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Abstract. Graph convolutional networks (GCNs) have been applied to
3D human pose estimation (HPE) from 2D body joint detections and
have shown encouraging performance. One limitation of the vanilla graph
convolution is that it models the relationships between neighboring nodes
via a shared weight matrix. This is suboptimal for articulated body mod-
eling as the relations between different body joints are different. The ob-
jective of this paper is to have a comprehensive and systematic study of
weight sharing in GCNs for 3D HPE. We first show there are two differ-
ent ways to interpret a GCN depending on whether feature transforma-
tion occurs before or after feature aggregation. These two interpretations
lead to five different weight sharing methods, and three more variants
can be derived by decoupling the self-connections with other edges. We
conduct extensive ablation study on these weight sharing methods un-
der controlled settings and obtain new conclusions that will benefit the
community.

1 Introduction

The task of 3D human pose estimation (HPE) means to predict the locations of
human body joints in the camera coordinate system from a single RGB image.
It has attracted a lot of attention in recent years [8, 5, 26, 22, 19, 30, 43, 37] due
to its broad applications in human-computer interaction, action recognition and
robotics. 3D HPE is an ill-posed problem since multiple 3D poses may explain
the same 2D projection in the image space. Fortunately, this ambiguity could be
largely resolved as the human body is a highly structured object [21, 40].

Previous research on 3D HPE can be divided into two streams. The first one
is to regress the 3D human pose directly from the input image [25, 35]. Early
work [1, 41] rely on handcrafted features but they are prone to fail in case of
depth ambiguity, rare viewpoints and occlusion. Recent approaches [25, 44, 31,
32, 39] exploit convolutional neural networks (CNNs) to learn powerful visual
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Fig. 1. Illustration of a graph convolutional network (GCN) for 3D human pose es-
timation. The input is the 2D body joint locations predicted by an off-the-shelf 2D
pose detector. A GCN repeatedly transforms and aggregates features of neighboring
body joints to learn an increasingly powerful representation. The output 3D pose is
predicted by the last layer

representations from large-scale image data [3, 15] and significantly improve the
regression accuracy. The second stream follows a two-stage pipeline, i.e., 2D
human pose detection [23, 6, 33, 34] followed by 2D-to-3D pose lifting [21, 40, 19].
For example, Martinez et al. [21] use a fully connected network to regress the 3D
body joint locations from the output of an off-the-shelf 2D pose detector. This
simple baseline is effective and outperforms state-of-the-art one-stage methods.

Recently graph convolutional networks (GCNs) [17, 42] have been applied
to solve the 2D-to-3D pose lifting problem [5, 8, 40]. They generalize CNNs by
performing convolutions on graph data. As illustrated in Fig. 1, the articulated
body skeleton naturally forms a graph wherein body joints and bones respec-
tively correspond to the nodes and edges. A GCN then repeatedly transforms
and aggregates features of neighboring body joints and learns their relational
patterns which are critical to resolve the depth ambiguity. Compared with a
fully connected network [21], a GCN not only learns a compact representation
defined on graph nodes but also explicitly captures their structural relationships.

One limitation of the vanilla GCN, which was originlly proposed for graph
or node classification, is that it shares a feature transformation for each node
within a graph convolutional layer. While weight sharing leads to a more compact
model and promotes its generalization ability, it is suboptimal for articulated
body modeling. On one hand, the relations between different body joints are
different. For example, the ankles of a standing, walking or sitting person are
always below their knees while the relational pattern between wrists and elbows
are more complex. On the other hand, it is actually the feature transformation
that captures the relations between each node and their neighboring nodes. Thus,
this kind of weight sharing can prevent the GCN from learning diverse models
specific to different relations and therefore adversely affect 3D HPE.

