
RhyRNN: Rhythmic RNN for Recognizing
Events in Long and Complex Videos

Tianshu Yu†, Yikang Li†, and Baoxin Li

Arizona State University, USA
{tianshuy,yikangli,baoxin.li}@asu.edu

Abstract. Though many successful approaches have been proposed for
recognizing events in short and homogeneous videos, doing so with long
and complex videos remains a challenge. One particular reason is that
events in long and complex videos can consist of multiple heterogeneous
sub-activities (in terms of rhythms, activity variants, composition order,
etc.) within quite a long period. This fact brings about two main diffi-
culties: excessive/varying length and complex video dynamic/rhythm. To
address this, we propose Rhythmic RNN (RhyRNN) which is capable of
handling long video sequences (up to 3,000 frames) as well as capturing
rhythms at different scales. We also propose two novel modules: diversity-
driven pooling (DivPool) and bilinear reweighting (BR), which consis-
tently and hierarchically abstract higher-level information. We study the
behavior of RhyRNN and empirically show that our method works well
even when only event-level labels are available in the training stage (com-
pared to algorithms requiring sub-activity labels for recognition), and
thus is more practical when the sub-activity labels are missing or diffi-
cult to obtain. Extensive experiments on several public datasets demon-
strate that, even without fine-tuning the feature backbones, our method
can achieve promising performance for long and complex videos that
contain multiple sub-activities.

Keywords: Video understanding; Complex event recognition; RNN

1 Introduction

In recent years, video-based event/activity recognition has brought about enor-
mous and important challenges to computer vision. The research community
has devoted considerable effort and made progresses in many related tasks (e.g.,
action recognition [14, 46, 52, 54, 10, 55, 4, 33, 11], temporal localization [43, 7],
video question answering [48, 1], video summarization [19, 34, 66], to name a
few). By learning more representative features and capturing stronger sequen-
tial context, deep-learning-based methods have delivered the state-of-the-art re-
sults on several datasets of short videos (e.g. UCF101 [47], KTH [41], HMDB51

† indicates equal contribution. This work was supported in part by a grant from
ONR. Any opinions expressed in this material are those of the authors and do not
necessarily reflect the views of ONR.



2 T. Yu, Y. Li et al.

[30]). Recently, more challenging datasets (e.g. VIRAT [37], Charades [45] and
Breakfast [31]), which typically contain video clips with complex and/or multiple
sub-activities in a much longer time period, have brought about new challenges
to video recognition. To address these, some event recognition algorithms were
proposed [12, 51, 25, 57, 64, 23, 59, 39, 13, 63, 16], taking into account either long-
time dependency or the activity variation to some extent. In this paper, we
investigate a specific RNN structure to understand long and complex videos.

For clarity of discussion, we make a distinction between activity and event.
Consider one example for each. “Jogging”, which belongs to activity in our con-
text, exhibits relatively fixed or homogeneous visual pattern and temporal dy-
namic (repetitive motion in this case). In contrast, “Cooking spaghetti”, which
is categorized as an event, is composed of multiple sub-activities (e.g., “bringing
out condiment”, “boiling spaghetti”, etc.) that can occur in different rhythm,
order or visual appearance, resulting in much more complex scene dynamics
for an algorithm to capture. Furthermore, some events can occur over a sig-
nificantly longer time period than activities. In general, events in long videos
brings about two challenges to video-based recognition: complexity in content
and excessive/varying length, making it challenging to adapt a traditional ac-
tivity recognition model designed for much simpler videos.

Another important yet barely investigated issue in video-based recognition
is, how to identify video events when only event-level labels are available for
training a model. This arises often due to lack of detailed labeling information
that is difficult and/or costly to obtain for long videos. Though some previous
methods incorporate sub-activity labels to enhance event-level recognition [31,
32, 23, 24], such fine-grained labels are not always available in practice due to
the aforementioned reason. In general, the event label describing a long video is
highly abstract in nature, and it may imply a lot of latent contexts.

In this paper, we seek to make a progress towards long and complex video
event recognition (with or without sub-activity labels). We further study a way
to perform video-based recognition when only event-level labels are available.
To this end, we propose Rhythmic RNN (RhyRNN) which dynamically cap-
tures the multi-level contexts, as well as a diversity-driven sequential pooling
(DivPool) and a Bilinear Re-weighting (BR) mechanism. The work has the
following contributions: 1) We introduce RhyRNN which can ease the gradi-
ent back-propagation for long and complex sequences. RhyRNN also allows to
capture latent video context at different levels; 2) We develop DivPool and BR
strategies, which further enable multi-level feature aggregation (analogous to
pooling in CNNs) with varying sequence length; 3) We study the property and
behavior of all the proposed modules analytically and empirically; 4) Our method
delivered superior or competitive performance in long video datasets compared
to the state-of-the-art algorithms even without fine-tuning feature backbones.



RhyRNN 3

2 Related Work

Short activity recognition Some early video datasets (e.g., KTH [41] and
UCF101 [47]) typically contain activity/action-level video clips, which are ho-
mogeneous in content without too complex temporal dynamics. A conventional
trial for activity recognition employed 2D CNN features to perform recognition
[27], while some variants incorporate complementary frame-level motion features
[46, 4, 3]. The main drawback of such a line of works is that the temporal pat-
terns cannot be well learned since neither short nor long range dependencies
are explicitly taken into account. 3D CNNs are natural extension from 2D by
introducing one additional kernel dimension on the time axis [49, 6, 56], but with
excessive parameters. To alleviate this, several works were proposed to decouple
the 3D kernel into combinations of lower dimension (e.g., [9, 50, 61]). Another
line of works in parallel to CNNs employs RNNs [11, 33, 42, 10]. RNNs can handle
varying length of videos compared with CNNs, but suffer from gradient vanish-
ing/explosion issue especially when the sequence is too long.

