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1 Algorithms of MetaVIB for Training

We describe the detailed algorithm for training MetaVIB as following Algo-
rithm 1:

2 Learning Architecture

To better clearly understand our proposed MetaVIB, we draw a concise archi-
tecture diagram in Fig. 1.

3 Training Details

During the training, we use the Adam [1] optimizer, and set the learning rate as
10−4. In each training batch, we randomly select three domains including two
meta-train domains and one meta-test domain. In each domain, we choose 256
samples, and the batch size is 256 × 3. The iteration number is set as 25, 000.
The model with the highest validation accuracy is employed to evaluate the test
set from the meta-test domain.

4 Influence of information bottleneck size β

We report Influence of information bottleneck size β on the VLCS and Rotated
MNIST in Tables 1 and 2. For the VLCS, MetaVIB obtains best results for
β = 0.01, while for the Rotated MNIST, MetaVIB gets best results for β = 0.001.
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Algorithm 1 Learning to Learn with Variational Information Bottleneck for
Domain Generalization
1: Input: Training data S of K source domains; learning rate λ; the number of

iteration Niter.
2: Initialize the parameters Θ = {θ, φ1, φ2} of the model including the feature extrac-

tion network hθ(·) and the inference networks gφ1(·) and gφ2(·).
3: for iter in Niter do
4: Dt ← RANDOMSAMPLE({1, · · · ,K}, t);

Ds ← {1, · · · ,K} \ Dt;
5: Sample {(xsm,ysm)}Mm=1 ∼ Ds; {(xtn,ytn)}Nn=1 ∼ Dt;
6: for c in 1 : C do

7: h
s
c = 1

Mc

Mc∑
i=1

hθ(x
s
i,c); µ

ψ
c ,σ

ψ
c = gφ1(h

s
c);

ψc ∼ N (µψc , diag((σψc )2);
8: end for
9: ψ = [ψ1, · · · , ψc, · · · , ψC ];

10: for c in 1 : C do

11: h
s
c = 1

Mc

Mc∑
i=1

hθ(x
s
i,c); µ

s
c,σ

s
c = gφ2(h

s
c);

zc ∼ N (µsc,diag((σsc)
2));

12: µtj,c,σ
t
j,c = gφ2(hθ(x

t
j,c));

zj,c ∼ N (µtj,c, diag((σtj,c)
2));

13: Lc =
∑

(xtj,c,y
t
c)

[
−ψy · zj,c + log(

C∑
c=1

eψc·zj,c )

]
+ βDKL(q(zc|hc)||p(zj,c|hθ(xtj,c)));

14: end for

15: Update parameters: Θ ← Θ − λ
C∑
c=1

∇ΘLc.

16: end for

5 Influence of the number of Monte Carlo Influence of
the number of Monte Carlo samples

We use Monte Carlo sampling to draw samples fromp(z|x) for z. We report
varying sample number Lz on PACS in the Table 3. Our method achieves inferior
results with Lz = 1; performs consistently better with Lz = 5, 10, converges at
Lz = 10 and becomes worse when Lz = 50, 100. So in our experiments, we set
Lz = 10 and we averaged over 20 runs on the test domain. The variance reflects
the error caused by Monte Carlo sampling in each test experiment.

6 Network Architectures

6.1 Feature Embedding Network

The feature extraction network for PACS, VLCS is shown in Table 4, the
feature extraction network for Rotated MNIST is shown in Table 5.
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Fig. 1. Architecture diagram. hθ(·) is the feature extraction network; gφ1(·) is the
inference network to generate the distribution of classifier parameters ψ; gφ2(·) is the
inference network to generate the latent distribution of z; Lcls is the cross-entropy loss.
Solid (Dashed) line represents the direction of data flow in the meta-test domain Dt

(meta-train domain Ds).

Table 1. Influence of information bottleneck size β on domain generalization
for VLCS.

VOC2007 LabelMe Caltech-101 SUN09 Mean

β = 1 67.15±0.31 60.32±0.37 94.83±0.25 65.02±0.23 71.83
β = 0.1 68.93±0.24 61.31±0.18 95.98±0.21 67.05±0.21 73.32
β = 0.01 70.28±0.34 62.66±0.24 97.37±0.33 67.85±0.27 74.54
β = 0.001 68.47±0.35 61.17±0.27 95.35±0.23 66.90±0.25 72.97

6.2 Inference Network

The architecture of the inference network gφ1
(·) for PACS, VLCS is in Table

6, the architecture of the inference network gφ1
(·) for Rotated MNIST is in

Table 7.
The architecture of the inference network gφ2

(·) for PACS, VLCS is in Table
8, the architecture of the inference network gφ2(·) for Rotated MNIST is in
Table 9.

7 Prediction Uncertainty Analysis

Since the data follows distinct distribution between seen and unseen domains,
uncertainty is inevitable during the prediction stage on the unseen domains,
to which no data is accessible in the learning stage. To deal with the predic-
tion uncertainty, we model parameters of classifiers shared across domains as
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Table 2. Influence of information bottleneck size β on domain generalization
for Rotated MNIST.

M0◦ M15◦ M30◦ M45◦ M60◦ M75◦ Mean

β = 1 89.13±0.24 98.01±0.21 97.38±0.18 97.32±0.20 98.13±0.28 88.72±0.13 94.78
β = 0.1 90.35±0.31 98.17±0.21 98.82±0.34 98.18±0.31 98.73±0.29 89.94±0.17 95.69
β = 0.01 91.05±0.19 99.35±0.03 99.10±0.31 99.38±0.18 99.27±0.18 91.94±0.47 96.68
β = 0.001 91.28±0.21 99.90±0.02 99.29±0.11 99.78±0.10 99.57±0.13 92.75±0.31 97.08

Table 3. Influence of the number of Monte Carlo samples Lz on domain
generalization for PACS. MetaVIB obtains best results for Lz = 10.

