Supplementary of "ACL-GAN"

July 16, 2020

1 Implementation Details

1.1 Data Augmentation

We flipped the images horizontally with a probability of 0.5. Due to the small number of images in selfie2anime [3] dataset, we also applied colour jittering with up to hue = 0.15, random grayscale with a probability of 0.25, random rotation with up to 35° , random translation of up to 0.1 of the image, and random perspective with distortion scale of 0.35 with a probability of 0.5. We trained on the original images, without data augmentation, on the last 100K iterations [7].

Model	glasses removal		Model	male to female		Model	selfie to anime	
WIOUEI	FID	KID	WIOUEI	FID	KID	WIOUEI	FID	KID
CualaCAN	48.71	0.043	CycleGAN	21.30	0.021	CycleCAN	102.02	0.042
CycleOAN		± 0.0011	CycleOAN		± 0.0003	CycleOAN	±	± 0.0019
CycleGAN 5	14 51	0.040	CycleGAN 5	22.10	0.021	CycleGAN 5	100.41	0.041
CycleOAN-3	44.31	± 0.0008	CycleOAN-J		± 0.0004	CycleOAN-J		± 0.0024
CycleGAN 1	12.08	0.038	CycleGAN 1	GAN 1 33.57		CycleGAN 1	00 30	0.035
CycleOAN-I	42.00	± 0.0007	CycleOAN-1	55.57	± 0.0005	CycleoAN-1	99.39	± 0.032
DiscoGAN	58.14	0.054	DiscoGAN	58.77	0.065	DiscoGAN	155 20	0.120
DISCOGAIN		± 0.0010	DISCOURIN		± 0.0005	DISCOURIN	155.20	± 0.0063
MUNIT	28.58	0.026	MUNIT	19.02	0.019	MUNIT	101 30	0.043
		± 0.0009	MONT		± 0.0004	MONT	101.50	± 0.0041
DRIT++	33.06	0.026		24.61	0.023	DRIT++	104.40	0.050
DRITT		± 0.0006	DKIT++		± 0.0002	DKIT++	±0.00	± 0.0028
Fixed-Point	44 22	0.038	StarGAN	36.17	0.034	U-GAT-IT	99.15	0.039
GAN	GAN H4.22		StarOniv	50.17	± 0.0005	0.0/11 11	<i>))</i> .13	± 0.0030
CouncilGAN	27.77	0.025	CouncilGAN	18 10	0.017	CouncilGAN	98 87	0.042
		± 0.0011	Councilority	10.10	± 0.0004	Councilor IIV	70.07	±0.0047
ACL-GAN	23.72	0.020	ACL-GAN	16 63	0.015	ACL-GAN	93.58	0.037
		± 0.0010	ACL OAN	10.05	± 0.0003		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	± 0.0036
ACL-GAN-0.2	23.72	0.020	ACL-GAN-0.2	16 63	0.015	ACL-GAN-0.2	95 43	0.038
		\pm 0.0010	TICL GAIV-0.2	± 0.0003			JU10	\pm 0.0020

Table 1: Quantitative results of glasses removal, male-to-female translation, and selfie-to-anime translation. For KID, mean and standard deviation are listed. A lower score means better performance. U-GAT-IT [3] is in light mode. Our method outperforms all other baselines in all applications.

1.2 Hyperparameters

In our experiment, λ_{idt} is fixed to be 1 for all tasks. We test λ_{ACL} with 0.2 on selfie2anime dataset, represented as ACL-GAN-0.2 and we find that λ_{ACL} of 0.2 works for all tasks. Besides, the hyperparameters related to bounded focus mask, have certain meanings and can be easily set according to different tasks. We run CycleGAN with smaller λ_{cycle} 5 and 1, represented as CycleGAN-5 and CycleGAN-1 respectively. The results are shown in Table 1, which are worse than ours.

2 Additional Experimental Results

2.1 Ablation Studies

In addition to the male-to-female translation, this section evaluates different ablations for both glasses removal and selfie-to-anime translation.

Figure 1: Qualitative results for ablation studies on glasses removal. From left to right: input, ACL-GAN (with total loss), ACL-A (without \mathcal{L}_{acl}), ACL-I (without \mathcal{L}_{idt}), ACL-M (without \mathcal{L}_{mask}).

Model	\mathcal{L}_{acl}	\mathcal{L}_{idt}	\mathcal{L}_{mask}	FID	KID
ACL-A	-	\checkmark	\checkmark	26.79	0.025 ± 0.0011
ACL-I	\checkmark	-	\checkmark	26.66	0.025 ± 0.0011
ACL-M	\checkmark	\checkmark	-	24.95	0.021 ± 0.0009
ACL-GAN	\checkmark	\checkmark	\checkmark	23.72	$\textbf{0.020} \pm \textbf{0.0010}$

Table 2: (Juantitative	results for	r ablation	studies	on gl	lasses 1	removal.
------------	--------------	-------------	------------	---------	-------	----------	----------

Specifically, for glasses removal, we conduct the same four settings as the male-to-female translation. The qualitative results are shown in Fig. 1. Due to relatively deterministic translation results, we only show one translated image of ACL-GAN, ACL-I, and ACL-M for each input image. However, without adversarial-consistency loss \mathcal{L}_{acl} , the results of ACL-A are inconsistent with the input images, *e.g.* the results are more feminine because of the imbalance of the dataset and the eye shapes are different with those in the input images.

