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Abstract. Graph matching has been a fundamental problem in com-
puter vision and pattern recognition, for its practical flexibility as well
as NP hardness challenge. Though the matching between two graphs
and among multiple graphs have been intensively studied in literature,
the online setting for incremental matching of a stream of graphs has
been rarely considered. In this paper, we treat the graphs as graphs on
a super-graph, and propose a novel breadth first search based method
for expanding the neighborhood on the super-graph for a new coming
graph, such that the matching with the new graph can be efficiently
performed within the constructed neighborhood. Then depth first search
is performed to update the overall pairwise matchings. Moreover, we
show our approach can also be readily used in the batch mode setting,
by adaptively determining the order of coming graph batch for match-
ing, still under the neighborhood expansion based incremental matching
framework. Experiments on both online and offline matching of graph
collections show our approach’s state-of-the-art accuracy and efficiency.

Keywords: multi-graph matching, clustering, self-supervised learning

1 Introduction

Over the decades, to fuse the information among two or multiple graphs, the
matching of graphs has attracted extensive attention in vision and learning com-
munities. In general, graph matching (GM) aims to establish pairwise node cor-
respondences over two or more graphs, whereby both cross-graph node-to-node
and edge-to-edge affinity are considered. By incorporating geometrical edge in-
formation, the graph structure can be effectively explored resulting in better
robustness against deformation and noise. This is in contrast to the node-wise
information based matching models e.g. RANSAC [10] and Iterative Closet Point
(ICP) [40]. However, it meanwhile lifts the node affinity based linear assignment
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problem to the task of quadratic assignment programming (QAP) [22]. The
global optimum for the former problem can be found in polynomial time by
Hungarian method, while QAP is known NP-complete [12] in general. Hence,
most existing graph matching methods often seek for approximate solutions.

Apart from its mathematical challenge, graph matching is also prone to suffer
from the biased modeling of real-world data. In the presence of local noise over
the two graphs for matching, the affinity model can be biased such that the
mathematically global optimum may not correspond to the perfect matching for
the data at hand. Considering the fact that in practice often a collection of graphs
are available for matching, a natural idea is to perform joint matching of multiple
graphs in one shot [31, 34]. The hope is that the local noise among individual
graphs can be smoothed over. The so-called cycle-consistency enforcement has
been a popular and useful technique which is based on the simple observation
that the correct pairwise matching among three graphs form a closed loop.

We take one step further and consider the problem of incremental matching
of graph stream over time. In online applications such as video analysis, and
event log mining, graph data may be collected sequentially rather than in one
shot. Therefore like many online variants of different algorithms, the community
calls for effective and efficient online version of multiple graph matching. This
setting is in fact rarely studied in literature until a recent work in [38].

This paper departures from the mainstream literature on offline multiple
graph [25, 27, 31–33, 35]. Rather, we present a novel algorithm for incremental
multiple graph matching (IMGM). The main contributions of the paper are:

i) We develop a novel and efficient IMGM solver based on maximum span-
ning tree on the super-graph (i.e. graph for matching is treated as a node) that
gradually identifies and expands the neighborhood for the coming graph, by
breadth first search to ensure the quality of the neighborhood, and then all the
graphs are visited by depth first search for efficiency. In the procedure, the two-
graph matchings are updated via matching composition which has been shown
cost-effectiveness in previous works [31].

ii) By creating an adaptive order for sequential matching, we show that our
method can be applied in the offline multiple graph matching setting effectively.

iii) Experiments on both synthetic data and real images clearly show the
advantages of our method. In particular, it outperforms the state-of-the-art
method [38] for incremental multiple graph matching remarkably, for both ac-
curacy and efficiency. Our method also performs competitively in offline mode.

2 Related Works

There have emerged a series of surveys [1,7,11,29,36]. Our review divides existing
works into matching of two-graph, multi-graphs and incremental matching.