Complex event recognition Datasets consisting of long and complex videos
bring about new challenges [37, 31, 45]. Extending CNNs for long-range video
recognition has become an aroused research interest recently. To capture more
complex temporal patterns in long videos, [44] stacks a CRF on top of CNN
output. Under some specific sampling procedure, TSN [55] and TRN [67] model
the video-level representation by considering inter and intra video relations, re-
spectively. Non-local networks [56] built upon 3D CNN can range up to 128 time
steps, hence is capable of handling more complex dynamics. Timeception [23]
can further capture the dependencies up to 1024 frames by designing multi-scale
convolutional kernels. In parallel to CNNs, RNNs are also investigated to tackle
long and varying video length with complex context. [65] considers dense label-
ing in complex videos, where the expensive part is to densely label the training
data. [58] proposed a hierarchical RNN to capture temporal visual attention.
Both [33] and [11] devise hierarchical RNN structures to obtain multi-level rep-
resentation, which proved effective in understanding video content. In [42], soft
attention is computed spatially and temporally via deep RNNs, which helps the
model to focus selectively on more meaningful parts of a video.

RNNs LSTM [22] and GRU [8] are successively proposed to address the
gradient vanishing/exploding issue by introducing the gating mechanism against
standard RNNs. There is a series of further developments following this strategy
[17, 5, 26]. Skip-RNN [5] learns to keep the hidden state intact at some steps once
“Skip” is emitted. H-detach [26] detaches the gradient flow at an arbitrary time
step under a Bernoulli distribution. Some other efforts focused on the variants of
standard RNNs without using gating. Multiplicative Integration [60] couples the
operations on inputs and hidden states. In this fashion, the vanishing gradient is
likely to be correlated by the input sequence. Unitary-RNN [2] allows smoother
gradient flow by constraining RNNs to have a unitary transition matrix. Very
recently, IndRNN [35] was proposed, which enforces the neurons in each RNN
unit to be independent. By doing so, IndRNN can handle long sequences and
achieved state-of-the-art performance on multiple benchmarks.



4 T. Yu, Y. Li et al.

……

……

recognition
xi xi+1 xj xj+1

hi+1 hi+2 hj hj+1 hj+2hi-1

Skip-IndRNN DivPool BRRhyRNN

Fig. 1: Overview of our framework which mainly consists of 3 parts: RhyRNN,
DivPool and BR (a recognition module). BR refers to the GRU equipped with
bilinear re-weighting in our setting.

3 Methodology

3.1 Algorithm overview

The overview of our framework consisting of three modules is illustrated in
Fig. 1. The model takes visual features as input and feeds them sequentially
to RhyRNN. RhyRNN outputs embedded features with the same length as the
sequence. Using a diversity score, DivPool is then applied to select the most
informative features as inputs to the following recognition module. For the final
recognition stage, we employ a GRU equipped with BR module. The output of
GRU at the final timestamp will be fed to a two-layer fully connected network at
last. We detail each part in the following sections. Our approach is motivated by
the following considerations. First, our approach should be capable of handling
long sequences. To this end, we need to design a specific RNN structure which
eases the gradient flow under this setting. Second, since complex events contain
latent contexts in different scales, our approach needs to capture such multi-level
dynamics. A hierarchical model, in this case, can be a good choice as done in a
large body of relevant literature.

3.2 RhyRNNs

One essential part of our algorithm is to deploy an architecture that is capable of
handling a long and complex sequence. In this section, we propose the RhyRNN
structure, which is inspired in part by IndRNN [35] and Skip-RNN [5], and
is much more powerful than both (see Sec. 4). IndRNN enforces each neuron
operating on the hidden state to be independent, and the update rule of IndRNN
reads:

ht = σ (Wxt + u� ht−1 + b) (1)

where � is the element-wise product and σ(·) is the activation function (ReLU
function in [35]). ht corresponds to the hidden state at time t. It has been shown



RhyRNN 5

that, by enforcing the neuron independence (no matrix multiplication), back-
propagation upon Eq. (1) becomes more stable and manageable. IndRNN has
delivered good performance for very long sequences.

While IndRNN alleviates gradient vanishing by replacing matrix multipli-
cation with scalar multiplication, we propose RhyRNN to further shorten the
longest path of the computational graph of IndRNN independently for each neu-
ron, through introducing a skip operator. This idea is similar to [5] that imple-
ments skip operation on conventional RNN, which can be viewed as a Bernoulli
distribution sampler on UPDATE or COPY operations at each timestamp t
(an analogous idea appeared in h-detach [26] which is applied on LSTM). Our
RhyRNN differs from Skip-RNN in such a way that, unlike [5] where UPDATE
and COPY operations are computed on a whole hidden state ht by a matrix
multiplication, our RhyRNN structure decides the choice of UPDATE or COPY
operation by using Hardmard’s product, which further makes the decision inde-
pendent of each neuron. The mathematical formula of RhyRNN can be written
as follows:

st = fbinarize(ot) (2)

ht = st � h̃t + (1− st)� ht−1 (3)

∆ot = ζ(wp � ht + bp) (4)

ot+1 = st �∆ot + (1− st)� (ot + min(∆ot,1− ot)) (5)

where ζ(·) is the sigmoid activation function and fbinarize is the step function:
fbinarize : [0, 1]n → {0, 1}n, which binarizes each input element. wp is the weight

vector that can be learned to obtain the incremental value ∆ot. h̃t is obtained
by Eq (1) (replacing ht with h̃t) and ht−1 is the hidden state from the previous
timestamp.

