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Abstract. Can we automatically group images into semantically mean-
ingful clusters when ground-truth annotations are absent? The task of
unsupervised image classification remains an important, and open chal-
lenge in computer vision. Several recent approaches have tried to tackle
this problem in an end-to-end fashion. In this paper, we deviate from
recent works, and advocate a two-step approach where feature learning
and clustering are decoupled. First, a self-supervised task from represen-
tation learning is employed to obtain semantically meaningful features.
Second, we use the obtained features as a prior in a learnable clustering
approach. In doing so, we remove the ability for cluster learning to de-
pend on low-level features, which is present in current end-to-end learning
approaches. Experimental evaluation shows that we outperform state-
of-the-art methods by large margins, in particular +26.6% on CIFAR10,
+25.0% on CIFAR100-20 and +21.3% on STL10 in terms of classification
accuracy. Furthermore, our method is the first to perform well on a large-
scale dataset for image classification. In particular, we obtain promising
results on ImageNet, and outperform several semi-supervised learning
methods in the low-data regime without the use of any ground-truth
annotations. The code is available at www.github.com/wvangansbeke/

Unsupervised-Classification.git.

Keywords: Unsupervised Learning, Self-Supervised Learning, Image
Classification, Clustering.

1 Introduction and prior work

Image classification is the task of assigning a semantic label from a predefined
set of classes to an image. For example, an image depicts a cat, a dog, a car, an
airplane, etc., or abstracting further an animal, a machine, etc. Nowadays, this
task is typically tackled by training convolutional neural networks [27, 43, 18, 52,
46] on large-scale datasets [11, 29] that contain annotated images, i.e. images with
their corresponding semantic label. Under this supervised setup, the networks
excel at learning discriminative feature representations that can subsequently be
clustered into the predetermined classes. What happens, however, when there is
no access to ground-truth semantic labels at training time? Or going further, the
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semantic classes, or even their total number, are not a priori known? The desired
goal in this case is to group the images into clusters, such that images within
the same cluster belong to the same or similar semantic classes, while images in
different clusters are semantically dissimilar. Under this setup, unsupervised or
self-supervised learning techniques have recently emerged in the literature as an
alternative to supervised feature learning.

Representation learning methods [12, 38, 57, 34, 15] use self-supervised learn-
ing to generate feature representations solely from the images, omitting the need
for costly semantic annotations. To achieve this, they use pre-designed tasks,
called pretext tasks, which do not require annotated data to learn the weights of
a convolutional neural network. Instead, the visual features are learned by min-
imizing the objective function of the pretext task. Numerous pretext tasks have
been explored in the literature, including predicting the patch context [12, 32],
inpainting patches [38], solving jigsaw puzzles [34, 36], colorizing images [57, 28],
using adversarial training [13, 14], predicting noise [3], counting [35], predicting
rotations [15], spotting artifacts [22], generating images [40], using predictive
coding [37, 19], performing instance discrimination [50, 17, 7, 47, 31], and so on.
Despite these efforts, representation learning approaches are mainly used as the
first pretraining stage of a two-stage pipeline. The second stage includes fine-
tuning the network in a fully-supervised fashion on another task, with as end goal
to verify how well the self-supervised features transfer to the new task. When
annotations are missing, as is the case in this work, a clustering criterion (e.g.
K-means) still needs to be defined and optimized independently. This practice
is arguably suboptimal, as it leads to imbalanced clusters [4], and there is no
guarantee that the learned clusters will align with the semantic classes.

As an alternative, end-to-end learning pipelines combine feature learning
with clustering. A first group of methods (e.g. DEC [51], DAC [6], DeepClus-
ter [4], DeeperCluster [5], or others [1, 16, 53]) leverage the architecture of CNNs
as a prior to cluster images. Starting from the initial feature representations,
the clusters are iteratively refined by deriving the supervisory signal from the
most confident samples [6, 51], or through cluster re-assignments calculated of-
fline [4, 5]. A second group of methods (e.g. IIC [23], IMSAT [20]) propose to
learn a clustering function by maximizing the mutual information between an
image and its augmentations. In general, methods that rely on the initial fea-
ture representations of the network are sensitive to initialization [6, 51, 4, 5, 21,
16, 53], or prone to degenerate solutions [4, 5], thus requiring special mechanisms
(e.g. pretraining, cluster reassignment and feature cleaning) to avoid those sit-
uations. Most importantly, since the cluster learning depends on the network
initialization, they are likely to latch onto low-level features, like color, which
is unwanted for the objective of semantic clustering. To partially alleviate this
problem, some works [23, 20, 4] are tied to the use of specific preprocessing (e.g.
Sobel filtering).