Two-graph matching. Most works are devoted to the classic setting for two
graph matching, which in its general form relates to QAP when up to second-
order edge affinity is considered [2, 6, 9, 13, 20]. There are two ways of modeling
the affinity matrix in QAP: i) learning-free models: using a fixed and parametric
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form [17] e.g. Gaussian kernel to model the node-to-node, and edge-to-edge sim-
ilarity. Due to the limited capacity of such simple affinity model, the complex
landscape of the affinity information of real-world data may not be perfectly
captured and as mentioned in the introduction part of this paper, the objective
function for QAP can be biased which causes the difficulty for finding the correct
matching in addition with the mathematical combinatorial problem itself. To im-
prove the model capacity, one way is to lift the affinity matrix to higher-order
(often third-order) tensor [4, 8, 23, 37, 39]. However the additional cost can be
exponential in terms of the number of nodes in graph hurting their applicability.

Another seemingly promising direction is adopting learning to find appro-
priate parameters for affinity modeling rather simply determined by hand [16].
The key idea is to learn the affinity function either in supervised [2, 5, 20, 21]
or unsupervised (or semi-supervised) setting [20, 21]. Deep neural networks are
employed in recent works [30] to improve the model capacity, and also to enable
end-to-end learning supervised by node correspondence information.

Offline and online multiple graph matching. Beyond two-graph, works [3,
15,18,24–27,33,34] tackle the problem of matching a collection of graphs.

For multiple graph matching, or more generally the correspondence prob-
lem from multiple views, the so-called cycle-consistency [33] has been a widely
adopted concept and metric to evaluate the behavior of the matching solvers.
Specifically, here we consider the three graphs Gi, Gj , Gk, and denote the two-
graph matching as Xij , Xjk, and Xik. Then for ground truth matching, the close
loop will establish: Xik = XijXjk, and the deviation signifies the inconsistency
incurred by less accurate matchings. In another word, cycle-consistency is the
necessary condition for perfect matching, and also an important indicator for
the accuracy of matchings for multiple graphs.

We follow the protocol in [38] that categorizes existing multiple graph match-
ing methods into two groups: i) two-stage methods that separate the local two-
graph matching and post consistency based smoothing in two steps; ii) iterative
methods that integrate the consistency and affinity optimization alternately.

In the two-step methods, first the pairwise matchings between two graphs
or two node sets (the edge information may not be used) are first calculated by
certain means, and then different smoothing techniques are devised to enforce
cycle-consistency. Bijection and partial matching are respectively considered in
the work [24] and [3]. One particular difficulty is that the number of cycles is
exponential regarding with the number of graphs for matching. In a more recent
study [14], the authors show that it is possible and theoretically guaranteed that
only a subset of cycles need being sampled for joint optimization.

In contrast to the above post-smoothing methods, another line of study
combine the optimization of both affinity and consistency in an iterative fash-
ion. In general, it is difficult to incorporate the discrete consistency term for
gradient based optimization. The authors in [31] devise a discrete composi-
tion based approach to generate new matching solution. The criterion refers to
both affinity score and consistency improved by the new solution. In some other
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works [27, 28, 33, 34], the consistency constraint is strictly obeyed which makes
them less flexible, and more sensitive to error accumulation over iterations.

There are little study on the online setting whereby graphs arrive one by one.
This setting is nontrivial and calls for efficient mechanism. We only identify one
related work as directly termed by incremental multiple graph matching (IMGM)
in [38]. The idea of [38] is to partition existing graphs into a few clusters, based on
the criterion that each cluster shall maintain certain diversity as such the newly
coming graph can be matched to only one cluster which is a good representative
of the whole set. The diversity is fulfilled by the determinantal point process
(DPP) [19] which sometimes can be more effective than random sampling.

Remarks. We argue that the success of the method in [38] is based on the
assumption that a cluster can well cover the variation of the whole set of graphs,
such that the new graph only need to match with the graphs in cluster. However
it is difficult to ensure especially when the cluster size is small. In fact, there
is a tradeoff between efficiency (small cluster) and effectiveness (representative
cluster), and the clustering design in [38] essentially suffers such a dilemma and
as shown in Fig. 3 (the bottom row) in [38]: its accuracy drops significantly by
slightly increasing the cluster number k from 2 to 3 and 4.

We circumvent such a dilemma by avoiding explicit clustering of graphs which
is time consuming and lacks flexibility to capture the complex variation of graph
collection at hand. Instead, we propose to dynamically form a neighborhood
based on breadth first search, allowing more easier and efficient matching for
the new arrival graph. In other words, the involved graph subset for matching
with the new graph is selected without any clustering step. Then we further use
depth first search to cover all the nodes on the super-graph with compositional
matching updating (akin to CAO-C [31]) to fulfill the whole matching process.