The objective of this paper is to have a comprehensive and systematic study
of weight sharing in GCNs for 3D HPE. Specifically, we consider five different
weight sharing strategies: full-sharing, pre-aggregation, post-aggregation,
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convolution-style and no-sharing. Full-sharing corresponds to the vanilla
graph convolution. We show that there are two ways to interpret the graph con-
volution depending on whether the feature transformation occurs before or after
features are aggregated from the neighborhood of each node. Pre-aggregation
and post-aggregation are obtained by unsharing the feature transformations
for each node in these two equivalent forms respectively. Convolution-style is
motivated by the convolution operation used in CNNs, but the displacement be-
tween two entities are defined on the graph. No-sharing is on the other extreme
of full-sharing as it defines a different feature transformation between any two
nodes. Furthermore, we notice that the affinity matrix used in a GCN usually
includes self-connections, i.e., edges connecting each node and itself. Since they
do not model relations between different nodes, we consider decoupling them
with the edges connecting each node to their neighbors. This leads to three
more variants of full-sharing, pre-aggregation and post-aggregation. Af-
ter conducting extensive ablation study by controlling the number of parame-
ters, computational complexity and number of channels for these weight sharing
methods, we find that (1) decoupling self-connections is critical to achieve good
performance, (2) different weight sharing strategies, even with the same number
of parameters, have a significant impact on the performance of 3D HPE, and (3)
pre-aggregation with decoupled self-connections is the optimal weight sharing
method in GCNs for 3D HPE.

In sum, the contribution of this paper is twofold.

– To our knowledge, this is the first comprehensive and systematic investiga-
tion of weight sharing in GCNs and their impact on articulated pose re-
gression. We study five different weight sharing strategies derived from two
perspectives of a graph convolution as well as three more variants based on
decoupling self-connections.

– We conduct extensive experiments to compare the different weight sharing
methods under controlled settings. We make new conclusions that we believe
will benefit not only the research community of human pose estimation but
also that of deep learning on graphs.

2 Related Work

3D Human Pose Estimation. The development of 3D HPE has gone through
a long time. In the beginning, researchers build 3D pose models based on hand-
crafted features and geometric constraints [2, 28, 14]. Recent approaches exploit
deep neural networks [44, 31, 32, 39, 21, 40, 19] for end-to-end learning and signif-
icantly push forward the state-of-the-art performance. Zhou et al. [43] augment a
2D pose estimation sub-network with a 3D depth regression sub-network and in-
troduce a weakly-supervised transfer learning method to make full use of mixed
2D and 3D labels. Sun et al. [32] introduce a simple integral operation to relate
and unify the heat map representation and body joint regression. Yang et al.
[39] design an adversarial learning framework, which distills the 3D human pose
structures learned from the fully annotated dataset to in-the-wild images with
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only 2D pose annotations. 3D HPE from videos have been studied in [7, 26].
There is also research on multi-person 3D pose detection [22].

Some researchers divide the 3D HPE task into two sub-tasks, i.e., 2D hu-
man pose estimation from an image and 2D-to-3D pose lifting. Our approach
falls into this category. The most related work to ours are [40, 8, 5], which also
apply GCNs for 3D pose regression. Zhao et al. [40] propose a semantic GCN
to capture local and global node relationships not explicitly represented in the
graph. Ci et al. [8] extend the GCN to a locally connected network to improve its
representation capability. This model is actually equivalent to the no-sharing

method discussed in this paper. Cai et al. [5] incorporate domain knowledge
about the articulated body configurations into the graph convolutional opera-
tions and introduce a local-to-global network to learn multi-scale features for
the graph-based representations. They classify neighboring nodes according to
their semantic meanings and use different kernels for different neighboring nodes.
Their form is similar to that of our convolution-style method but our deriva-
tion is inspired by the spatial convolution and is more general. Moreover, we
also consider new weight sharing methods based on two different interpretations
of the graph convolution and decoupling self-connections. Although decoupling
self-connections in a GCN has been studied in [38] and [40], we investigate it in
different weight sharing methods. To our knowledge, this is the first systematic
study of weight sharing in GCNs for 3D human pose estimation.

Graph Convolutional Networks. GCNs generalize CNNs by performing
convolutions on graphs. They have been widely used to solve problems involving
graph data like the citation network [17], news network [13], molecular property
prediction [11] and information retrieval [29]. There are two categories of GCNs:
spectral approaches and non-spectral (spatial) approaches [42]. The former are
defined in the Fourier domain by calculating eigen-decomposition of graph Lapla-
cian [4], and the latter apply neural message passing to features defined on a
graph [11]. Our approach falls into the second category. GCNs are convention-
ally used for graph or node classification and share the feature transformation
for each node so that they could work on graphs with arbitrary structures. By
contrast, the human body skeleton has a fixed structure consisting of diverse
relations. Thus, it is important to study weight sharing for 3D HPE.

