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Here we provide addition details and visualizations of our results. Please also
see the narrated video on our website for a summary of the method and results.

1 Training details

Fig. 1: Structure of the feature extractor used by the body prediction network.
The image Ib is fed to HRNet [9] to extract multi-scale feature maps. These
are then processed by extra convolutional blocks and downsampled to the same
spatial resolution. All feature maps are subsequently concatenated and fed to 5
residual blocks [1], followed by a global average pooling operation that produces
the final feature vector Fb.

Architecture: The features Fb are extracted from the body image Ib using
the architecture of Figure 1. The parameters Θ = {β,θ,ψ, s, t} are predicted
by feeding the features Fb and the mean parameters Θ̄ to an iterative regression
network, whose structure follows [2]. The composition of the feature extraction
network of Figure 1 and the iterative regressor forms the body network g.
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Fig. 2: Illustrative examples. The default global rotation of the hand is re-
placed by a random rotation with angle rglobal ∼ U (rmin, rmax) around the
ground truth axis of rotation given by the training data. We selected a range
(rmin, rmax)hand= (−90, 90) degrees. Blue is the ground-truth mesh used as a tar-
get for training, while gray is the starting point of the iterative hand regressor
with a perturbed global rotation.

Training: We pre-train the body network until validation performance on
3DPW [6] saturates, using Adam [4], with batch size 48. The hand and head sub-
networks are pre-trained as well on the FreiHand [10] and FFHQ [3] data, again
with Adam [4] and a batch size of 64. Once validation performance saturates, we
freeze the body network and fine-tune the hand and head sub-networks with all
available training data to produce ExPose. The exact hyper-parameters will be
included in the released code. The entire pipeline is implemented in PyTorch.

2 Data augmentation

For hand and face-only data, shape and pose regression is done following the
iterative scheme of [2], which computes offsets from a set of mean parameters.
When we have access to full body information, we wish to condition the part spe-
cific sub-networks on the output of the body network. However, naively adding
this conditioning is not enough, as this creates a domain gap between hands
and face-only images and those coming from the body attention mechanism. To
bridge this, we augment the training data by modifying the initial mean point
to some random point. In this way, the part sub-network will be forced to learn
to predict the correct offsets, no matter the initial point, that lead to the pose
and shape that matches the image. As described in the main text, we randomly
perturb the global rotation of the hand and face data around the ground-truth
axis of rotation, as illustrated in Figures 2 and 3 respectively. We also modify
the shape of the hand and the face by randomly sampling from normal distribu-
tions over the hand and face shape parameters, as illustrated in Figures 6 and 5
respectively. For the face-only data, we also augment the rotation of the jaw, by
replacing the default value with a random rotation around the x-axis, seen in
Figure 4. Finally, we replace the default mean expression with a sample drawn
from a standard normal distribution, as seen in Figure 7.
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Fig. 3: The default global rotation of the head is replaced by a random rotation
with angle rglobal ∼ U (rmin, rmax) around the ground truth axis of rotation given
by the training data. We selected a range (rmin, rmax)head= (−45, 45) degrees.
Blue is the ground-truth mesh used as a target for training, while gray is the
starting point of the iterative face regressor with a perturbed global rotation.

Fig. 4: The default rotation of the jaw, which corresponds to a closed mouth,
is replaced by a random rotation around the x-axis. The angle of rotation is
sampled randomly from the uniform distribution rjaw ∼ U (0, 45).

3 Converting SMPL to SMPL-X

There exist a wide variety of SMPL annotations for training 3D body pose and
shape estimation methods. It is therefore important to create an automated
method to convert them to the corresponding SMPL-X parameters, to use them
as training data. To achieve this, we leverage the relation between SMPL and
SMPL-X to build a correspondence map between the two models. SMPL and
SMPL-X are articulated models of the human body that produce 3D triangle
meshes:

MSMPL = (VSMPL, FSMPL) , VSMPL ∈ R
6890×3, FSMPL ∈ N

13776×3 (1)

MSMPL-X = (VSMPL-X, FSMPL-X) , VSMPL-X ∈ R
10475×3, FSMPL-X ∈ N

20908×3

(2)