3 Preliminaries

Notations and definitions. In this paper, we use n for the number of nodes
in each graph, N for the current number of graphs for processing, and M for the
upper bound of the neighborhood size for a new graph, respectively. Furthermore,
L(N) denotes the number of two-graph matching performed when the N -th
graph comes in a certain algorithm. This is useful for evaluating its complexity.

For bijection4, the matching objective can be defined as [6]:

max
x
Eij = vec(Xij)

>Kijvec(Xij)

s.t. Xij1n = 1n 1TnXij = 1Tn Xij ∈ {0, 1}n×n
(1)

where Xij is the matching (permutation) matrix denoting node correspondences
between graph Gi and Gj , and Kij stands for the affinity matrix whose diago-
nal and offdiagonal elements encode the node-to-node and edge-to-edge affinity,

4 We assume graphs are of equal size in this paper, which can be obtained by adding
dummy nodes if needed as widely done in literature [6].
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respectively [6,34]. To be self-contained, we also rewrite the definitions in terms
of consistency metric as defined in [31,38] and other literature.

Definition 1. Given N graphs G = {Gk}Nk=1 and the corresponding pairwise

matchings X = {Xij}N−1,Ni=1,j=i+1, define the unary consistency of Gk as Cu(k,X) =

1−
∑N−1

i=1

∑N
j=i+1 ‖Xij−XikXkj‖F /2
nN(N−1)/2 ∈ (0, 1].

Definition 2. Given G and their pairwise matchings X, define the overall con-

sistency as C(X) =
∑N

k=1 Cu(k,X)
N ∈ (0, 1].

Definition 3. Given G, pairwise matchings X = {Xij}N−1,Ni=1,j=i+1 and affinity

matrices K = {Kij}N−1,Ni=1,j=i+1, the pairwise affinity score between Gi and Gj is

defined as Sij = vec(Xij)
>Kijvec(Xij).

Definition 4. A supergraph H is an undirected complete graph induced by graph
set G and pairwise matchings X. Its nodes, edges and edge weights denote graphs,
pairwise matchings, and pairwise matching score, respectively:

H = {V = {Gk}Nk=1, E = X,W = {Sij}N,Ni,j=1}

Definition 5. Given a supergraph H , a path from Gi to Gj is denoted as Pij,
which is a set containing edges from Gi to Gj: Pij = {Xik1 ,Xk1k2 , ...,Xksj}.
The consistent matching matrix along path Pij is defined as:

Xij = Xik1Xk1k2 ...Xksj

And the affinity score along path Pij is defined as:

Sij = vec(Xij)
>Kijvec(Xij)

Definition 6. Given a supergraph H, a spanning tree T = {V = {Gk}Nk=1, E =
X′ ( X} is a sub-supergraph, with N − 1 edges and satisfies that each two ver-
tices has exactly one path in T . The spanning tree with the highest accumulated
pairwise affinity score over all its edges is called maximum spanning tree (MST).

Problem formulation. The incremental multiple graph matching problem can
be summarized as follows: given the N−1 graphs {Gk}N−1i=1 with their matchings
XN−1, how to match the new graph GN and update the existing matchings
XN−1 (if necessary) and generate the new overall matching set XN . In contrast,
traditional multiple graph matching is performed in a way that involves all the
graphs at offline. Directly applying such joint matching each time a new graph
comes is intimidating. Thus, new methods are in demand to address such a
nontrivial problem. Our setting is the same with the recent work [38].
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4 IMGM by Layered Neighbor Expansion

4.1 Problem Analysis and Approach Overview

To reduce the computing overhead, one natural idea appearing in [38] is to divide
the whole graph set G into k clusters C1,C2, . . . ,Ck. Let the new coming graph
GN match one of these clusters Ci according to some similarity metric between
the cluster and GN , and the matchings between Ci∪{GN} and the rest clusters
G\Ci can be generated by certain means e.g. cycle consistency enforcement.