3 Our Approach

We first revisit a vanilla GCN and show two different ways to interpret it (Sec.
3.1). We introduce and compare different weight sharing methods in Sec. 3.2.
Sec. 3.3 discusses weight sharing based on decoupled self-connections. Finally,
we detail the network architecture for 3D HPE in Sec. 3.4.

3.1 Understand GCN

A GCN generalizes CNNs by learning representations on graph data. Let G =
(V, E) denote a graph where V is a set of N nodes and E is the collection of
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Fig. 2. Illustration of two different ways to interpret a graph convolution. (a) A simple
graph consisting of three nodes. (b) The features of each node are updated via feature
transformation followed by neighborhood aggregation. (c) The features of each node
are updated via neighborhood aggregation followed by feature transformation

all edges. We can encode the edges in an adjacency matrix A ∈ {0, 1}N×N . Let
hi ∈ RD denote a D-dimensional feature vector associated with each node i.
H ∈ RD×N is the collection of all feature vectors, and its i-th column is hi.
Then a graph convolutional layer [17], the building block of a GCN, updates
features defined on the nodes via the following operation:

H′ = σ(WHÂ) (1)

where H′ ∈ RD′×N is the updated feature matrix, D′ is the dimension of the
updated feature vector of each node, σ(·) is an activation function, e.g., ReLU,

W ∈ RD′×D is a learnable weight matrix. Â is a normalized version of A:

Â = D̃−
1
2 (A + I)D̃−

1
2 (2)

Adding an identity matrix I to A means to include self-connections in the graph
so that the update of a node feature vector also depends on itself. D̃ is the
diagonal node degree matrix of A+ I and helps the graph convolution to retain
the scale of features. A GCN takes as input a feature vector associated with
each node and repeatedly transforms them via a composition of multiple graph
convolutions to get increasingly more powerful representations, which are used
by the last layer to predict the output.

Let âij be the entry of Â at (i, j). Ni and N̂i ≡ Ni∪{i} denote the neighbors

of node i excluding and including the node itself respectively. This means j ∈ N̂i

if and only if âij 6= 0. Then Eq. (1) can be written equivalently as below.

h′i =σ(
∑
j∈N̂i

Whj âij) (3)

=σ(W
∑
j∈N̂i

hj âij) (4)

where i ∈ {1, ..., N}, h′i is the i-th column of H′ and also the updated feature
vector of node i.
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Table 1. Comparison of different weight sharing methods

Method Definition Parameters Complexity

Full-sharing h′
i = σ(

∑
j∈N̂i

Whj âij) D′ ×D D′ ×D ×
∑N

i=1 |N̂i|
Conv-style h′

i = σ(
∑

j∈N̂i
Wd(i,j)hj âij) D

′ ×D × 3 D′ ×D ×
∑N

i=1 |N̂i|
Pre-agg h′

i = σ(
∑

j∈N̂i
Wjhj âij) D′ ×D ×N D′ ×D ×

∑N
i=1 |N̂i|

Post-agg h′
i = σ(Wi

∑
j∈N̂i

hj âij) D′ ×D ×N D′ ×D ×
∑N

i=1 |N̂i|
No-sharing h′

i = σ(
∑

j∈N̂i
Wijhj âij) D′ ×D ×

∑N
i=1 |N̂i| D′ ×D ×

∑N
i=1 |N̂i|

This equivalence indicates we can interpret the graph convolution in two dif-
ferent ways. Specifically, Eq. (3) updates the feature vector of each node by first
transforming the features of their neighboring nodes via W and then aggregating
those transformed features via a summation. Alternatively, Eq. (4) first aggre-
gates features of neighboring nodes and then transforms the aggregated features
via a linear projection. These two interpretations are illustrated in Fig. 2. We
will show how they can be used to derive different weight sharing methods.

3.2 Weight Sharing

The transformation matrix in a graph convolution captures the relationships
between nodes. It is conventionally shared by all nodes, i.e., Eqs. (3) and (4). This
weight sharing method, which we call full-sharing, has several advantages.
First, it leads to a compact model potentially with better generalization ability.
Second, it allows us to apply the same GCN to graphs with arbitrary structures,
which is critical to graph or node classification tasks. However, full-sharing
can be suboptimal for human pose estimation as the relations among different
sets of body joints are different. To resolve this potential issue, we try to unshare
a portion of the weights, which leads to different weight sharing methods.