In this work we advocate a two-step approach for unsupervised image clas-
sification, in contrast to recent end-to-end learning approaches. The proposed
method, named SCAN (Semantic Clustering by Adopting Nearest neighbors),
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leverages the advantages of both representation and end-to-end learning ap-
proaches, but at the same time it addresses their shortcomings:

– In a first step, we learn feature representations through a pretext task. In
contrast to representation learning approaches that require K-means clus-
tering after learning the feature representations, which is known to lead to
cluster degeneracy [4], we propose to mine the nearest neighbors of each
image based on feature similarity. We empirically found that in most cases
these nearest neighbors belong to the same semantic class (see Figure 2),
rendering them appropriate for semantic clustering.

– In a second step, we integrate the semantically meaningful nearest neighbors
as a prior into a learnable approach. We classify each image and its mined
neighbors together by using a loss function that maximizes their dot prod-
uct after softmax, pushing the network to produce both consistent and dis-
criminative (one-hot) predictions. Unlike end-to-end approaches, the learned
clusters depend on more meaningful features, rather than on the network ar-
chitecture. Furthermore, because we encourage invariance w.r.t. the nearest
neighbors, and not solely w.r.t. augmentations, we found no need to apply
specific preprocessing to the input.

Experimental evaluation shows that our method outperforms prior work by
large margins across multiple datasets. Furthermore, we report promising results
on the large-scale ImageNet dataset. This validates our assumption that sepa-
ration between learning (semantically meaningful) features and clustering them
is an arguably better approach over recent end-to-end works.

2 Method

The following sections present the cornerstones of our approach. First, we show
how mining nearest neighbors from a pretext task can be used as a prior for
semantic clustering. Also, we introduce additional constraints for selecting an
appropriate pretext task, capable of producing semantically meaningful feature
representations. Second, we integrate the obtained prior into a novel loss function
to classify each image and its nearest neighbors together. Additionally, we show
how to mitigate the problem of noise inherent in the nearest neighbor selection
with a self-labeling approach. We believe that each of these contributions are
relevant for unsupervised image classification.

2.1 Representation learning for semantic clustering

In the supervised learning setup, each sample can be associated with its correct
cluster by using the available ground-truth labels. In particular, the mapping
between the images D =

{
X1, . . . , X|D|

}
and the semantic classes C can generally

be learned by minimizing a cross-entropy loss. However, when we do not have
access to such ground-truth labels, we need to define a prior to obtain an estimate
of which samples are likely to belong together, and which are not.
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Fig. 1: Images (first column) and their
nearest neighbors (other columns) [50].
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Fig. 2: Neighboring samples tend to be
instances of the same semantic class.

End-to-end learning approaches have utilized the architecture of CNNs as a
prior [53, 6, 51, 16, 4, 5], or enforced consistency between images and their aug-
mentations [23, 20] to disentangle the clusters. In both cases, the cluster learning
is known to be sensitive to the network initialization. Furthermore, at the be-
ginning of training the network does not extract high-level information from the
image yet. As a result, the clusters can easily latch onto low-level features (e.g.
color, texture, contrast, etc.), which is suboptimal for semantic clustering. To
overcome these limitations, we employ representation learning as a means to
obtain a better prior for semantic clustering.

In representation learning, a pretext task τ learns in a self-supervised fash-
ion an embedding function Φθ - parameterized by a neural network with weights
θ - that maps images into feature representations. The literature offers several
pretext tasks which can be used to learn such an embedding function Φθ (e.g.
rotation prediction [15], affine or perspective transformation prediction [56], col-
orization [28], in-painting [38], instance discrimination [50, 17, 7, 31], etc.). In
practice, however, certain pretext tasks are based on specific image transforma-
tions, causing the learned feature representations to be covariant to the employed
transformation. For example, when Φθ predicts the transformation parameters
of an affine transformation, different affine transformations of the same image
will result in distinct output predictions for Φθ. This renders the learned feature
representations less appropriate for semantic clustering, where feature represen-
tations ought to be invariant to image transformations. To overcome this issue,
we impose the pretext task τ to also minimize the distance between images Xi

and their augmentations T [Xi], which can be expressed as:

min
θ
d(Φθ(Xi), Φθ(T [Xi])). (1)