However, we argue such a clustering-oriented strategy may not inherently fit
with the online graph matching problem. The reasons include: i) clustering is
not optimized for the purpose of finding the most similar (or representative as
in [38]) graphs for matching; ii) clustering results can be unstable especially for
K > 2 clusters e.g. using k-means, which means it is difficult for the resulting
cluster to effectively fit with the coming graph for matching; iii) clustering can
be time consuming, especially for large-scale and complex techniques e.g. k-DPP
(determinantal point process) [19] as used in [38] to ensure the efficacy.

In this paper, we hold a principle to find graphs similar to the new coming
one, and the matchings can be conducted in a diffusion manner on the super-
graph (see Definition 4), such that the new graph is regarded as a seed and the
pairwise matchings are generated over the diffusion path. For efficiency, we first
build a maximum spanning tree (MST) (see Definition 6) on the existing super-
graph HN−1 as such the pairwise matching can be focused on the tree which also
avoids matching inconsistency due to the existence of matching cycles. As shown
in Fig. 1(c) based on the formed MST, we first find the most similar graph Gk to
GN in GN−1 and perform breadth first search (BFS) starting from Gk until at
most M graphs are reached on HN−1. The hope is that the most similar graphs
to GN can be effectively found along HN−1 such that matchings among these
graphs can be more reliable and accurate. Given these accurate early matchings,
we then devise a greedier and more cost-effective means to perform depth first
search (DFS) to match the rest of graphs on HN−1. Note that DFS can help the
matching be efficiently and consistently conducted for each pair of graphs along
the search path by reusing the pairwise matching, as shown in Fig. 1(d)(e): after
computing matching Xik and Xkj , the skip matching between Gi and Gj can be
readily computed by Xij = XikXik without redundantly computing Xij between
Gi and Gj , which can further cause cycle inconsistency (see Definition 1). In this
way, the local consistency along each DFS path is guaranteed. It is also worth
noting that directly using DFS instead of BFS can be efficient but less effective
because the error can be accumulated over the DFS path. In contrast, the BFS
strategy ensures better matching quality in the beginning, which allows for the
aggressive DFS stage later.

We shall emphasize that the above steps are integrated as a whole based on
the MST structure. Hence we cannot replace either the BFS stage or DFS stage
with other techniques e.g. k-nearest neighbor, clustering. One may also notice
that our DFS mechanism ensures the local consistency along each DFS path
though the overall consistency cannot be guaranteed by our approach. We call
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Fig. 1. Illustration of LNE-IMGM. (a) The red leaf nodes denote non-leaf graph set
C and the white nodes denote leaf graph set G\C. (b) The blue node denotes the
new arrival graph GN for incremental matching and the purple node denote the best
match graph Gk ∈ C. (c) The green ellipse denote the neighborhood N (GN ) with size
M = 10. (d) We do DFS in numerical order and update the matchings during the
search. (e) Gi, Gk ∈ N (GN ) and Gj ∈ G\N (GN ).

our approach layered neighborhood expansion since it involves the above
starting graph finding, BFS and DFS to gradually expand the neighborhood.

An overview of our method is illustrated in Fig. 1. Compared with the tra-
ditional multi-graph algorithm with time complexity of O(N4), we reduce the
complexity to O(N2) with two order of scalability improvement. We will cover
each step of the algorithm in detail in the following sections.

4.2 Build MST and Find Best Match Graphing as Seed

We first build a Maximum Spanning Tree according to Definition 6. Denote Di as
the degree of node i on MST, and Eij = 1 if node i and j are connected. It is clear
that all non-leaf nodes have degree greater than 1, and all leaf nodes have only
1 degree. Suppose C = {Gi, Di > 1} represents all non-leaf graph set. For each
new graph GN , it first matchings with every Gi, i ∈ C. Let k = arg maxi∈C SiN
represent the best matched non-leaf graph. GN is then linked to Gk on MST.