Pre-aggregation. Motivated by Eq. (3), we consider applying different
transformations to the input features of each node before they are aggregated:

h′i = σ(
∑
j∈N̂i

Wjhj âij) (5)

where Wj ∈ RD′×D (j ∈ {1, ..., N}) is the weight matrix applied to hj . Since
the weight unsharing occurs before feature aggregation, we call this method
pre-aggregation.

Post-aggregation. Alternatively, we can also unshare the weights to get the
output features of each node after the aggregation step. Eq. (4) is reformulated:

h′i = σ(Wi

∑
j∈N̂i

hj âij) (6)
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where Wi ∈ RD′×D (i ∈ {1, ..., N}) is the transformation to get the output
features of node i from its neighbors. We call it post-aggregation as the weight
unsharing occurs after feature aggregation.

No-sharing. Pre-aggregation and post-aggregation differ in whether
the weights are unshared for the input or output features of each node. It is
straightforward to combine them and unshare the weights between any pair of
input and output feature vectors:

h′i = σ(
∑
j∈N̂i

Wijhj âij) (7)

where Wij ∈ RD′×D is the weight matrix corresponding to the input features
of node j and the output features of node i. We call this method no-sharing.

Note the number of different weight matrices is
∑N

i=1 |N̂i| instead of N2.
Convolution-style. An image is a special kind of graph with its nodes

or pixels arranged in a grid. This makes it possible to define the displacement
between any two pixels by subtracting their 2D coordinates on the grid. Then the
spatial convolution on an image can be considered as a weight sharing method by
assigning different feature transformations to each displacement value between
two nodes. Thus, if we can define the displacement d(i, j) between two nodes i
and j on a graph, we can develop a convolution-style weight sharing method:

h′i = σ(
∑
j∈N̂i

Wd(i,j)hj âij) (8)

where Wd(i,j) ∈ RD′×D is the weight matrix corresponding to each displacement
value d(i, j). Motivated by the fact that the skeleton graph as shown in Fig. 1
has a star shape and body joints farther away from the body center have larger
degrees of freedom, we define the coordinate of a body joint node as the length
of the shortest path between it and the body center node. Thus for a pair of
neighboring nodes i ∈ {1, ..., N} and j ∈ N̂i, we have d(i, j) ∈ {−1, 0, 1}. In
other words, the relationships between a node and (1) itself, (2) a neighboring
body joint farther from the body center and (3) a neighboring body joint closer
to the body center are modeled separately.

Tab. 1 compares definitions of the five weight sharing methods as well as their
parameters and computational complexities based on a unified implementation.
Possible ways to reduce the computational complexity are discussed in the sup-
plementary material. With the same dimensions of input and output features,
full-sharing has the smallest number of parameters while no-sharing is on
the other extreme. Fig. 3 illustrates different weight sharing methods.

3.3 Decouple Self-connections

The normalized affinity matrix Â used in a GCN usually includes self-connections,
i.e., edges connecting each node and itself. Unlike edges connecting nodes to their
neighbors, self-connections do not involve relational modeling between different
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Fig. 3. Illustration of the five weight sharing methods discussed in Sec. 3.2. Weight
unsharing is encoded via different colors. For convolution-style, we assume the co-
ordinate of a node is defined as its graph distance to node A

Fig. 4. Illustration of decoupled weight sharing methods. Weight unsharing is encoded
via different colors. Arrows denote weights corresponding to self-connections

nodes. This motivates us to decouple their feature transformations, which leads
to variants of full-sharing, pre-aggregation and post-aggregation:

h′i = σ(Thiâii +
∑
j∈Ni

Whj âij) (9)

h′i = σ(Tihiâii +
∑
j∈Ni

Wjhj âij) (10)

h′i = σ(Tihiâii + Wi

∑
j∈Ni

hj âij) (11)