Any pretext task [50, 17, 7, 31] that satisfies Equation 1 can consequently be
used. For example, Figure 1 shows the results when retrieving the nearest neigh-
bors under an instance discrimination task [50] which satisfies Equation 1. We
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observe that similar features are assigned to semantically similar images. An ex-
perimental evaluation using different pretext tasks can be found in Section 3.2.

To understand why images with similar high-level features are mapped closer
together by Φθ, we make the following observations. First, the pretext task out-
put is conditioned on the image, forcing Φθ to extract specific information from
its input. Second, because Φθ has a limited capacity, it has to discard information
from its input that is not predictive of the high-level pretext task. For example,
it is unlikely that Φθ can solve an instance discrimination task by only encoding
color or a single pixel from the input image. As a result, images with similar
high-level characteristics will lie closer together in the embedding space of Φθ.

We conclude that pretext tasks from representation learning can be used
to obtain semantically meaningful features. Following this observation, we will
leverage the pretext features as a prior for clustering the images.

2.2 A semantic clustering loss

Mining nearest neighbors. In Section 2.1, we motivated that a pretext task
from representation learning can be used to obtain semantically meaningful fea-
tures. However, naively applying K-means on the obtained features can lead
to cluster degeneracy [4]. A discriminative model can assign all its probability
mass to the same cluster when learning the decision boundary. This leads to one
cluster dominating the others. Instead, we opt for a better strategy.

Let us first consider the following experiment. Through representation learn-
ing, we train a model Φθ on the unlabeled dataset D to solve a pretext task τ ,
i.e. instance discrimination [7, 17]. Then, for every sample Xi ∈ D, we mine its
K nearest neighbors in the embedding space Φθ. We define the set NXi as the
neighboring samples of Xi in the dataset D. Figure 2 quantifies the degree to
which the mined nearest neighbors are instances of the same semantic cluster.
We observe that this is largely the case across four datasets1 (CIFAR10 [26],
CIFAR100-20 [26], STL10 [9] and ImageNet [11]) for different values of K. Mo-
tivated by this observation, we propose to adopt the nearest neighbors obtained
through the pretext task τ as our prior for semantic clustering.
Loss function. We aim to learn a clustering function Φη - parameterized by
a neural network with weights η - that classifies a sample Xi and its mined
neighbors NXi

together. The function Φη terminates in a softmax function to
perform a soft assignment over the clusters C = {1, . . . , C}, with Φη (Xi) ∈
[0, 1]C . The probability of sample Xi being assigned to cluster c is denoted as
Φcη(Xi). We learn the weights of Φη by minimizing the following objective:

Λ = − 1

|D|
∑
X∈D

∑
k∈NX

log 〈Φη(X), Φη(k)〉+ λ
∑
c∈C

Φ′cη logΦ′cη ,

with Φ′cη =
1

|D|
∑
X∈D

Φcη(X).

(2)

1 The details for each dataset are provided in the supplementary materials.
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Here, 〈·〉 denotes the dot product operator. The first term in Equation 2
imposes Φη to make consistent predictions for a sample Xi and its neighboring
samples NXi . Note that, the dot product will be maximal when the predictions
are one-hot (confident) and assigned to the same cluster (consistent). To avoid
Φη from assigning all samples to a single cluster, we include an entropy term (the
second term in Equation 2), which spreads the predictions uniformly across the
clusters C. If the probability distribution over the clusters C is known in advance,
which is not the case here, this term can be replaced by KL-divergence.