Remark. There are two advantages of utilizing Hardmard’s product in com-
puting the gate value st. Firstly, it keeps the independence of each neuron in
IndRNN intact, which allows each neuron to have a distinct strategy of choosing
UPDATE/COPY operations and thus being capable of capturing the varying
context in different scales. We will demonstrate this advantage in Section 4. Sec-
ondly, the computation of the gradient of the RhyRNN is easier and more stable
compared to either IndRNN or Skip-RNN, since the lengths of gradient path for
different neurons can be shortened due to the skip operator, and the absence of
matrix multiplication will yield more tractable gradient flow.

To enable the intra-neuron interaction, we stack multiple layers of RhyRNNs
and apply a matrix multiplication Wl between layers to aggregate the global
information. Specifically, assuming ht,l to be the input to RhyRNN (ht,0 = xt)
at layer l and time t, we have:

ht,l = σ(Wlht,l−1 + ul � ht−1,l + bl) (6)

Skip regularization To limit the computational budget, we introduce a reg-
ularization term that controls the frequency of UPDATE s similar to [5]. This



6 T. Yu, Y. Li et al.

……𝜎

f

𝜁

𝜎

f

𝜁

……

𝜁 𝜁

UPDATE COPY UPDATE

xi xj

hi-1 hj+1

oi-1 oj+1𝚫oi

hi

Fig. 2: A basic unit in RhyRNN, where UPDATE is emitted at time i and j
and all the resting operations in between are COPY s. ⊗ and ⊕ correspond to
element-wise product and plus, respectively. A sequence can be divided into sev-
eral consecutive basic units. Then the gradient back-propagated can be written
as the product of multiple gradients of such units. Zoom in for better view.

term is written as:

L = λ
∑
t,k

st,k (7)

where st,k refers to the kth binary neuron decision (on COPY or UPDATE, see
Eq. (2)). In general, this term sums up the number of UPDATE s on all neurons
at every time step.

Gradient analysis We employ a strategy to approximate the gradient of the
step function fbinarize as in [5]:

∂fbinaries(x)/∂x = 1 (8)

In other words, Eq. (2) and Eq. (8) are implemented in forward-pass and backward-
pass for the network, respectively. Following such a setting, the gradient during
the backward pass by taking an example is shown in Fig. 2. In all the follow-
ing analyses, we discard the bias b and bp for simplicity. In Fig. 2, we analyze
the gradient behavior of a sequence segment where only at time stamps i and
j are COPY s and all the resting time stamps in between are UPDATE s. This
segment can be viewed as a basic unit since any forward pass of RhyRNN can
be separated into such segments (with varying numbers of COPY s). Since all
operations between i and j are COPY s, the hidden state hi will directly pass
until j, thus in the forward pass we have:

hj+1 = σ(Wxj + u� hi) (9)

In Eq. (9) we omit a term fbinarize(oj) since it equals 1 (see Fig. 2 at time
j). However, this term will participate in the backward pass according to the
gradient defined in Eq. (8). We expand Eq. (9) as follows:

hj+1 = fbinarize

(
j−i∑

ζ (wp � hi)

)
︸ ︷︷ ︸

=1,for the basic unit

�σ(Wxj + u� hi) (10)



RhyRNN 7

Given Eq. (10) and after a series of mathematical manipulations, we can obtain
the gradient at time i by taking into account Eq. (8):

∇Ji =
∂hj+1

∂hi
= u� σ′ + σ �

j−i∑
wp �wp � (1−wp � hi)� hi︸ ︷︷ ︸ (11)

where the term within the underbrace is the basic unit for any such segment and
σ′ is the gradient of function σ. Thus, one can calculate the gradient at any time
k (where at k there is an UPDATE emitted) by calculating the element-wise
product:

∂J

∂hk

∣∣∣∣
k=UPDATE

=
∏

l=UPDATE ,l>k
∇Jl (12)

where
∏

is the element-wise product. We note two facts involved in this gradi-
ent chain rule: 1) there is only scalar multiplication involved in the unit (and
element-wise product of multiple such units) which is more tractable than matrix
multiplication; 2) hidden states his directly participate in the back-propagation,
which can correlate and thus stabilize the gradient from vanishing/exploding
as discussed in Multiplicative Integration [60]. In this sense, RhyRNN has a
gradient behavior benefiting from both IndRNN and Multiplicative Integration.
Readers are referred to [35] and [60] for more details on related analysis.

3.3 DivPool

Though the proposed RhyRNN can capture the context at different scales to
some extent, it still cannot fully utilize the intrinsically hierarchical context
of long videos. In this section, we propose a temporal pooling strategy that
explicitly selects most contributing hidden states within a sequence.

The pooling stage is essential in CNNs, which aggregates low-level represen-
tations into high-level ones. A series of works also focused on temporal pooling
where the objective is to hierarchically shorten and abstract the temporal repre-
sentations [18, 15, 62, 36]. In this paper, we propose a simple yet efficient method
termed as diversity-driven sequential pooling (DivPool) by mostly diversify-
ing the capacity of the pooled representations. Our method is based on the
observation that, since a video is always highly redundant, an effective pooled
representation should ignore the slight difference across frames and concentrate
on the most significant changes. Thus, our pooling method performs selection to
maximally diversify the hidden states (features). To this end, we first calculate
the dissimilarity by cosine distance between ht and its previous state ht−1:

at = 1−
hth

T
t−1

‖ht‖‖ht−1‖+ ε
(13)

where ε > 0. Then we sort all ats in descending order and select the α% most
dissimilar states as the pooled features. Note that this procedure works in an
incremental fashion and thus a pairwise distance calculation on all states is not
necessary, yielding high efficiency in implementation.