We start by registering the SMPL template mesh to the SMPL-X template.
Given the registered meshes, we compute for each SMPL-X vertex vi its nearest
point pi on the SMPL mesh and store the index of the nearest SMPL triangle
ti, its vertex indices fi = [f i0, f

i
1, f

i
2] and the barycentric coordinates [αi, βi, γi]

of pi with respect to triangle ti. We also store a binary mask mi for each vertex
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Fig. 5: The default mean shape of the head is replaced with a random vector
β ∼ N (0, I) , I ∈ R

10×10 The blue mesh represents the mean shape, while the
gray mesh has a random shape drawn from the above distribution.

Fig. 6: The default mean shape of the hand is replaced with a random vector
β ∼ N (0, I) , I ∈ R

10×10 The blue mesh represents the mean shape, while the
gray mesh has a random shape drawn from the above distribution.

Fig. 7: The default neutral expression of the head is replaced with a random vec-
tor ψ ∼ N (0, I) , I ∈ R

10×10. The blue mesh represents the neutral expression,
while the gray mesh has a random expression drawn from the above distribution.

that is used to mask invalid correspondences between the two models, such as
the eyes, inner lip region, etc.

Given a posed SMPL mesh M ′ = (V ′, F ′), e.g. one sample from the fit data
of SPIN [5], we build a mesh M̂ in SMPL-X topology. Vertex v̂i of the mesh M̂
is computed as:

v̂i = αiv
′
fi

0

+ βiv
′
fi

1

+ γiv
′
fi

2

(3)

where vfi

0

′ is the SMPL vertex with index f i0. We now have a mesh in SMPL-X
topology, which we will use to find the corresponding pose θ, shape β, expression
ψ and translation t parameters. Let vi be the i-th vertex returned by posing
SMPL-X using the current values of the parameters (θ,β,ψ, t). We start by
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optimizing only over the pose θ using the following loss:

L1 (θ) =
∑

(i,j)∈E

mimj ‖(vi − vj)− (v̂i − v̂j)‖
2
2 (4)

where E is the set of 3D edges of the SMPL-X mesh. We use the binary masks
mi,mj to compute the loss only on valid vertices. For the second stage, we
optimize the translation vector t using a vertex-to-vertex loss:

L2 (t) =
∑

i

mi ‖vi − v̂i‖
2
2 (5)

By this point, we have rigidly aligned the two meshes and matched the articu-
lation of the original SMPL mesh. All that remains is to also match the shape,
to get the best possible fit. The final step is to optimize over all parameters
(θ,β,ψ, t) using again a vertex-to-vertex loss:

L3 ((θ,β,ψ, t)) =
∑

i

mi ‖vi − v̂i‖
2
2 (6)

We use a Trust Region Newton Conjugate Gradient optimizer [7] to search for
minimize the objectives. The implementation for the transfer process can be in
found on our website: https://expose.is.tue.mpg.de.

4 SMPLify-X qualitative comparison

As shown in Table 3 of the main manuscript, ExPose is almost 200× times faster
compared to SMPLify-X [8], and provides qualitatively similar results to the
latter, as seen in Figures 8a and 8b. Although the accuracy of ExPose is slightly
lower than SMPLify-X, it can provide a better initialization to the latter, helping
it overcome failures of its initialization heuristic and of the keypoint detector.
Potentially, this could be done in a loop, similar to [5] to continuously improve
the performance of ExPose using mode in-the-wild data.

5 In-the-wild qualitative results

A qualitative comparison of our method with the state-of-the-art SMPL regres-
sion methods shows the increase in expressivity offered by ExPose; see Figures 10
to 20. Figure 9 compares the output of the naive regression approach with the
body-driven attention mechanism of ExPose. Finally, Figures 21 to 25 contain
visualizations of ExPose predictions from multiple views.
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(a) 1. The input image, 2. SMPLify-X (known gender), 3. naive regression from a
single body image fails to capture detailed finger articulation and facial expressions,
4. ExPose is able to recover these details, thanks to its attention mechanism, and
produces results of similar quality as SMPLify-X, while being 200 times faster.