4.3 Neighbourhood Construction by BFS

On MST, all adjacent nodes are closely connected. To promote similarity, We
construct neighbourhoodN (GN ) by applying breadth first search (BFS) on MST
rooted in GN . Through BFS, we can not only search out the neighbourhood with
graphs that are mostly similar to GN , but also control the neighbourhood size.
We denote M = |N (GN )|. After expansion, we perform multi-graph matching
in N (GN ) to further optimize the matching.
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Algorithm 1: Layered Neighborhood Expansion by BFS and
DFS for Incremental MGM (LNE-IMGM)

Input: //The only hyerparameter: size of the neighbourhood M
1 1) Processed graphs GN−1 = {G1, ..., GN−1};
2 2) Super-graph HN−1 (Definition 4) by N − 1 existing graphs GN−1,

matchings XN−1 and affinity score SN−1 = {Sij}(i, j = 1, ..., N − 1);
3 3) New arrival graph GN for matching;
4 if N = 2 then
5 Perform pairwise matching and return XN and SN ;
6 Employ Prim algorithm to find Maximum Spanning Tree (Definition 6) over
HN−1

7 // Build MST and Find Best Matching Graph:
8 Pairwise match GN with each non-leaf graph Gi ∈ C;
9 Find best match Gk ∈ C with maximum pairwise affinity score SNk;

10 Connect GN to the best matching graph Gk on MST;
11 // Neighbourhood Construction by BFS:
12 Apply breadth first search (BFS) on MST with root GN , get neighbourhood

N (GN ) with size at most M or early stop due to end of search;
13 Apply a multi-graph solver e.g. CAO-C [31] to obtain multi-graph matchings

Xbfs on N (GN );
14 Update XN with Xbfs;
15 // Local Optimization along each DFS path:
16 for each Gi ∈ N (GN ) do
17 Set Gi as root node and apply depth first search within G\N (GN );
18 for each Gs along DFS path Pis do

19 Update Xis = Xis, Sis = Sis if Sis > Sis;

20 // Global Optimization along after DFS:
21 for each Gi ∈ N (GN ) do
22 for each Gj ∈ G\N (GN ) do
23 Find Gk ∈ N (GN );

24 Update Xij = XikXkj , Sij = Sij if Sij > Sij ;

25 G = G ∪ {GN};
Output: Multi-graph matchings XN and SN

4.4 Whole Set Coverage and Matching by DFS

By expanding neighbourhood, we cover the whole graph set G. For each graph
in N (GN ), we perform depth first search(DFS) on MST, where it only search
graphs in G\N (GN ). Assignment Xrs is updated to Xrs along DFS path Prs if
Srs > Srs (see Definition 5).

After running DFS, some matchings between N (GN ) and G\N (GN ) are still
not updated. To update those match between Gi ∈ N(GN ) and Gj ∈ G\N (GN ),
suppose match between Gk ∈ N (GN ) and Gj has been updated during DFS,
Xij is updated to Xij along path Pij = {Xik,Xkj} if Sij > Sij .
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Algorithm 2: Layered Neighborhood Expansion for Multiple
Graph Matching (LNE-MGM)

Input: 1) Graph streams GN = {G1, G2, ..., GN},
2) Pairwise affinity Kij(i, j = 1, ..., N),

1 Do pairwise matching by RRWM to obtain initial X;
2 Calculate affinity score for Gi ∈ G;
3 Reorder graph streams G′ = {G′1, G′2, ..., G′N} by the graph-wise affinity score

(descending order is suggested for better performance);
4 perform pairwise match between G′1 and G′2;
5 for n = 3, 4, ..., N do
6 Apply Alg. 1 to obtain updated Xnand Sn;

Output: Multi-graph matching X

4.5 Adaptive Ordering for Batch of Graphs

LNE-IMGM can be applied offline by matching the graph batch one by one,
i.e., in a pseudo online setting. Here we aim to improve this baseline strategy
by reordering the graph sequence for matching. Specifically, the order is by the
graph-wise affinity score over the graph set G . Specifically, for graph Gi, its
overall graph-wise affinity score is given by: Si =

∑
j Sij . For those with higher

affinity score, we consider to match them first as we assume they are easier to
match. Fig. 7(a),7(b) basically verifies our idea.

4.6 Time Complexity Analysis

The time complexity is compared in Table 1. We discuss each method in detail.