8 T. Yu, Y. Li et al.

h0,0 h1,0 h2,0 h3,0 h4,0 h5,0

h1,1 h3,1 h4,1

h1,2 h4,2

lossforward

backward 1

backward 2

Fig. 3: Schematic diagram of hierarchical architecture with DivPool. The black
arrow indicates the flow in forward pass. Orange and blue arrows correspond
to the shortest and the longest backward path from state h1,0 to the loss dur-
ing backward pass, respectively. We note “backward 1” path is shorter than
“backward 2” path due to this hierarchy.

The DivPool layer has no learning parameters and thus is similar to max-
pooling or average-pooling in CNNs. Yet it differs from max/average-pooling
since it performs pooling globally on all features. Besides, it generates the pool-
ing cue in an incremental fashion which is adopted in some effective sequential
pooling strategies [18, 15]. The only overhead of performing DivPool is on sorting
at, which is typically O(n log n) and can be efficient in practice.

Back-propagation DivPool dynamically generates links across RhyRNN lay-
ers in the computational graph. The generated links will be effective during a
forward-backward round for the network computation. The back-propagated gra-
dients will only follow the general RNN’s update path together with the current
effective links. Fig. 3 schematically shows an example. We see from Fig. 3 that
DivPool can greatly shorten the shortest computational path, which is dominant
(compared to other longer paths) in propagating gradients to avoid the vanishing
issue. For example, assuming the pooled ratio is 0.5 with q RhyRNN layers and
the sequence length is n, the length of the shortest path becomes O(q+ log(n)).

3.4 Bilinear reweighting for recognition

With DivPool, the redundancy and the complexity of the input video sequence
has been reduced. In the following stage, to better incorporate the dependency
of the long-range selected hidden states, we design the bilinear reweighting (BR)
mechanism to capture the temporal relation among the pooled hidden states.

In our model, we employ a simplified bilinear reweighting (BR) strategy to
learn and enhance the temporal correlation of patterns within the pooled hidden
states (features). The BR module is applied to the output sequence of DivPool
and to embed the hidden states to a new feature re-weighted by the pairwise
affinity scores. BR module is inspired by bilinear attention [29] but follows the
metric properties. Assuming that the selected features from DivPool form a



RhyRNN 9

feature matrix V, BR rule can be written as:

S = V>norm(M)V

V̂ = V ◦ softmax (proj (norm(S)))
(14)

where M = PP> is a symmetric semi-definite matrix and P is the parameter to
be learnt. This decomposition is to reduce the number of weights to be learnt.
The output V̂ is the reweighted feature matrix. norm(·) performs column-wise
L2-normalization and proj(·) projects a square matrix into a vector by sum-
marizing the elements per-column. norm(·) performs twice to avoid the magni-
tude of the final affinity being too large (which may result in almost a one-hot
reweighting vector). Note BR (Eq. (14)) differs from Bilinear Pooling in [29] by
introducing a column-wise projection operator. In this sense, only the magnitude
of the input is adjusted, rather than replacing the input by a sum of all other
inputs. The intuition is that, since the input V carries temporal information, a
summing schema may violate or mix up this intrinsic (e.g. ordering information).

The output sequence V̂ of BR module is then fed to a standard GRU [8].
We utilize the output of the GRU module at the final time step as the video-
level feature and append two fully connected layers following GRU to conduct
recognition for different datasets.

4 Experiment

4.1 Datasets and Reference Methods

We conducted experiments on Breakfast [31], VIRAT 2.0 surveillance video [37]
and Charades [45]. All the experiments were done on a computer equipped with
a single GTX Titan Xp GPU with 12GB memory.

Breakfast dataset [31] comprises of 10 breakfast preparation related events
that are performed by 52 different individuals in 18 different kitchen scenes.
The total number of video clips is 1989. The overall video duration is about
77 hours and the average length of each video is about 140 seconds. Events
in the Breakfast dataset are very complicated since each event contains several
sub-activities, indicating much higher intra-class variations. We split the dataset
into training and testing by following the “s1” split [31].

VIRAT 2.0 surveillance video dataset [37] includes about 8 hours of
high-resolution surveillance videos (i.e. 1080p or 720p) with 12 kinds of events
from 11 different scenes. In our experiment, we only focus on 6 types of person-
vehicle interaction events that occur on the parking lot scene. The input video
sequence only contains the event area that is cropped based on the ground truth
bounding box. The training and testing video samples are randomly selected by
following the ratio of 7:3. As such, we conduct the training multiple rounds and
report the average performance.

Charades dataset [45] is a multi-label action video benchmark with 157
classes in total.Each video is around 30 seconds and contains 6 singleton actions



10 T. Yu, Y. Li et al.

20 40 60 80 100 120 140 160 180 200

2

4

6

8

10 0

0.5

1

Fig. 4: Visualization of “Skip” operation on the first 10 channels/neurons (out
of 256) at the second layer of RhyRNN on a video with 212 frames from Break-
fast dataset. Yellow and Blue bars correspond to “UPDATE” and “COPY ”
operations, respectively. Vertical and horizontal axes refer to channel and frame,
respectively. 10 neurons perform Skip with almost different rhythm to each other.

on average. We follow the same training/testing split in [23] which contains 7.8k
and 1.8k videos in each. We report the mean average precision (mAP) on two
challenging tasks: multi-label action recognition and temporal localization.