Remember that, the exact number of clusters in C is generally unknown.
However, similar to prior work [51, 6, 23], we choose C equal to the number of
ground-truth clusters for the purpose of evaluation. In practice, it should be
possible to obtain a rough estimate of the amount of clusters2. Based on this
estimate, we can overcluster to a larger amount of clusters, and enforce the class
distribution to be uniform. We refer to Section 3.4 for a concrete experiment.
Implementation details. For the practical implementation of our loss function,
we approximate the dataset statistics by sampling batches of sufficiently large
size. During training we randomly augment the samples Xi and their neigh-
bors NXi . For the corner case K = 0, only consistency between samples and
their augmentations is imposed. We set K ≥ 1 to capture more of the cluster’s
variance, at the cost of introducing noise, i.e. not all samples and their neigh-
bors belong to the same cluster. Section 3.2 experimentally shows that choosing
K ≥ 1 significantly improves the results compared to only enforcing consistency
between samples and their augmentations, as in [23, 20].
Discussion. Unlike [39, 24, 48, 2, 33, 58, 51] we do not include a reconstruction
criterion into the loss, since this is not explicitly required by our target task. After
all, we are only interested in a few bits of information encoded from the input
signal, rather than the majority of information that a reconstruction criterion
typically requires. It is worth noting that the consistency in our case is enforced
at the level of individual samples through the dot product term in the loss, rather
than on an approximation of the joint distribution over the classes [23, 20]. We
argue that this choice allows to express the consistency in a more direct way.

2.3 Fine-tuning through self-labeling

The semantic clustering loss in Section 2.2 imposed consistency between a sam-
ple and its neighbors. More specifically, each sample was combined with K ≥ 1
neighbors, some of which inevitably do not belong to the same semantic cluster.
These false positive examples lead to predictions for which the network is less
certain. At the same time, we experimentally observed that samples with highly
confident predictions (pmax ≈ 1) tend to be classified to the proper cluster. In
fact, the highly confident predictions that the network forms during clustering
can be regarded as ”prototypes” for each class (see Section 3.5). Unlike prior
work [6, 4, 51], this allows us to select samples based on the confidence of the

2 As an example, say you want to cluster various animal species observed in a national
park. In this case, we can rely on prior domain knowledge to make an estimate.
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Algorithm 1 Semantic Clustering by Adopting Nearest neighbors (SCAN)

1: Input: Dataset D, Clusters C, Task τ , Neural Nets Φθ and Φη, Neighbors ND = {}.
2: Optimize Φθ with task τ . . Pretext Task Step, Sec. 2.1
3: for Xi ∈ D do
4: ND ← ND ∪NXi , with NXi = K neighboring samples of Φθ(Xi).
5: end for
6: while SCAN-loss decreases do . Clustering Step, Sec. 2.2
7: Update Φη with SCAN-loss, i.e. Λ(Φη(D),ND, C) in Eq. 2
8: end while
9: while Len(Y ) increases do . Self-Labeling Step, Sec. 2.3

10: Y ← (Φη(D) > threshold)
11: Update Φη with cross-entropy loss, i.e. H(Φη(D), Y )
12: end while
13: Return: Φη(D) . D is divided over C clusters

predictions in a more reliable manner. Hence, we propose a self-labeling ap-
proach [42, 30, 45] to exploit the already well-classified examples, and correct for
mistakes due to noisy nearest neighbors.

In particular, during training confident samples are selected by thresholding
the probability at the output, i.e. pmax > threshold. For every confident sample,
a pseudo label is obtained by assigning the sample to its predicted cluster. A
cross-entropy loss is used to update the weights for the obtained pseudo labels.
To avoid overfitting, we calculate the cross-entropy loss on strongly augmented
versions of the confident samples. The self-labeling step allows the network to
correct itself, as it gradually becomes more certain, adding more samples to the
mix. We refer to Section 3.2 for a concrete experiment.

Algorithm 1 summarizes all the steps of the proposed method. We further
refer to it as SCAN, i.e. Semantic Clustering by Adopting Nearest neighbors.