(b) 1. The input image, 2. OpenPose detections, 3. SMPLify-X fitting, with the neutral
model and default focal length, 4. ExPose. When 2D keypoint detections are missing
or wrong, optimization based methods, such as SMPLify-X are unable to avoid implau-
sible poses. Furthermore, they heavily depend on their initialization and can produce
unnatural poses and shapes, when their initialization heuristic fails. Regression meth-
ods, such as ExPose, avoid these problems and can provide better initialization points,
closer to the actual solution, and accelerate convergence.
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Fig. 9: Left: The input image. Middle: Naive regression from a body crop. Right:
ExPose. The attention mechanism helps capture detailed hand articulation and
facial expression.
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Fig. 10: Comparison of ExPose with the state-of-the-art body regression method:
1. RGB image, 2. SPIN [5], 3. ExPose. Our proposed method produces 3D body
pose and shape results on par with SPIN [5] and captures more details for the
hands and face.
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Fig. 11: Comparison of ExPose with the state-of-the-art body regression method:
1. RGB image, 2. SPIN [5], 3. ExPose. Our proposed method produces 3D body
pose and shape results on par with SPIN [5] and captures more details for the
hands and face.
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Fig. 12: Comparison of ExPose with the state-of-the-art body regression method:
1. RGB image, 2. SPIN [5], 3. ExPose. Our proposed method produces 3D body
pose and shape results on par with SPIN [5] and captures more details for the
hands and face.
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Fig. 13: Comparison of ExPose with the state-of-the-art body regression method:
1. RGB image, 2. SPIN [5], 3. ExPose. Our proposed method produces 3D body
pose and shape results on par with SPIN [5] and captures more details for the
hands and face.
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Fig. 14: Comparison of ExPose with the state-of-the-art body regression method:
1. RGB image, 2. SPIN [5], 3. ExPose. Our proposed method produces 3D body
pose and shape results on par with SPIN [5] and captures more details for the
hands and face.
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Fig. 15: Comparison of ExPose with the state-of-the-art body regression method:
1. RGB image, 2. SPIN [5], 3. ExPose. Our proposed method produces 3D body
pose and shape results on par with SPIN [5] and captures more details for the
hands and face.



14 V. Choutas et al.

Fig. 16: Comparison of ExPose with the state-of-the-art body regression method:
1. RGB image, 2. SPIN [5], 3. ExPose. Our proposed method produces 3D body
pose and shape results on par with SPIN [5] and captures more details for the
hands and face.
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Fig. 17: Comparison of ExPose with the state-of-the-art body regression method:
1. RGB image, 2. SPIN [5], 3. ExPose. Our proposed method produces 3D body
pose and shape results on par with SPIN [5] and captures more details for the
hands and face.
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Fig. 18: Comparison of ExPose with the state-of-the-art body regression method:
1. RGB image, 2. SPIN [5], 3. ExPose. Our proposed method produces 3D body
pose and shape results on par with SPIN [5] and captures more details for the
hands and face.
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Fig. 19: Comparison of ExPose with the state-of-the-art body regression method:
1. RGB image, 2. SPIN [5], 3. ExPose. Our proposed method produces 3D body
pose and shape results on par with SPIN [5] and captures more details for the
hands and face.
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Fig. 20: Comparison of ExPose with the state-of-the-art body regression method:
1. RGB image, 2. SPIN [5], 3. ExPose. Our proposed method produces 3D body
pose and shape results on par with SPIN [5] and captures more details for the
hands and face.
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Fig. 21: ExPose results visualized from multiple views. 1. RGB image, 2. overlay,
3. , 4. rotations around the vertical axis
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Fig. 22: ExPose results visualized from multiple views. 1. RGB image, 2. overlay,
3. , 4. rotations around the vertical axis
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Fig. 23: ExPose results visualized from multiple views. 1. RGB image, 2. overlay,
3. , 4. rotations around the vertical axis
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Fig. 24: ExPose results visualized from multiple views. 1. RGB image, 2. overlay,
3. , 4. rotations around the vertical axis
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Fig. 25: ExPose results visualized from multiple views. 1. RGB image, 2. overlay,
3. , 4. rotations around the vertical axis
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