Reference methods We employed several existing algorithms for compar-
ison. C3D [49], TSN [55] and TRN [67] are implemented in a simple version
with only spatial (RGB) features (without optical-flow). Two-stream [46] and
Temporal Fields [44] utilize both RGB and optical flow features. IDT [53]
alters to employ action trajectories. For C3D, we train it from scratch on all
datasets and preprocess frames by following the [49]. For TSN, the frame feature
is extracted from a pre-trained VGG16 which won’t be fine-tuned in the training
stage. Only the segmental consensus part of TSN are trained. We also compare
plain IndRNN [35] for the Breakfast dataset by stacking 6 layers of IndRNN
cells and setting the dropout ratio to 0.5 for each other layer. 3D-ResNet [20] is
employed as both a peer method and a backbone. Timeception [23] (TC) is com-
pared since the authors claimed that Timeception is a strong baseline for com-
plex video and can capture long range dependency. (Supervised) SuperEvents
[39] and (weakly-supervised) ActGraph [40] are selected for comparison on
Charades. For the tests of the methods with CNN backbone on Breakfast and
Charades, we employ the same frame sampling procedure as in [23].

4.2 Implementation Details

We employ ResNet101 [21] pre-trained on ImageNet and I3D [6] pre-trained
on Kinetics400 to extract features for all frame-wise based algorithms. For event
recognition and multi-label action recognition/localization tasks, we employ Cross-
Entropy and Binary Cross-Entropy as loss functions, respectively. For the pro-
posed method, either ResNet101 or I3D backbone is NOT fine-tuned on three
selected datasets during the training stage due to GPU resource limitation, differ-
ent from some prior works [23, 56, 13, 59] which update the CNN backbones. The
features are obtained from the last pooling layer of ResNet101 and I3D, yield-
ing 2048-d and 1024-d, respectively. The output (as well as all hidden state)
dimension of RhyRNN is 256 and the dimension of the output of BR is 128.
Furthermore, there are two fully connected layers with 100 and the number of
classes (e.g. 10 for event recognition on Breakfast) neurons following BR.



RhyRNN 11

For 3D-ResNet50 and Timeception [23] models, we extract the 3D video
segments with size of 1 × 7 × 7 (time × height × width) from a 3D ResNet-50
model which is pre-trained on Kinetics-400 [28]. We follow the settings in [23]
and collect 64 uniformly sampled video segments, while each segment contains
8 successive frames.

All the proposed and baseline algorithms are implemented with PyTorch [38]
toolbox. We train our model with 100 epochs and use Adam optimizer with
the learning rate 1e − 5. The pooling ratio for DivPool is set to 25% and the
control parameter λ for the skip regularization is set to 1e − 7 empirically. For
the Breakfast dataset, the training samples are subsampled every 5 frames. The
first and last 10 frames are removed from the training samples since those frames
are mostly redundant.

4.3 Breakfast dataset

Experimental results (of event-level recognition and multi-label activity recog-
nition) on this dataset are summarized in Tab. 1a1. In general, our method (full
setting) outperformed all the other peer methods in event-level recognition, with
competitive performance against state-of-the-art on multi-label recognition. We
also see the proposed RhyRNN (2-layer) has better performance compared to
IndRNN (6-layer) or SkipRNN without introducing any other modules.

We further evaluate the behavior of our model with multiple RhyRNN +
DivPool settings (without BR) on Breakfast, as shown in Tab. 1b. Specifically,
“4 RhyRNN + 1 DivPool” and “4 RhyRNN + 2 DivPool” settings are added,
referring to the structure {4×RhyRNN+DivPool} and {2×RhyRNN+DivPool+
2 × RhyRNN + DivPool}, respectively. We can conclude that 2-layer RhyRNN
(standard setting in all tests) has slightly better performance than other two.

Independent Skip strategy To investigate the effectiveness of “Skip” op-
erations in RhyRNN, we visualize the Skip operations (in Fig. 4) of the first 10
neurons of the weights in the second RhyRNN layer on a breakfast video clip
(with length 212) in the testing stage. It is seen that almost every neuron (each
row) indeed holds a distinct and independent Skip rhythm. While some neurons
emit UPDATE s with high frequency to capture the context in high temporal
resolution (e.g., neuron 1, 4 and 10), other neurons learn lazier strategies.

4.4 VIRAT 2.0 dataset

The performance on this dataset is shown in Tab. 2. Specifically, we test the
capacity of algorithms under varying sampling rhythm compared to training
rhythm. As shown in Tab. 2, “original” indicates sampling each frame (and
feature) with the same sampling rhythm at the training stage. The other three

1 We re-implemented the method TC [23] following the same setting but did not obtain
the performance reported in their original paper. Since there is a large gap between
our implementation and their results, we report the best performance of [23] in our
implementation.



12 T. Yu, Y. Li et al.

Table 1: Results on Breakfast dataset on (a) event recognition (in Acc) and multi-
label classification (in mAP), (b) different settings of RhyRNNs. “RhyRNN(2-
layer)” is a model stacked with 2 layers of RhyRNNs concatenated with 2 fully
connected layers. Blue color corresponds to singleton RNNs.