Model	\mathcal{L}_{acl}	\mathcal{L}_{idt}	\mathcal{L}_{mask}	FID	KID
ACL-A	-	\checkmark	-	101.38	0.044 ± 0.0026
ACL-I	\checkmark	-	-	95.81	0.038 ± 0.0039
ACL-GAN	\checkmark	\checkmark	-	93.58	$\textbf{0.037} \pm \textbf{0.0036}$

Table 3: Quantitative results for ablation studies on selfie-to-anime translation.

For selfie-to-anime translation, the style of selfies should be changed. Therefore, we did not use bounded focus mask and we compared three ablation settings, ACL-GAN (with total loss), ACL-A (without \mathcal{L}_{acl}), and ACL-I (without \mathcal{L}_{idt}). Two results are shown in Fig. 2 for each model and each input. The generated images of ACL-GAN successfully preserve the important features of the input, compared with ACL-A.

The quantitative results are shown in Table 2 and Table 3. The results are consistent with those of male-to-female translation and they show the effectiveness of adversarial-consistency loss, identity loss and bounded focus mask.

2.2 Additional Qualitative Results

To further demonstrate the effectiveness of ACL-GAN, we show the translated images along with the generated bounded focus masks in Fig. 3, 4 and 5. For glasses removal and male-to-female translation, we show one results and its bounded focus mask of ACL-GAN for each input. For selfie-to-anime, the bounded focus mask is not used and two results of ACL-GAN are exhibited for each input. We further test DiscoGAN [4] with the same setting of our paper. The results are shown in Table 1 which are worse than ours and show that smaller bottleneck is not sufficient to overcome the drawbacks of cycle loss.

Figure 2: Qualitative results for ablation studies on selfie-to-anime translation. From left to right: input, ACL-GAN (with total loss), ACL-A (without \mathcal{L}_{acl}), ACL-I (without \mathcal{L}_{idt}). Bounded focus mask and \mathcal{L}_{mask} are not used for all models on selfie-to-anime translation.

Figure 3: Additional qualitative results on glasses removal. From left to right: input, our ACL-GAN, mask of ACL-GAN, CycleGAN [9], MUNIT [2], Fixed-Point GAN [8], DRIT++ [6, 5], and CouncilGAN [7].

Acknowledgements

The authors would like to thanks Jie Fu, Shuang Hu and Haoqi Yuan for helpful discussions. This work was supported by the start-up research funds from Peking University (7100602564) and the Center on Frontiers of Computing Studies (7100602567). We would also like to thank Imperial Institute of Advanced Technology for GPU supports.

Figure 4: **Comparison against baselines on male-to-female translation.** From left to right: input, our ACL-GAN, mask of ACL-GAN, CycleGAN [9], MUNIT [2], StarGAN [1], DRIT++ [6, 5], and CouncilGAN [7].

Figure 5: **Comparison against baselines on selfie-to-anime translation.** From left to right: input, our ACL-GAN, CycleGAN [9], MUNIT [2], U-GAT-IT [3], DRIT++ [6, 5], and CouncilGAN [7].

References

- Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)
- [2] Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: European Conference on Computer Vision (2018)

- [3] Kim, J., Kim, M., Kang, H., Lee, K.H.: U-gat-it: Unsupervised generative attentional networks with adaptive layerinstance normalization for image-to-image translation. In: International Conference on Learning Representations (2020)
- [4] Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. In: International Conference on Machine Learning (2017)
- [5] Lee, H.Y., Tseng, H.Y., Mao, Q., Huang, J.B., Lu, Y.D., Singh, M., Yang, M.H.: Drit++: Diverse image-to-image translation via disentangled representations. International Journal of Computer Vision (2020)
- [6] Lee, H., Tseng, H., Huang, J., Singh, M., Yang, M.: Diverse image-to-image translation via disentangled representations. In: European Conference on Computer Vision (2018)
- [7] Nizan, O., Tal, A.: Breaking the cycle colleagues are all you need. In: arXiv preprint arXiv 1911.10538 (2019)
- [8] Siddiquee, M.M.R., Zhou, Z., Tajbakhsh, N., Feng, R., Gotway, M.B., Bengio, Y., Liang, J.: Learning fixed points in generative adversarial networks: From image-to-image translation to disease detection and localization. In: IEEE International Conference on Computer Vision (2019)
- [9] Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision (2017)