LNE-IMGM For each step, given GN−1 = {G1, G2, ..., GN−1} as processed
graphs with graph size n, and neighbourhood size M , we analyze the main
overhead components as follows.

i) Two-graph Matching Solver. For pairwise matching process, we only
match GN with all non-leaf graphs Gi ∈ C ∪ N (GN ). Define the number of
pairwise matching for GN as L(N), then L(N) = |C∪N (GN )|. Clearly L(N) <=
N . The overall complexity for pairwise matching is O(L(N)τpair), where τpair is
the cost for calling a two-graph matching solver e.g. RRWM [6].

ii) Multi-graph Matching Solver. Our method can accept any multi-
graph solver. In our experiment we use CAO-C which is the state-of-the-art
MGM solver in [31] based on the compositional matching updating over pairwise
matchings, whose time complexity is O(M4n+M3n3).

iii) Other Overhead. The time to compute MST is O(N2). The time for
BST is O(MN). The time for L13-17 is O((N −M)n3). The complexity for
L18-21 in Alg. 1 is O(M2(N −M)n3).

iv) Overall Complexity. The overall complexity can be reduced to O(N2+
M2Nn3 + M4n + L(N)τpair). As M is constant for each step, the complexity
thus can be roughly treated as O(N2 +Nn3 + L(N)τpair).
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Table 1. Time complexity for matching of IMGM per iteration. Note d is the number
of clusters in [38]. It is often set to 2 to ensure accuracy, which limits [38]’s efficiency.

Method Time complexity

CAO-C-INC [31] O(N4n+N3n3 +Nτpair)

CAO-C-RAW [31] O(N4n+N3n3 +N2τpair)

IMGM-D, IMGM-R [38] O(N3n3/d2 +N3/d2 +Nτpair)

LNE-IMGM (ours) O(N2 +M2Nn3 +M4n+ L(N)τpair)

LNE-MGM (ours) O(N3 +M2N2n3 +NM4n+N2τpair)

LNE-MGM The time to compute pairwise matching is O(N2τpair). The time
to compute overall affinity score for each graph is O(N2n3). The time to re-
order graph stream is O(N logN). The overall complexity is O(N3 +M2N2n3 +
NM4n+N2τpair). As M is constant for each step, the complexity thus can be
roughly treated as O(N3 +N2n3 +N2τpair).

5 Experiments

Experiments run on a laptop with 3.2GHZ CPU and 16G memory. In synthetic
data and real-world images, 50 trials and 20 trials are performed respectively,
and the average are reported. For the plots, the settings are given in Table 2. The
source code is public available at https://github.com/fffffarmer/LNE IMGM.

5.1 Protocols and Compared Methods

Three popular evaluation metrics for multiple graph matching [31,34] are used:
accuracy (acc), affinity score (scr) and consistency (con, see Eq. 2). Accuracy is
computed by comparing solution X∗ij to ground-truth XGT

ij :

acc = 1−
∑
i,j

‖X∗ij −XGT
ij ‖2F /nN2 ∈ [0, 1]

.
While the overall affinity score is calculated by:

scr =
1

N2

∑
i,j

vec(X∗ij)
>Kijvec(X∗ij)

vec(XGT
ij )>Kijvec(XGT

ij )

It is possible that scr > 1 as the affinity function may not perfectly reach
the maximum at ground truth, especially in the presence of outliers. For com-
parison of time cost with previous works following [38], we leave the pair-
wise matching cost which is the multiplication of the number of runs L(N)
at step N and the unit time τpair for a calling of a certain two-graph match-
ing solver e.g. RRWM. Then we define the time cost as (without two-graph
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(a) Accuracy (b) Score (c) Consistency (d) Pair (e) Time

Fig. 2. Online evaluation on synthetic deformed graphs. LNE-IMGM is our method.

(a) Accuracy (b) Score (c) Consistency (d) Pair (e) Time

Fig. 3. Evaluation on using two-graph solver RRWM and multi-graph matching solver
CAO-C for initialization of two IMGM methods.

(a) Duck (b) Car (c) Winebottle (d) Duck (e) Car
Fig. 4. Online evaluation on Willow-ObjectClass. CAO-C-INC means rerunning CAO-
C initialized by the previous results by CAO-C. CAO-C-RAW denotes run from scratch.

matching part): Time(N) = Total(N)− L(N)τpair. We separate Total(N) into
Pair = L(N)τpair and Time(N) to have a more insightful study on overhead.