(a) Event recognition

Method Feature Acc (%) mAP (%)

TSN [55] 2D 14.3 -
LRCN [10] 2D 13.3 -
C3D [49] 3D 14.6 -

IndRNN(6-layer) [35] 2D 19.4 14.1
SkipRNN [5] 2D 31.9 28.7

IndRNN(+DivPool+BR) 2D 42.7 40.8
SkipRNN(+DivPool+BR) 2D 40.2 -

3D-Res50 [20] 3D 23.7 -
3D-Res50+TC [23] 3D 40.3 41.2

RhyRNN(2-layer) 2D 35.8 30.5
RhyRNN(+DivPool+BR) 2D 44.3 41.9

(b) Different settings

S
et

ti
n
g

2
R

h
y
R

N
N

+
1

D
iv

P
o
o
l

4
R

h
y
R

N
N

+
1

D
iv

P
o
o
l

4
R

h
y
R

N
N

+
2

D
iv

P
o
o
l

A
cc 43.7 43.1 41.4

Table 2: Results on VIRAT 2.0 dataset. The performance of our method is under
full setting (RhyRNN+DivPool+BR).

Method original S1 S2 S3

C3D [49] 42.9 40.2 37.7 41.1
TSN [55] 52.4 52.1 51.6 51.9

IndRNN (6-layer) [35] 77.6 78.3 78.2 78.0
IndRNN (+DivPool+BR) 79.0 77.4 78.2 78.2

Ours (full setting) 81.9 81.5 81.7 80.4

scenarios are designed with different combinations of sampling rates. To make
the problem more challenging, we first equally divide each testing video sequence
into three intervals and apply different sampling rates to each interval to form
a new testing sequence. For scenario one (S1), we subsample the first and the
third intervals with every 2 and 5 frames respectively, while keeping the rhythm
intact for the middle interval. In scenario two (S2), we subsample the first and
third intervals every 5 and 2 frames, respectively (reverse of S1). For the last
scenario (S3), we randomly sample out a half length of the testing frames. Since
the randomness of the last scenario brings uncertainty, we test the well-trained
model 5 times and report the average performance of this scenario. We see that
our model is quite stable under varying sampling rhythm.

4.5 Charades dataset

For the Charades dataset, we employ I3D [6] with 1024-D output feature pre-
trained on Kinetics-400 without inheriting any frame-level knowledge from or



RhyRNN 13

Table 3: Result on Charades of multi-label activity (MLA) (a) recognition
and (b) localization. For (a), “w/o BR” and “w/ BR” refer to the settings
removing and keeping BR, respectively. For (b), “S” and “W” refer to “su-
pervised” and “weakly supervised”, respectively. *IndRNN here indicates In-
dRNN+DivPool+BR. †This result is quoted from original Skip-RNN paper [5]
where mAP is calculated per 100 frames instead of 25 frames. (TS: two-stream;
TF: temporal fields)

(a) MLA recognition

Method Modality mAP(%)

C3D[49] RGB 10.9
TS[46] RGB+Flow 18.6

TS+LSTM[46] RGB+Flow 17.8
IndRNN*[35] RGB 21.1

IDT[53] RGB+Flow 17.2
TF[44] RGB+Flow 22.4

TRN[67] RGB 25.2

Ours(w/o BR) RGB 24.6
Ours(w/ BR) RGB 25.4

(b) MLA localization

Model Training mAP(%)

LSTM[39] S 10.4

Skip-RNN[5]† S 8.94
TS+LSTM[39] S 18.2

SuperEvents[39] S 19.4
TF[44] S 12.8
I3D[6] S 17.2

ActGraph[40] W 15.8
Ours W 17.6

fine-tuning on the Charades dataset [6, 56, 23]. The frame stride is set to 8 for
the I3D model and the size of the feature matrix for each video clip equals
to Timelength × 1024 where the TimeLength = FrameLength/8. We test two
challenging tasks: multi-label (MLA) recognition and temporal localization.

Tab. 3a shows the MLA recognition performance of different algorithms on
the Charades dataset. And the results demonstrate that our algorithm has a
competitive capacity compared to the state-of-the-art on capturing the temporal
information of sub-actions in the complex videos.

Tab. 3b summarizes the results of temporal localization. To this end, we
inherit the model parameters pre-trained on MLA recognition task but removing
the DivPool module2. We then fine-tune the last 2 fully-connected layers with
BCE loss on MLA recognition task (only for the last time stamp) for 5 epochs.
In the testing stage we pass the output of the RhyRNN at each time stamp
through the last 2 fully-connected layers to produce score of action classes for
each frame. Action class with the highest score is regarded as the predicted label
for the current frame. Since during the training stage no frame-level label is
provided, our model is trained in a weakly supervised fashion, which is more
challenging than fully supervised localization task (e.g. [39, 44]). Surprisingly, we
see that our model outperforms several fully supervised counterparts and a very
recent weakly-supervised method ActGraph [40]. This observation supports our
claim that RhyRNN is capable of capturing temporal context at multiple levels.

2 DivPool cannot work frame-wise since it selects only a portion of time stamps.
Therefore we remove DivPool from the full setting.



14 T. Yu, Y. Li et al.

Table 4: (a) Ablation study on Breakfast dataset. In the full setting, we stack
2 layers of RhyRNNs followed by DivPool and BR. (b) Model size comparison.
Note: there are two layers of RhyRNNs concatenated together with both hidden
state 256-D.