3 Experiments

3.1 Experimental setup

Datasets. The experimental evaluation is performed on CIFAR10 [26], CIFAR100-
20 [26], STL10 [9] and ImageNet [11]. We focus on the smaller datasets first. The
results on ImageNet are discussed separately in Section 3.5. Some prior works [23,
6, 51, 53] trained and evaluated on the complete datasets. Differently, we train
and evaluate using the train and val split respectively. Doing so, allows to study
the generalization properties of the method for novel unseen examples. Note that
this does not result in any unfair advantages compared to prior work. The results
are reported as the mean and standard deviation from 10 different runs. Finally,
all experiments are performed using the same backbone, augmentations, pretext
task and hyperparameters.
Training setup. We use a standard ResNet-18 backbone. For every sample,
the 20 nearest neighbors are determined through an instance discrimination task
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based on noise contrastive estimation (NCE) [50]. We adopt the SimCLR [7] im-
plementation for the instance discrimination task on the smaller datasets, and
the implementation from MoCo [8] on ImageNet. The selected pretext task satis-
fies the feature invariance constraint from Equation 1 w.r.t. the transformations
applied to augment the input images. In particular, every image is disentangled
as a unique instance independent of the applied transformation. To speed up
training, we transfer the weights, obtained from the pretext task to initiate the
clustering step (Section 2.2). We perform the clustering step for 100 epochs using
batches of size 128. The weight on the entropy term is set to λ = 5. A higher
weight avoids the premature grouping of samples early on during training. The
results seem to be insensitive to small changes of λ. After the clustering step,
we train for another 200 epochs using the self-labeling procedure with threshold
0.99 (Section 2.3). A weighted cross-entropy loss compensates for the imbalance
between confident samples across clusters. The class weights are inversely propor-
tional to the number of occurrences in the batch after thresholding. The network
weights are updated through Adam [24] with learning rate 10−4 and weight decay
10−4. The images are strongly augmented by composing four randomly selected
transformations from RandAugment [10] during both the clustering and self-
labeling steps. The transformation parameters are uniformly sampled between
fixed intervals. For more details visit the supplementary materials.

Validation criterion During the clustering step, we select the best model based
on the lowest loss. During the self-labeling step, we save the weights of the model
when the amount of confident samples plateaus. We follow these practices as we
do not have access to a labeled validation set.

3.2 Ablation studies

Method. We quantify the performance gains w.r.t. the different parts of our
method through an ablation study on CIFAR10 in Table 1. K-means cluster-
ing of the NCE pretext features results in the lowest accuracy (65.9%), and is
characterized by a large variance (5.7%). This is to be expected since the cluster
assignments can be imbalanced (Figure 3), and are not guaranteed to align with
the ground-truth classes. Interestingly, applying K-means to the pretext features
outperforms prior state-of-the-art methods for unsupervised classification based
on end-to-end learning schemes (see Sec. 3.3). This observation supports our
primary claim, i.e. it is beneficial to separate feature learning from clustering.
Updating the network weights through the SCAN-loss - while augmenting the in-
put images through SimCLR transformations - outperforms K-means (+15.9%).
Note that the SCAN-loss is somewhat related to K-means, since both meth-
ods employ the pretext features as their prior to cluster the images. Differently,
our loss avoids the cluster degeneracy issue. We also research the effect of us-
ing different augmentation strategies during training. Applying transformations
from RandAgument (RA) to both the samples and their mined neighbors further
improves the performance (78.7% vs. 81.8%). We hypothesize that strong aug-
mentations help to reduce the solution space by imposing additional invariances.
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Table 1: Ablation Method CIFAR10

Setup ACC
(Avg ± Std)

Pretext + K-means 65.9± 5.7
SCAN-Loss (SimCLR) 78.7± 1.7

(1) Self-Labeling (SimCLR) 10.0± 0
(2) Self-Labeling (RA) 87.4± 1.6

SCAN-Loss (RA) 81.8± 1.7
(1) Self-Labeling (RA) 87.6± 0.4

Table 2: Ablation Pretext CIFAR10

Pretext Task Clustering ACC
(Avg ± Std)

RotNet [15] K-means 27.1± 2.1
SCAN 74.3± 3.9

Inst. discr. [50] K-means 52.0± 4.6
SCAN 83.5± 4.1

Inst. discr. [7] K-means 65.9± 5.7
SCAN 87.6± 0.4
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Fine-tuning the network through self-labeling further enhances the quality
of the cluster assignments (81.8% to 87.6%). During self-labeling, the network
corrects itself as it gradually becomes more confident (see Figure 4). Importantly,
in order for self-labeling to be successfully applied, a shift in augmentations is
required (see Table 1 or Figure 5). We hypothesize that this is required to prevent
the network from overfitting on already well-classified examples. Finally, Figure 6
shows that self-labeling procedure is not sensitive to the threshold’s value.