So far we have only identified one peer method [38] for multiple graph match-
ing. This method has two variants termed as IMGM-D and IMGM-R, with
DPP and random sampling for graph clustering over iterations, respectively.
The number of clusters are set to 2 for these two methods in all tests (if not
otherwise specified). In addition, we also follow the protocol in [38] to compare
two additional baselines. One is the vanilla version of Composition Affinity Op-
timization with pairwise consistency method (CAO-C) [31], i.e., independently
applying CAO-C every time a new graph comes with existing ones to form the
new collection of graphs. The other is running CAO-C which is initialized by the
matching results before the new graph’s arrival. These two versions are termed
as CAO-C-RAW and CAO-C-INC, respectively. In the experiments, all the
initial two-graph matchings are computed using Reweighted Random Walk base
Matching (RRWM) [6] as it has been proved effective and stable for two-graph



12 Z. Chen, Z. Xie, J. Yan, Y. Zheng, X. Yang

Table 2. Parameter details for online (top) and offline (bottom) tests. Note each plot
in Fig. 5 contains synthetic and image data. RRWM is used as the two-graph matching
solver. Affinity kernel σ2 = 0.05, neighbor upper size M = 20, inlier # ni = 10.

Results Parameter settings

Fig. 2, 3, 5 (synthetic) no = 0, c = 1, ε = 0.15, ρ = 1, (NA, NB)=(20, 50)
Fig. 4, 5 (real) no = 4, β = 0.9, (NA, NB)=(20, 40)

Fig. 7(a) no = 0, c = 1, ε = 0.15, ρ = 1, (NA, NB)=(20, 52)
Fig. 7(b) no = 4, β = 0.9, (NA, NB)=(20, 52)
Fig. 7(c) no = 0, c = 1, ε = 0.15, ρ = 1, (NA, NB)=(30, 50)
Fig. 7(d) no = 4, β = 0.9, (NA, NB)=(30, 50)

Fig. 6(d), 6(e) no = 0, c = 1, ε = 0.15, ρ = 1
Fig. 6(a), 6(b), 6(c) no = 4, β = 0.9

matching. To be fair, we set up CAO-C as the inner used multi-graph solver for
all methods (IMGM-D, IMGM-R, LNE-IMGM, LNE-MGM).

5.2 Experiments on Synthetic Dataset

In line with the compared works [31, 38], synthetic graphs are generated for
each trial. The details are as follows. First, a reference graph of size nR = 10
is randomly created, whose edge weight qRab for edge (a, b) is sampled from the
uniform distribution [0, 1]. Then a derived graph is generated by adding a Gaus-
sian noise sampled from µ ∼ N (0, ε) on the weight: qDab = qRab + µ. Meanwhile, a
density parameter ρ is used to control the edge density of graphs. For two-graph
matching which is adopted as a building block in our method and the compared

algorithms, the pairwise edge affinity is set as Kac;bd = exp(− (qab−qcd)2
σ2 ). We

denote (NB , NA) as number of base graphs and number of arriving graphs. For
NB based graphs, we make two different initializations for matching the base
graphs: by RRWM pairwise matching or by CAO multi-graph matching.

Online setting. We show the result of RRWM–based incremental match-
ing result in Fig. 2. Our algorithm outperforms IMGM-D and IMGM-R in
accuracy and affinity score, meanwhile is very close to CAO-C-RAW and its
incremental updating version CAO-C-INC. Besides, our algorithm need much
less times of pairwise matching in each step. In detail, the trend of Pair is a
straight line L(N) = NB + kNA, where k << 1 in our algorithms. Most im-
portantly, our method almost achieves constant in time, while the time taken
by other algorithms increases significantly as more graphs arrive. Note that for
each time a new graph comes, CAO-C-RAW has no online mechanism and we
use it by repeatedly re-running it from scratch every time a new graph comes.

We also study the effects of two initialization strategies for IMGM-D and
LNE-IMGM, i.e. adopting RRWM to match the base graphs and using a more
advanced MGM solver CAO-C. In Fig. 3, our method is generally unaffected by
initialization, while IMGM-D suffers changing from CAO-C to RRWM.
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(a) Accuracy (b) Score (c) Consistency (d) Pair (e) Time

Fig. 5. Sensitivity test under online IMGM setting, for hyperparameter M i.e. the
upper bound of expanded neighborhood size.