(a) Ablation

RhyRNN DivPool BR Acc mAP√ √ √
44.3 41.9√ √

× 43.7 40.5√
×

√
40.7 35.2√

× × 35.8 -

(b) Model size

Method Model size

TC [23] 15.8MB
Ours (Full setting) 23.2MB

Ours (RhyRNN+DivPool) 20.4MB

4.6 Ablation analysis and model size

Ablation analysis was conducted on the Breakfast dataset following the settings
in Sec. 4.3. Results are summarized in Tab. 4a. By turning off DivPool, we
simply fed all the output states of RhyRNN to BR. On the other hand, we
removed BR and fed the pooled states to a naive GRU once turning off BR. We
also tested the capacity of the RhyRNN module in capturing complex temporal
information by turning off both DivPool and BR modules. We see that the full
setting (RhyRNN+DivPool+BR) delivers the best performance among all. And
the DivPool module plays a more important role in understanding the long and
complex videos, compared with the BR module. Moreover, the RhyRNN module
itself is able to acquire information from long and complex videos compared with
some conventional algorithms presented in the Tab 1a. In general, the proposed
modules in our framework consistently enhance the performance.

Tab. 4b summarizes the models sizes on different setting under event-level
recognition on the Breakfast dataset. We note the size of our model with or
without BR is around 20MB, comparative to the size of state-of-the-art method
TC [23], which claimed to be capable of reducing the model size significantly.

5 Conclusion

In this paper, we study the task of recognizing events in long and complex videos.
Since there is critical distinction between traditional action recognition based on
short clips and event recognition using long videos, simply adapting the meth-
ods for the former to the latter is ineffective. To address this, we designed an
end-to-end RNN framework taking into account the latent context at multiple
levels. Especially, three novel and essential parts were proposed: RhyRNN, Di-
vPool and BR. By taking advantage of each, our model can capture video context
at different scales in an adaptive and hierarchical fashion. We investigated the
property of the proposed model and demonstrated its superiority through ex-
tensive experiments even without the need of fine-tuning the feature extraction
backbones.



RhyRNN 15

References

1. Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Lawrence Zitnick, C., Parikh,
D.: Vqa: Visual question answering. In: ICCV (2015)

2. Arjovsky, M., Shah, A., Bengio, Y.: Unitary evolution recurrent neural networks.
In: ICML (2016)

3. Bilen, H., Fernando, B., Gavves, E., Vedaldi, A.: Action recognition with dynamic
image networks. PAMI 40(12), 2799–2813 (2017)

4. Bilen, H., Fernando, B., Gavves, E., Vedaldi, A., Gould, S.: Dynamic image net-
works for action recognition. In: CVPR (2016)

5. Campos, V., Jou, B., Giró-i Nieto, X., Torres, J., Chang, S.F.: Skip rnn: Learning
to skip state updates in recurrent neural networks. arXiv preprint arXiv:1708.06834
(2017)

6. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the
kinetics dataset. In: CVPR (2017)

7. Chao, Y.W., Vijayanarasimhan, S., Seybold, B., Ross, D.A., Deng, J., Sukthankar,
R.: Rethinking the faster r-cnn architecture for temporal action localization. In:
CVPR (2018)

8. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

9. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In:
CVPR (2017)

10. Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan,
S., Saenko, K., Darrell, T.: Long-term recurrent convolutional networks for visual
recognition and description. In: CVPR (2015)

11. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton
based action recognition. In: CVPR (2015)

12. Duan, L., Xu, D., Tsang, I.W.H., Luo, J.: Visual event recognition in videos by
learning from web data. PAMI 34(9), 1667–1680 (2012)

13. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recogni-
tion. In: ICCV (2019)

14. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fu-
sion for video action recognition. In: CVPR (2016)

15. Fernando, B., Gavves, E., Oramas, J., Ghodrati, A., Tuytelaars, T.: Rank pooling
for action recognition. PAMI 39(4), 773–787 (2016)

16. Fernando, B., Tan, C., Bilen, H.: Weakly supervised gaussian networks for action
detection. In: WACV (2020)

17. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: Continual prediction
with lstm (1999)

18. Girdhar, R., Ramanan, D.: Attentional pooling for action recognition. In: NIPS
(2017)

19. Gong, B., Chao, W.L., Grauman, K., Sha, F.: Diverse sequential subset selection
for supervised video summarization. In: NIPS (2014)

20. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3d cnns retrace the history
of 2d cnns and imagenet? In: CVPR (2018)

21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

22. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)



16 T. Yu, Y. Li et al.

23. Hussein, N., Gavves, E., Smeulders, A.W.: Timeception for complex action recog-
nition. In: CVPR (2019)

24. Hussein, N., Gavves, E., Smeulders, A.W.: Videograph: Recognizing minutes-long
human activities in videos. In: ICCVW (2019)

25. Jiang, Y.G., Bhattacharya, S., Chang, S.F., Shah, M.: High-level event recognition
in unconstrained videos. International journal of multimedia information retrieval
2(2), 73–101 (2013)

26. Kanuparthi, B., Arpit, D., Kerg, G., Ke, N.R., Mitliagkas, I., Bengio, Y.: h-detach:
Modifying the LSTM gradient towards better optimization. In: ICLR (2019)

27. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-
scale video classification with convolutional neural networks. In: CVPR (2014)

28. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan,
S., Viola, F., Green, T., Back, T., Natsev, A., Suleyman, M., Zisserman, A.: The
kinetics human action video dataset. ArXiv abs/1705.06950 (2017)

29. Kim, J.H., Jun, J., Zhang, B.T.: Bilinear attention networks. In: NIPS (2018)

30. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video
database for human motion recognition. In: ICCV (2011)

31. Kuehne, H., Arslan, A., Serre, T.: The language of actions: Recovering the syntax
and semantics of goal-directed human activities. In: CVPR (2014)

32. Kuehne, H., Gall, J., Serre, T.: An end-to-end generative framework for video
segmentation and recognition. In: WACV (2016)