Pretext task. We study the effect of using different pretext tasks to mine
the nearest neighbors. In particular we consider two different implementations
of the instance discrimination task from before [50, 7], and RotNet [15]. The
latter trains the network to predict image rotations. As a consequence, the dis-
tance between an image Xi and its augmentations T [Xi] is not minimized in the
embedding space of a model pretrained through RotNet (see Equation 1). Dif-
ferently, the instance discrimintation task satisfies the invariance criterion w.r.t.
the used augmentations. Table 2 shows the results on CIFAR10.

First, we observe that the proposed method is not tied to a specific pretext
task. All cases report high accuracy (> 70%). Second, pretext tasks that satisfy
the invariance criterion are better suited to mine the nearest neighbors, i.e. 83.5%
and 87.6% for inst. discr. versus 74.3% for RotNet. This confirms our hypothesis
from Section 2.1, i.e. it is beneficial to choose a pretext task which imposes
invariance between an image and its augmentations.
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Number of neighbors. Figure 7 shows the influence of using a different num-
ber of nearest neighbors K during the clustering step. The results are not very
sensitive to the value of K, and even remain stable when increasing K to 50.
This is beneficial, since we do not have to fine-tune the value of K on very
new dataset. In fact, both robustness and accuracy improve when increasing the
value of K upto a certain value. We also consider the corner case K = 0, when
only enforcing consistent predictions for images and their augmentations. the
performance decreases on all three datasets compared to K = 5, 56.3% vs 79.3%
on CIFAR10, 24.6% vs 41.1% on CIFAR100-20 and 47.70% vs 69.8% on STL10.
This confirms that better representations can be learned by also enforcing co-
herent predictions between a sample and its nearest neighbors.

Convergence. Figure 8 shows the results when removing the false positives
from the nearest neighbors, i.e. sample-pairs which belong to a different class.
The results can be considered as an upper-bound for the proposed method in
terms of classification accuracy. A desirable characteristic is that the clusters
quickly align with the ground truth, obtaining near fully-supervised performance
on CIFAR10 and STL10 with a relatively small increase in the number of used
neighbors K. The lower performance improvement on CIFAR100-20 can be ex-
plained by the ambiguity of the superclasses used to measure the accuracy. For
example, there is not exactly one way to group categories like omnivores or
carnivores together.

3.3 Comparison with the state-of-the-art

Comparison. Table 3 compares our method to the state-of-the-art on three dif-
ferent benchmarks. We evaluate the results based on clustering accuracy (ACC),
normalized mutual information (NMI) and adjusted rand index (ARI). The pro-
posed method consistently outperforms prior work by large margins on all three
metrics, e.g. +26.6% on CIFAR10, +25.0% on CIFAR100-20 and +21.3% on
STL10 in terms of accuracy. We also compare with the state-of-the-art in repre-
sentation learning [7] (Pretext + K-means). As shown in Section 3.2, our method
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Table 3: State-of-the-art comparison: We report the averaged results for 10 dif-
ferent runs after the clustering (∗) and self-labeling steps (†), and the best model.
Opposed to prior work, we train and evaluate using the train and val split re-
spectively, instead of using the full dataset for both training and testing.
Dataset CIFAR10 CIFAR100-20 STL10

Metric ACC NMI ARI ACC NMI ARI ACC NMI ARI

K-means [49] 22.9 8.7 4.9 13.0 8.4 2.8 19.2 12.5 6.1
SC [54] 24.7 10.3 8.5 13.6 9.0 2.2 15.9 9.8 4.8
Triplets [41] 20.5 – – 9.94 – – 24.4 – –
JULE [53] 27.2 19.2 13.8 13.7 10.3 3.3 27.7 18.2 16.4
AEVB [25] 29.1 24.5 16.8 15.2 10.8 4.0 28.2 20.0 14.6
SAE [33] 29.7 24.7 15.6 15.7 10.9 4.4 32.0 25.2 16.1
DAE [48] 29.7 25.1 16.3 15.1 11.1 4.6 30.2 22.4 15.2
SWWAE [58] 28.4 23.3 16.4 14.7 10.3 3.9 27.0 19.6 13.6
AE [2] 31.4 23.4 16.9 16.5 10.0 4.7 30.3 25.0 16.1
GAN [39] 31.5 26.5 17.6 15.1 12.0 4.5 29.8 21.0 13.9
DEC [51] 30.1 25.7 16.1 18.5 13.6 5.0 35.9 27.6 18.6
ADC [16] 32.5 – – 16.0 – – 53.0 – –
DeepCluster [4] 37.4 – – 18.9 – – 33.4 – –
DAC [6] 52.2 40.0 30.1 23.8 18.5 8.8 47.0 36.6 25.6
IIC [23] 61.7 51.1 41.1 25.7 22.5 11.7 59.6 49.6 39.7