where T ∈ RD′×D and Ti ∈ RD′×D denote feature transformations for self-
connections,Ni ≡ N̂i−{i}. For decoupled full-sharing, i.e., Eq. (9), the weight
matrix T is fully shared by all self-connections. For decoupled pre-aggregation

and decoupled post-aggregation, i.e., Eqs. (10) and (11), we modify their re-
spective original formulations so that a different weight matrix is assigned to
each self-connection and they are different from weight matrices for other con-
nections. Note convolution-style and no-sharing decouple self-connections
by definition. Fig. 4 illustrates these three decoupled weight sharing methods.
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Fig. 5. An example GCN architecture for 2D-to-3D pose lifting. The building block is
a residual block composed of two graph convolutional layers with 128 channels. This
block is repeated four times. Each graph convolutional layer (except for the last one)
is followed by a batch normalization layer and a ReLU activation

Table 2. Ablation study on the impact of decoupling self-connections. We adjust the
channels so that each pair of comparing methods have similar model sizes. All errors
are measured in millimeters (mm)

Method Decouple? Channels Params MPJPE P-MPJPE Loss

Full-sharing No 180 0.27 M 53.53 43.37 0.000630
Full-sharing Yes 128 0.27 M 41.96 33.69 0.000140

Pre-agg No 180 4.17 M 40.34 31.59 0.000027
Pre-agg Yes 128 4.22 M 37.83 30.09 0.000016

Post-agg No 180 4.17 M 41.39 33.68 0.000052
Post-agg Yes 128 4.22 M 38.92 31.33 0.000022

3.4 Network Architecture

We use the network architecture shown in Fig. 5 for 3D human pose estimation
and compare different weight sharing methods in the experiments. Following
Martinez et al. [21] and Defferrard et al. [9], we stack multiple cascaded blocks,
each of which is composed of two graph convolutional layers interleaved with
batch normalization and ReLU. Then, each block is wrapped in a residual con-
nection. The input to the GCN is the 2D coordinates of the body joints in the
image space and the output is the corresponding 3D locations in the camera co-
ordinate system. We use an L2-norm loss between the prediction and the ground
truth. The network can be trained end-to-end.

4 Experiments

4.1 Datasets and Evaluation Protocols

We conduct our experiments on the widely used Human 3.6M dataset [15] and
follow the standard evaluation procedure.

Dataset. The Human 3.6M dataset is currently the largest public dataset for
3D HPE. It contains 3.6 million images filmed by 4 synchronized high-resolution
progressive scan cameras at 50 Hz [15]. 11 subjects perform 15 different daily
activities in the film like eating, phoning, sitting and walking, but only 7 subjects
are annotated with 3D poses. We follow previous work [26, 40, 8] for fair and
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Table 3. Ablation study on different weight sharing methods (controlled number of
channels and computational complexity). All errors are measured in millimeters (mm)

Method Channels Params MPJPE P-MPJPE Loss

Full-sharing 128 0.27 M 41.96 33.69 0.000140

Conv-style 128 0.40 M 42.85 33.32 0.000078

Pre-agg 128 4.22 M 37.83 30.09 0.000016

Post-agg 128 4.22 M 38.92 31.33 0.000022

No-sharing 128 6.86 M 39.88 31.02 0.000013

Fig. 6. Training curves (left) and validation errors (right) of different methods (con-
trolled number of channels and computational complexity). Curves corresponding to
controlled model size can be found in the supplementary material

effective comparison. The 7 annotated subjects are divided into 5 subjects (S1,
S5, S6, S7, S8) for training and 2 subjects (S9 and S11) for testing. A single
model is trained and tested on all 15 actions.

Evaluation protocols. There are two protocols for evaluation. Protocol-
1 uses the mean per-joint position error (MPJPE) as the evaluation metric. It
computes the mean Euclidean distance error per-joints between the prediction
and the ground truth in millimeters. Protocol-2 computes the error after align-
ing the root joint of the prediction with ground truth via rigid transformation.
This metric is abbreviated as P-MPJPE.