Photo Art painting Cartoon Sketch Mean

Lz = 1 89.32±0.41 69.17±0.37 70.37±0.27 62.84±0.45 72.93
Lz = 5 90.11±0.17 70.26±0.38 71.93±0.21 63.45±0.46 73.94
Lz = 10 91.93±0.23 71.94±0.34 73.17±0.21 65.94±0.24 75.74
Lz = 50 91.82±0.25 71.74±0.32 73.37±0.17 66.01±0.38 75.73
Lz = 100 91.71±0.35 71.87±0.37 73.09±0.27 65.81±0.48 75.62

probabilistic distributions that we infer from the data of the seen domains. The
probabilistic modeling enables us to better handle the prediction uncertainty on
previously unseen domains.

In order to demonstrate that the proposed probabilistic modeling can handle
prediction uncertainty, we conduct an extra set of experiments as follows:

We shown more success and failure cases in Fig. 2 and show the corresponding
prediction probabilities of using different sampled classifiers ψ for each category
of the image in Fig. 3-10. ψ µ indicates the mean value of the classifier. From
Fig. 3-10, we can see that different ψ can produce different prediction probabil-
ities to each category. Specially, for the fourth image of success cases, the final
result of the classification is giraffe. However, the classifiers ψ 1 and ψ 2, our
model predicts a higher prediction probability of horse than giraffe as shown in
Fig. 6. For the fourth image of failure cases, the image is classified as dog, but
that the prediction probability of elephant is higher than that of dog by using
classifiers ψ 4 as shown in Fig. 10. Although the final prediction result of our
model is incorrect, some of sampled classifiers can still make correct predictions.

Dog: 0.753
person: 0.131

Giraffe: 0.641
Horse: 0.125

Horse: 0.685
Dog: 0.287

Giraffe: 0.401
Horse: 0.383

(a) Success cases

Dog: 0.432
Person: 0.458

Dog: 0.447
Horse: 0.501

Dog: 0.431
Person: 0.515

Elephant: 0.375
Dog: 0.392

(b) Failure cases

Fig. 2. Success and failure cases of MetaVIB. The numbers associated with each
image are the top two prediction probabilities of MetaVIB, with ground truth labels
in red.



Learning to Learn with Variational Information Bottleneck 5

Table 4. The feature extraction network hθ(·) for PACS, VLCS

Feature Extraction Network : hθ(·)
Output size Layers

227× 227× 3 Input image

27× 27× 96 conv2d (11× 11, stride 4, SAME, RELU), pool (3× 3, stride 2, VALID)
13× 13× 256 conv2d (5× 5, stride 1, SAME, RELU), pool (3× 3, stride 2, VALID)
13× 13× 384 conv2d (3× 3, stride 1, SAME, RELU)
13× 13× 384 conv2d (3× 3, stride 1, SAME, RELU)
6× 6× 256 conv2d (3× 3, stride 1, SAME, RELU) , pool (3× 3, stride 2, VALID)

4096 fully connected, RELU, dropout
4096 fully connected, RELU

Table 5. The feature extraction network hθ(·) for Rotated MNIST

Feature Extraction Network : hθ(·)
Output size Layers

28× 28× 1 Input image

14× 14× 32 conv2d (3× 3, stride 1, SAME, RELU), pool (3× 3, stride 2, VALID)
7× 7× 32 conv2d (3× 3, stride 1, SAME, RELU), pool (3× 3, stride 2, VALID)

256 fully connected, RELU

References
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Table 6. Inference network gφ1(·) used for PACS, VLCS.

Inference Network: gφ1(·)
Output size Layers

k × 4096 Input feature

4096 instance pooling
1024 fully connected, ELU
1024 fully connected, ELU

1024 fully connected to µψc , log(σψc )2

Table 7. Inference network gφ1(·) used for Rotated MNIST.

Inference Network: gφ1(·)
Output size Layers

k × 256 Input feature

256 instance pooling
256 fully connected, ELU
256 fully connected, ELU

256 fully connected to µψc , log(σψc )2

Table 8. Inference network gφ2(·) used for PACS, VLCS.

Inference Network: gφ2(·)
Output size Layers

k × 4096 Input feature

4096 instance pooling
1024 fully connected, ELU
1024 fully connected, ELU
1024 fully connected to µc, log(σc)

2

Table 9. Inference network gφ2(·) used for Rotated MNIST.

Inference Network: gφ2(·)
Output size Layers

k × 256 Input feature

256 instance pooling
256 fully connected, ELU
256 fully connected, ELU
256 fully connected to µc, log(σc)

2
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Fig. 3. The prediction probability of the different sampled classifier ψ for each category
(the first image of the success cases in Fig. 2).

Fig. 4. The prediction probability of the different sampled classifier ψ for each category
(the Second image of the success cases in Fig. 2).
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Fig. 5. The prediction probability of the different sampled classifier ψ for each category
(the third image of the success cases in Fig. 2).

Fig. 6. The prediction probability of the different sampled classifier ψ for each category
(the fourth image of the success cases in Fig. 2).
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Fig. 7. The prediction probability of the different sampled classifier ψ for each category
(the first image of the failure cases in Fig. 2).

Fig. 8. The prediction probability of the different sampled classifier ψ for each cate-
gory(the second image of the failure cases in Fig. 2).
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Fig. 9. The prediction probability of the different sampled classifier ψ for each cate-
gory(the third image of the failure cases in Fig. 2).

Fig. 10. The prediction probability of the different sampled classifier ψ for each cate-
gory (the fourth image of the failure cases in Fig. 2).