Supervised 93.8 86.2 87.0 80.0 68.0 63.2 80.6 65.9 63.1
Pretext [7] + K-means 65.9± 5.7 59.8± 2.0 50.9± 3.7 39.5± 1.9 40.2± 1.1 23.9± 1.1 65.8± 5.1 60.4± 2.5 50.6± 4.1
SCAN∗ (Avg ± Std) 81.8± 0.3 71.2± 0.4 66.5± 0.4 42.2± 3.0 44.1± 1.0 26.7± 1.3 75.5± 2.0 65.4± 1.2 59.0± 1.6

SCAN† (Avg ± Std) 87.6± 0.4 78.7± 0.5 75.8± 0.7 45.9± 2.7 46.8± 1.3 30.1± 2.1 76.7± 1.9 68.0± 1.2 61.6± 1.8

SCAN† (Best) 88.3 79.7 77.2 50.7 48.6 33.3 80.9 69.8 64.6

SCAN† (Overcluster) 86.2± 0.8 77.1± 0.1 73.8± 1.4 55.1± 1.6 50.0± 1.1 35.7± 1.7 76.8± 1.1 65.6± 0.8 58.6± 1.6

outperforms the application of K-means on the pretext features. Finally, we also
include results when tackling the problem in a fully-supervised manner. Our
model obtains close to supervised performance on CIFAR-10 and STL-10. The
performance gap is larger on CIFAR100-20, due to the use of superclasses.
Other advantages. In contrast to prior work [6, 23, 20], we did not have to
perform any dataset specific fine-tuning. Furthermore, the results on CIFAR10
can be obtained within 6 hours on a single GPU. As a comparison, training the
model from [23] requires at least a day of training time.

3.4 Overclustering

So far we assumed to have knowledge about the number of ground-truth classes.
The method predictions were evaluated using a hungarian matching algorithm.
However, what happens if the number of clusters does not match the number of
ground-truth classes anymore. Table 3 reports the results when we overestimate
the number of ground-truth classes by a factor of 2, e.g. we cluster CIFAR10 into
20 rather than 10 classes. The classification accuracy remains stable for CIFAR10
(87.6% to 86.2%) and STL10 (76.7% to 76.8%), and improves for CIFAR100-20
(45.9% to 55.1%)3. We conclude that the approach does not require knowledge
of the exact number of clusters. We hypothesize that the increased performance
on CIFAR100-20 is related to the higher intra-class variance. More specifically,

3 Since the overclustering case is evaluated using a many-to-one mapping, a direct
comparison is not entirely fair. Still, we provide the comparison as an indication.
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Table 4: Validation set results for 50, 100 and 200 randomly selected classes
from ImageNet. The results with K-means were obtained using the pretext fea-
tures from MoCo [8]. We provide the results obtained by our method after the
clustering step (∗), and after the self-labeling step (†).
ImageNet 50 Classes 100 Classes 200 Classes

Metric Top-1 Top-5 NMI ARI Top-1 Top-5 NMI ARI Top-1 Top-5 NMI ARI

K-means 65.9 - 77.5 57.9 59.7 - 76.1 50.8 52.5 - 75.5 43.2
SCAN∗ 75.1 91.9 80.5 63.5 66.2 88.1 78.7 54.4 56.3 80.3 75.7 44.1

SCAN† 76.8 91.4 82.2 66.1 68.9 86.1 80.8 57.6 58.1 80.6 77.2 47.0

CIFAR100-20 groups multiple object categories together in superclasses. In this
case, an overclustering is better suited to explain the intra-class variance.

3.5 ImageNet

Setup. We consider the problem of unsupervised image classification on the
large-scale ImageNet dataset [11]. We first consider smaller subsets of 50, 100
and 200 randomly selected classes. The sets of 50 and 100 classes are subsets of
the 100 and 200 classes respectively. Additional details of the training setup can
be found in the supplementary materials.