33. Lan, T., Zhu, Y., Roshan Zamir, A., Savarese, S.: Action recognition by hierarchical
mid-level action elements. In: ICCV (2015)

34. Lee, Y.J., Ghosh, J., Grauman, K.: Discovering important people and objects for
egocentric video summarization. In: CVPR (2012)

35. Li, S., Li, W., Cook, C., Zhu, C., Gao, Y.: Independently recurrent neural network
(indrnn): Building a longer and deeper rnn. In: CVPR (2018)

36. Nguyen, P., Liu, T., Prasad, G., Han, B.: Weakly supervised action localization by
sparse temporal pooling network. In: CVPR (2018)

37. Oh, S., Hoogs, A., Perera, A., Cuntoor, N., Chen, C., Lee, J.T., Mukherjee, S.,
Aggarwal, J.K., Lee, H., Davis, L., Swears, E., Wang, X., Ji, Q., Reddy, K., Shah,
M., Vondrick, C., Pirsiavash, H., Ramanan, D., Yuen, J., Torralba, A., Song, B.,
Fong, A., Roy-Chowdhury, A., Desai, M.: A large-scale benchmark dataset for
event recognition in surveillance video. In: CVPR (2011)

38. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch (2017)

39. Piergiovanni, A., Ryoo, M.S.: Learning latent super-events to detect multiple ac-
tivities in videos. In: CVPR (2018)

40. Rashid, M., Kjellström, H., Lee, Y.J.: Action graphs: Weakly-supervised action
localization with graph convolution networks. arXiv preprint arXiv:2002.01449
(2020)

41. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: A local svm ap-
proach. In: ICPR (2004)

42. Sharma, S., Kiros, R., Salakhutdinov, R.: Action recognition using visual attention.
In: NIPS Time Series Workshop (2015)

43. Shou, Z., Wang, D., Chang, S.F.: Temporal action localization in untrimmed videos
via multi-stage cnns. In: CVPR (2016)

44. Sigurdsson, G.A., Divvala, S., Farhadi, A., Gupta, A.: Asynchronous temporal
fields for action recognition. In: CVPR (2017)



RhyRNN 17

45. Sigurdsson, G.A., Varol, G., Wang, X., Farhadi, A., Laptev, I., Gupta, A.: Hol-
lywood in homes: Crowdsourcing data collection for activity understanding. In:
ECCV (2016)

46. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recog-
nition in videos. In: NIPS (2014)

47. Soomro, K., Zamir, A.R., Shah, M., Soomro, K., Zamir, A.R., Shah, M.: Ucf101:
A dataset of 101 human actions classes from videos in the wild. CoRR (2012)

48. Tapaswi, M., Zhu, Y., Stiefelhagen, R., Torralba, A., Urtasun, R., Fidler, S.:
Movieqa: Understanding stories in movies through question-answering. In: CVPR
(2016)

49. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotem-
poral features with 3d convolutional networks. In: ICCV (2015)

50. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at
spatiotemporal convolutions for action recognition. In: CVPR (2018)

51. Tran, S.D., Davis, L.S.: Event modeling and recognition using markov logic net-
works. In: ECCV (2008)

52. Veeriah, V., Zhuang, N., Qi, G.J.: Differential recurrent neural networks for action
recognition. In: ICCV (2015)

53. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: ICCV
(2013)

54. Wang, L., Qiao, Y., Tang, X.: Action recognition with trajectory-pooled deep-
convolutional descriptors. In: CVPR (2015)

55. Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., Van Gool, L.: Temporal
segment networks: Towards good practices for deep action recognition. In: ECCV
(2016)

56. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR
(2018)

57. Wang, X., Ji, Q.: Hierarchical context modeling for video event recognition. PAMI
39(9), 1770–1782 (2017)

58. Wang, Y., Wang, S., Tang, J., O’Hare, N., Chang, Y., Li, B.: Hierarchical attention
network for action recognition in videos. arXiv preprint arXiv:1607.06416 (2016)

59. Wu, C.Y., Feichtenhofer, C., Fan, H., He, K., Krahenbuhl, P., Girshick, R.: Long-
term feature banks for detailed video understanding. In: CVPR (2019)

60. Wu, Y., Zhang, S., Zhang, Y., Bengio, Y., Salakhutdinov, R.R.: On multiplicative
integration with recurrent neural networks. In: NIPS (2016)

61. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature
learning: Speed-accuracy trade-offs in video classification. In: ECCV (2018)

62. Xu, S., Cheng, Y., Gu, K., Yang, Y., Chang, S., Zhou, P.: Jointly attentive spatial-
temporal pooling networks for video-based person re-identification. In: ICCV
(2017)

63. Xu, Y., Zhang, C., Cheng, Z., Xie, J., Niu, Y., Pu, S., Wu, F.: Segregated temporal
assembly recurrent networks for weakly supervised multiple action detection. In:
AAAI (2019)

64. Xu, Z., Yang, Y., Hauptmann, A.G.: A discriminative cnn video representation for
event detection. In: CVPR (2015)

65. Yeung, S., Russakovsky, O., Jin, N., Andriluka, M., Mori, G., Fei-Fei, L.: Every
moment counts: Dense detailed labeling of actions in complex videos. IJCV 126(2-
4), 375–389 (2018)

66. Zhang, K., Chao, W.L., Sha, F., Grauman, K.: Video summarization with long
short-term memory. In: ECCV (2016)



18 T. Yu, Y. Li et al.

67. Zhou, B., Andonian, A., Oliva, A., Torralba, A.: Temporal relational reasoning in
videos. In: ECCV (2018)


