N = 7 \ 0.380 0.361 0.370

N = 4 N = 7 \ 0.380 0.359 0.370
N = 5 N = 7 \ 0.378 0.359 0.369

N = 5 N = 7 K = 1 0.372 0.350 0.361
N = 5 N = 7 K = 2 0.378 0.341 0.360
N = 5 N = 7 K = 3 0.379 0.336 0.357

Table 5. Ablation study on different number of views N in training and testing phase
and different numbers of image pyramid on DTU [1] evaluation dataset.

in MVSNet [43], both PixelVA and VoxelVA can improve the results of 3D
reconstruction point cloud with a significant margin, especially on the accuracy
of reconstruction quality. Specifically, the VoxelVA provides a 16.7% increase on
accuracy, which is better than the PixelVA 14.1% due to the learning variance
of the depth wise hypothesis. Besides, the VoxelVA has more parameters but
less operations compared with PixelVA as denoted in Tab. 1. During training,
as shown in Fig. 10, the depth error on validation dataset drops significantly by
introducing our proposed novel self-adaptive view aggregation.

Number of Views We investigate the influence of variant numbers of views N
in different phases on DTU evaluation dataset. VA-MVSNet can process an
arbitrary number of views and well leverage the variant importance in multi-
views due to our proposed self-adaptive view aggregation. In the test phase, we
use the model trained on 3 views to compare the reconstruction results with
different numbers of views N = 2, 3, 5, 7. As shown in Tab. 5, the result with
N = 5 achieves a great improvement compared with N = 2, 3, but the influence
from two more extra views in N = 7 is quite small which can be ignored. It
demonstrates that our proposed self-adaptive view aggregation can well enhance
the valid information in the good neighbor views and eliminate bad information
in farrer views (the neighbor views are ranked by the matching quality with the
reference view in SfM [30]). In the training phase, we compare the results on the
input view N = 7 using the models trained on N = 3, 4, 5. The model trained
on N = 5 is slightly better than N = 3 but with more training time.
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Methods H,W,D Mem. Time. Overall

MVSNet 1600, 1184, 256 15.4GB 1.18s 0.462
R-MVSNet 1600, 1184, 512 6.7GB 2.35s 0.422
PointMVSNet 1280, 960, 96 7.2GB 1.69s 0.391
PointMVSNet-HiRes 1600, 1152, 96 8.7GB 5.44s 0.376

VA-MVSNet 1600, 1184, 192 18.1GB 0.91s 0.369
PVA-MVSNet 1600, 1184, 192 24.87GB 1.01s 0.357

Table 6. Comparisons on the time and memory cost on the evaluation DTU [1] dataset.
MVSNet and R-MVSNet are implemented in TensorFlow while others in PyTorch.

Multi-metric Pyramid Depth Aggregation As shown in Tab. 4, The completeness
can be averagely improved by 7.0% while introduce a negligible drop 0.39%,
benefiting from “MMP” (multi-metric pyramid depth aggregation). As denoted
in e) and f) in Fig. 7, PVA-MVSNet improves VA-MVSNet by generating more
delicate and complete depth maps. To better analyse the improvement from
different pyramid level image, we explore the influence by different numbers
of image pyramid in Tab. 5. The K = 1 level pyramid image improves both
accuracy and completeness with a big margin. A trade-off between accuracy and
completeness is achieved by using more pyramid images k = 2 and k = 3, it
leads to reconstructed 3D point cloud with better overall quality.

4.4 Runtime and Memory Performance

Given time and memory performance in Tab. 6, all methods are tested on
GeForce RTX 2080 Ti. VA-MVSNet runs fast at a speed of 0.91s / view, even if
it runs with the biggest memory consumption. Unlike PointMVSNet [3], multi-
scale pyramid images can be processed independently in parallel. Therefore, with
little extra time about 0.1s for multi-metric pyramid depth aggregation, the per-
formance of 3D point cloud reconstruction increases significantly from 0.369 to
0.357 in PVA-MVSNet on DTU [1] dataset.

5 Conclusion

We present a novel pyramid multi-view stereo network with the self-adaptive
view aggregation. The proposed VA-MVSNet dynamically selects the element-
wise feature importance while suppresses the mismatching cost, which is quite
efficient and effective. Casting in multi-scale pyramid images, benefiting from uti-
lizing multi-metric constraint, PVA-MVSNet estimates a refined depth map for
further improving the robustness and completeness of 3D reconstruction. Experi-
mental results demonstrate that our proposed method PVA-MVSNet establishes
a new state-of-the-art on the DTU dataset and shows great generalization by
achieving a comparable performance as other state-of-the-art methods on Tanks
and Temples benchmark without any fine-tuning.
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