4.2 Ablation Study

We conduct ablation study to compare the five different weight sharing methods
and the three variants in controlled settings. To avoid the influence of 2D human
pose detector, we utilize the 2D ground truth as the input for all models. We
adopt Adam [16] as our optimization method with an initial learning rate 0.001
and a decay rate 0.96 every 100K iterations. We train each model for 50 epochs
using a batch size 64. The weights of GCNs are initialized using the method
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Table 4. Ablation study on different weight sharing methods (controll the model size
to be 4.2 M, 2.1 M or 1.05 M). All errors are measured in millimeters (mm)

Method
4.2M 2.1M 1.05M

MPJPE P-MPJPE MPJPE P-MPJPE MPJPE P-MPJPE

Full-sharing 41.70 33.02 42.20 33.19 42.00 33.37

Conv-style 41.19 32.20 43.14 33.32 42.73 34.09

Pre-agg 37.83 30.09 39.86 31.14 40.14 31.17

Post-agg 38.92 31.33 39.99 32.06 40.41 32.51

No-sharing 39.62 30.93 39.49 31.15 40.75 31.31

Table 5. Quantitative comparisons on the Human 3.6M dataset under Protocol-1.
The MPJPEs are reported in millimeters. The best results are highlighted in bold and
second underlined. Legend: (+) uses extra data from MPII dataset. (�) uses temporal
information. (*) uses pose scales in both training and testing

Protocol # 1 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD. Smoke Wait WalkD. Walk WalkT. Avg.

Lee et al. [18] ECCV’18 (�) 40.2 49.2 47.8 52.6 50.1 75.0 50.2 43.0 55.8 73.9 54.1 55.6 58.2 43.3 43.3 52.8

Hossain et al. [27] ECCV’18 (�) 44.2 46.7 52.3 49.3 59.9 59.4 47.5 46.2 59.9 65.6 55.8 50.4 52.3 43.5 45.1 51.9

Pavllo et al. [26] CVPR’19 (�) 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8

Cai et al. [5] ICCV’19 (�) 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8

Martinez et al. [21] ICCV’17 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Tekin et al. [36] ICCV’17 54.2 61.4 60.2 61.2 79.4 78.3 63.1 81.6 70.1 107.3 69.3 70.3 74.3 51.8 63.2 69.7

Martinez et al. [21] ICCV’17 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Sun et al. [31] ICCV’17 (+) 52.8 54.8 54.2 54.3 61.8 67.2 53.1 53.6 71.7 86.7 61.5 53.4 61.6 47.1 53.4 59.1

Yang et al. [39] CVPR’18 (+) 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6

Fang et al. [10] AAAI’18 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4

Pavlakos et al. [24] CVPR’18 (+) 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2

Luvizon et al. [20] CVPR’18 (+) 49.2 51.6 47.6 50.5 51.8 60.3 48.5 51.7 61.5 70.9 53.7 48.9 57.9 44.4 48.9 53.2

Zhao et al. [40] CVPR’19 48.2 60.8 51.8 64.0 64.6 53.6 51.1 67.4 88.7 57.7 73.2 65.6 48.9 64.8 51.9 60.8

Li et al. [19] CVPR’19 43.8 48.6 49.1 49.8 57.6 61.5 45.9 48.3 62.0 73.4 54.8 50.6 56.0 43.4 45.5 52.7

Zhou et al. [40] CVPR’19 47.3 60.7 51.4 60.5 61.1 49.9 47.3 68.1 86.2 55.0 67.8 61.0 42.1 60.6 45.3 57.6

Sharma et al. [30] ICCV’19 48.6 54.5 54.2 55.7 62.2 72.0 50.5 54.3 70.0 78.3 58.1 55.4 61.4 45.2 49.7 58.0

Ci et al. [8] ICCV’19 (+)(*) 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50.0 54.8 40.4 43.3 52.7

Ours 46.3 52.2 47.3 50.7 55.5 67.1 49.2 46.0 60.4 71.1 51.5 50.1 54.5 40.3 43.7 52.4

proposed in [12]. Following Zhao et al. [40], we use 128 as the default number of
channels of each graph convolutional layer.