(a) Duck (b) Car (c) Winebottle (d) Synthetic (e) Synthetic

Fig. 6. Offline evaluation on synthetic graphs and Willow-ObjectClass. For our LNE-
MGM, ‘-d’ (‘-a’) denotes reordering is performed by the graph-wise affinity score in
descending (ascending) order. Otherwise the matching order keeps by default.

We test the sensitivity on batch processing size and also with different or-
dering strategies. As shown in Fig. 7(a),7(b), the accuracy increases as we rank
graph-wise affinity in descending order, which means gradually matching harder
graphs can be a better strategy for overall matching accuracy. Meanwhile larger
batch size can also lead to better accuracy which also well fits one’s intuition.

Offline setting. Fig. 6 compares our offline versions (LNE-MGM-d and
LNE-MGM-a) with CAO-based method CAO-C and IMGM D and IMGM R.
The proposed method outperforms the baseline IMGM for synthetic random
graphs, and performs competitively against CAO. IMGM-based algorithms are
highly susceptible to the number of base graphs, resulting unsatisfactory perfor-
mance in offline setting, while our approach performs more robustly, and even
running from scratch without any base graph, it can still achieve strong result.
Also, by using descending order, our algorithm gains further improvement.

5.3 Experiments on Real Image Dataset

We first test on the Willow-ObjectClass as provided and released by [5]. It
consists of 5 classes of natural images collected from Caltech-256 and PASCAL07:
109 Face, 66 Winebottle, 50 Duck, 40 Car and 40 Motorbike images. There are
10 landmark points which are manually tagged on the object in each image. For
object Duck and Car, we randomly permute all images. To verify the robustness
of compared methods, four outliers are randomly chosen from the background.
Delaunay triangulation is used to sparsify the graphs to construct the adjacency
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(a) Synthetic (b) Winebottle (c) Synthetic (d) Car

Fig. 7. (a)(b): Sensitivity test for the batch processing size and ordering strategies on
the synthetic deform graphs and Willow-ObjectClass Winebottle. The suffix ‘-a4’/‘-
d4’ denotes the batch of 4 graphs are received in ascending/descending order by each
graph’s overall affinity score. Likewise for ‘-a8’, ‘-d32’ etc. The default is random or-
dering with batch size 1 which fits exactly the case for IMGM. (c)(d): Distribution
of graph pair’s accuracy over iterations by LEN-IMGM on synthetic graphs and Car.
Different colors denote accuracy ranges [0,1] by step 0.1.

graph and the resulting affinity matrix, which is calculated as Kac;bd = βKlen
ac;bd+

(1 − β)Kang
ac;bd. Here both edge length and angle similarity, where β ∈ [0, 1] is a

controlling parameter regarding with the weight.
Online setting. When there are more arriving graphs in Winebottle and

Duck tests, IMGM-D outperforms the counterparts on most arriving graphs as
shown in Fig. 4. Meanwhile, in Car test with fewer arriving graphs, the proposed
method gradually adapts the problem along with the new graphs, and achieves
strong accuracy. Moreover we use Fig. 7(c),7(d) to show the pairwise matching
accuracy distribution over iterations by LNE-IMGM for online MGM.

Offline setting. As shown in Fig. 6, on Willow-ObjectClass, our methods
outperform or perform competitively against the offline solver CAO-C. Among
the three variants of our method, the ascending reordering version performs
generally best, suggesting the strategy for handling easier graphs first is useful.

6 Conclusions

This paper has presented a novel method for incremental matching of sequen-
tially arriving graphs. For each coming new graph, its neighborhood is expanded
in two steps which allows for cost-effective matching updating. This is in contrast
to the peer method [38] adopting clustering which is complicated and inefficient.
Our method can also serve as an effective offline multi-graph matching solver
by sequential matching, except a treatment on determining the processing or-
der by graph-wise affinity score. Experiments show its state-of-the-art accuracy
and efficiency on synthetic graphs and images. Future work will explore machine
learning especially deep networks for incremental graph matching.
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