Quantitative evaluation. Table 4 compares our results against applying K-
means on the pretext features from MoCo [8]. Surprisingly, the application of
K-means already performs well on this challenging task. We conclude that the
pretext features are well-suited for the down-stream task of semantic cluster-
ing. Training the model with the SCAN-loss again outperforms the applica-
tion of K-means. Also, the results are further improved when fine-tuning the
model through self-labeling. We do not include numbers for the prior state-of-
the-art [23], since we could not obtain convincing results on ImageNet when
running the publicly available code. We refer the reader to the supplementary
materials for additional qualitative results on ImageNet-50.

Prototypical behavior. We visualize the different clusters after training the
model with the SCAN-loss. Specifically, we find the samples closest to the mean
embedding of the top-10 most confident samples in every cluster. The results
are shown together with the name of the matched ground-truth classes in Fig. 9.
Importantly, we observe that the found samples align well with the classes of the
dataset, except for ’oboe’ and ’guacamole’ (red). Furthermore, the discriminative
features of each object class are clearly present in the images. Therefore, we
regard the obtained samples as ”prototypes” of the various clusters. Notice that
the performed experiment aligns well with prototypical networks [44].
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Fig. 9: Prototypes obtained by sam-
pling the confident samples.
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Fig. 10: Zoom on seven superclasses in
the confusion matrix on ImageNet.

Fig. 11: Clusters extracted by our model on ImageNet (more in supplementary).

ImageNet - 1000 classes. Finally, the model is trained on the complete Im-
ageNet dataset. Figure 11 shows images from the validation set which were as-
signed to the same cluster by our model. The obtained clusters are semantically
meaningful, e.g. planes, cars and primates. Furthermore, the clusters capture a
large variety of different backgrounds, viewpoints, etc. We conclude that (to a
large extent) the model predictions are invariant to image features which do not
alter the semantics. On the other hand, based on the ImageNet ground-truth
annotations, not all sample pairs should have been assigned to the same cluster.
For example, the ground-truth annotations discriminate between different pri-
mates, e.g. chimpanzee, baboon, langur, etc. We argue that there is not a single
correct way of categorizing the images according to their semantics in case of
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ImageNet. Even for a human annotator, it is not straightforward to cluster each
image according to the ImageNet classes without prior knowledge.

Based on the ImageNet hierarchy we select class instances of the following
superclasses: dogs, insects, primates, snake, clothing, buildings and birds. Fig-
ure 10 shows a confusion matrix of the selected classes. The confusion matrix
has a block diagonal structure. The results show that the misclassified examples
tend to be assigned to other clusters from within the same superclass, e.g. the
model confuses two different dog breeds. We conclude that the model has learned
to group images with similar semantics together, while its prediction errors can
be attributed to the lack of annotations which could disentangle the fine-grained
differences between some classes.

Finally, Table 5 compares our method against recent semi-supervised learning
approaches when using 1% of the images as labelled data. We obtain the following
quantitative results on ImageNet: Top-1: 39.9%, Top-5: 60.0%, NMI: 72.0%, ARI:
27.5%. Our method outperforms several semi-supervised learning approaches,
without using labels. This further demonstrates the strength of our approach.

Table 5: Comparison with supervised, and semi-supervised learning methods
using 1% of the labelled data on ImageNet.

Method Backbone Labels Top-1 Top-5

Supervised Baseline ResNet-50 X 25.4 48.4
Pseudo-Label ResNet-50 X - 51.6
VAT + Entropy Min. [55] ResNet-50 X - 47.0
InstDisc [50] ResNet-50 X - 39.2
BigBiGAN [14] ResNet-50(4x) X - 55.2
PIRL [31] ResNet-50 X - 57.2
CPC v2 [19] ResNet-161 X 52.7 77.9
SimCLR [7] ResNet-50 X 48.3 75.5

SCAN (Ours) ResNet-50 7 39.9 60.0

4 Conclusion

We presented a novel framework to unsupervised image classification. The pro-
posed approach comes with several advantages relative to recent works which
adopted an end-to-end strategy. Experimental evaluation shows that the pro-
posed method outperforms prior work by large margins, for a variety of datasets.
Furthermore, positive results on ImageNet demonstrate that semantic clustering
can be applied to large-scale datasets. Encouraged by these findings, we believe
that our approach admits several extensions to other related domains.
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