Decouple self-connections. We first study the effect of decoupling self-
connections in full-sharing, pre-aggregation and post-aggregation. We
do not include convolution-style or no-sharing here as their self-connections
are decoupled by definition. Since introducing a separate weight matrix for self-
connections will bring more parameters, we increase the number of channels of
the models without decoupling so that each pair of comparing methods have
similar model sizes. Tab. 2 shows the results4. It is obvious that all these three
weight sharing methods benefit from decoupling self-connections, and among

4 Pre-agg, post-agg and conv-style are short for pre-aggregation,
post-aggregation and convolution-style respectively
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Table 6. Quantitative comparisons on the Human 3.6M dataset under Protocol-2.
The P-MPJPEs are reported in millimeters. The best results are highlighted in bold
and second underlined. Legend: (+) uses extra data from MPII dataset. (�) uses
temporal information. (*) uses pose scales in both training and testing

Protocol # 2 Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Lee et al. [18] ECCV’18 (�) 34.9 35.2 43.2 42.6 46.2 55.0 37.6 38.8 50.9 67.3 48.9 35.2 50.7 31.0 34.6 43.4

Hossain et al. [27] ECCV’18 (�) 36.9 37.9 42.8 40.3 46.8 46.7 37.7 36.5 48.9 52.6 45.6 39.6 43.5 35.2 38.5 42.0

Pavllo et al. [26] CVPR’19 (�) 34.2 36.8 33.9 37.5 37.1 43.2 34.4 33.5 45.3 52.7 37.7 34.1 38.0 25.8 27.7 36.8

Cai et al. [5] ICCV’19 (�) 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0

Sun et al. [31] ICCV’17 42.1 44.3 45.0 45.4 51.5 53.0 43.2 41.3 59.3 73.3 51.0 44.0 48.0 38.3 44.8 48.3

Martinez et al. [21] ICCV’17 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7

Fang et al. [10] AAAI’18 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7

Pavlakos et al. [24] CVPR’18 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8

Li et al. [19] CVPR’19 35.5 39.8 41.3 42.3 46.0 48.9 36.9 37.3 51.0 60.6 44.9 40.2 44.1 33.1 36.9 42.6

Ci et al. [8] ICCV’19 (+)(*) 36.9 41.6 38.0 41.0 41.9 51.1 38.2 37.6 49.1 62.1 43.1 39.9 43.5 32.2 37.0 42.2

Ours 35.9 40.0 38.0 41.5 42.5 51.4 37.8 36.0 48.6 56.6 41.8 38.3 42.7 31.7 36.2 41.2

them full-sharing benefits the most. This demonstrates that decoupling self-
connections in GCN is very important for 3D HPE. Thus, we will use decoupled
weight sharing methods in the remaining experiments.

Weight sharing methods (controlled number of channels and com-
putational complexity). Then we study the impact of different weight shar-
ing methods on the 3D HPE performance. We first fix the number of channels
of each graph convolutional layer to be 128 so that the shape of each weight
matrix is the same for different weight sharing methods. This also means the
computational complexities of all models are the same according to Tab. 1.
Note we decouple the self-connections for full-sharing, pre-aggregation and
post-aggregation for better performance. As we can see in Tab. 3, the weight
sharing methods have a great impact on the localization error. Among them,
pre-aggregation performs the best. We can observe that no-sharing has the
smallest training loss, but does not perform as well as pre-aggregation. We
conjecture that unsharing weights between any pair of input and output feature
vectors gives it too much freedom and thus leads to overfitting. The vanilla graph
convolution, i.e., full-sharing, has the smallest model size, which may bring
it some disadvantage. Thus, we will fix the number of parameters of each model
in the next ablation study.

Fig. 6 plots the loss and validation error of each method in the training
phase. Compared with full-sharing, the training losses of other methods de-
crease very fast. Pre-aggregation, post-aggregation and no-sharing have
significantly lower validations errors as the training goes on than full-sharing

and convolution-style.

Weight sharing methods (controlled model size). Next, we fix the
number of parameters to be about 4.2 M, 2.1 M or 1.05 M by merely changing
the number of channels of each model. For example, to have a model size of
about 4.2 M, the channels of the five methods listed in Tab 4 are 512, 415, 128,
128 and 100, respectively. We decouple the self-connections for full-sharing,
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Table 7. Quantitative comparisons on the Human 3.6M dataset under Protocol-1. All
approaches take 2D ground truth as input. The MPJPEs are reported in millimeters.
Legend: (+) uses extra data from MPII dataset. (*) uses pose scales in both training
and testing

Protocol # 1 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD. Smoke Wait WalkD. Walk WalkT. Avg.

Zhou et al. [43] ICCV’19 (+) 34.4 42.4 36.6 42.1 38.2 39.8 34.7 40.2 45.6 60.8 39.0 42.6 42.0 29.8 31.7 39.9

Ci et al. [8] ICCV’19 (+)(*) 36.3 38.8 29.7 37.8 34.6 42.5 39.8 32.5 36.2 39.5 34.4 38.4 38.2 31.3 34.2 36.3

Zhao et al. [40] CVPR’19 37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 42.2 53.5 44.3 40.5 47.3 39.0 43.8

Ours 36.8 40.3 33.0 36.3 37.5 45.0 39.7 34.9 40.3 47.7 37.4 38.5 38.6 29.6 32.0 37.8

pre-aggregation and post-aggregation. The result is shown in Tab. 4. Given
the same model size, pre-aggregation achieves the overall best performance.
The performance of full-sharing and convolution-style do not improve
consistently with the increase of model size.

Why pre-aggregation performs best? As mentioned, full-sharing is
inferior because the shared feature transformation prevents it from learning dif-
ferent relational models between different body joints. On the other extreme
is no-sharing, which assigns a different weight matrix to each pair of related
body joints. This can be too much freedom as some common relational pat-
terns do exist, especially as the human body is symmetric and has a star-
shape. Convolution-style, pre-aggregation and post-aggregation are be-
tween these two extremes. Convolution-style mimics the image convolution
and shares weights according to the displacement between two nodes on the
graph. However, unlike image pixels, the relation between two nodes is not
strictly translation equivariant, e.g., hand and elbow versus neck and head.
Pre-aggregation provides the freedom to transform each node independently
so that the transformed nodes will affect their neighbors in a unified way (via
summation). It overcomes the limitation of full-sharing due to the indepen-
dent transformation of each node. Compared with no-sharing, it requires the
transformed nodes to share relations. Post-aggregation sums the features first,
which will unavoidably lose information. By contrast, transforming the features
first, as in pre-aggregation, provides a chance to retain or extract the most
important features that are suitable for aggregation.

Our ablation study proves that using different weight sharing methods has
a great impact on 3D HPE performance. It also reveals that choosing an ap-
propriate weight sharing method according to the property of a problem is very
important when applying GCN models.

4.3 Comparison with the State of the Art

Following Pavllo et al. [26], we use 2D poses provided by a pre-trained 2D cas-
caded pyramid network detector (CPN) [6] for benchmark evaluation. We use
pre-aggregation as our weight sharing method as it outperforms the others in
our ablation study. We set the initial learning rate 0.0001, the decay factor 0.95
per 4 epochs and the batch size 256. We add dropout with a factor 0.2 after
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Fig. 7. Qualitative results of our approach on Human 3.6M

each graph convolutional layer to prevent overfitting. Following Zhao et al. [40],
we integrate non-local blocks into our network to boost its performance. Note
we do not use this kind of complementary tools in our ablation study to exclude
their inference and ensure fairness. It takes about 10 hours to train our model
for 30 epochs on a single Nvidia RTX 2080Ti GPU.

Tab. 5 and Tab. 6 show the results under two protocols respectively. There
are work that exploiting temporal information [18, 27, 26, 5] to assist 3D regres-
sion and some using extra data to boost the performance [31, 39, 20, 24, 8]. By
contrast, we aim to find the weight sharing method that is optimal for 3D HPE.
Therefore, their ideas and strategies are complementary to ours and can also
benefit our model. While our approach only takes 2D detections as input, it
achieves the state-of-the-art performance by applying the optimal weight shar-
ing method. This indicates that our model can effectively utilize relationships
between different joints in the graph. Fig. 7 demonstrates some qualitative re-
sults of our approach on the Human3.6M dataset.

5 Conclusions

This paper has had a comprehensive and systematic study of weight sharing
in GCNs for 3D HPE. After extensive ablation study and benchmark compar-
ison, we make the following conclusions. (1) Weight sharing methods in GCNs
have a great impact on the HPE performance. More parameters do not neces-
sarily lead to better performance. (2) It is always beneficial to decouple self-
connections. (3) Among all the variants of graph convolutions discussed in this
paper, pre-aggregation is the optimal weight sharing method for 3D HPE.
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