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Abstract. For safety-critical applications such as autonomous driving,
CNNs have to be robust with respect to unavoidable image corruptions,
such as image noise. While previous works addressed the task of ro-
bust prediction in the context of full-image classification, we consider it
for dense semantic segmentation. We build upon an insight from image
classification that output robustness can be improved by increasing the
network-bias towards object shapes. We present a new training schema
that increases this shape bias. Our basic idea is to alpha-blend a portion
of the RGB training images with faked images, where each class-label is
given a fixed, randomly chosen color that is not likely to appear in real
imagery. This forces the network to rely more strongly on shape cues.
We call this data augmentation technique “Painting-by-Numbers”. We
demonstrate the effectiveness of our training schema for DeepLabv3+
with various network backbones, MobileNet-V2, ResNets, and Xception,
and evaluate it on the Cityscapes dataset. With respect to our 16 dif-
ferent types of image corruptions and 5 different network backbones, we
are in 74 % better than training with clean data. For cases where we are
worse than a model trained without our training schema, it is mostly only
marginally worse. However, for some image corruptions such as images
with noise, we see a considerable performance gain of up to 25 %.
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1 Introduction

Convolutional Neural Networks (CNNs) have set the state-of-the-art for many
computer vision tasks [37, 30, 56, 57, 41, 50, 5, 25, 29, 40, 49, 44]. The benchmark
datasets which are used to measure performance often consist of clean and undis-
torted images [11]. When networks are trained on clean image data and tested
on real-world image corruptions, such as image noise or blur, the performance
can decrease drastically [23, 31, 17, 2, 35].

Common image corruptions cannot be avoided in safety-critical applications:
Environmental influences, such as adverse weather conditions, may corrupt the
image quality significantly. Foggy weather decreases the image contrast, and
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low-light scenarios may exhibit image noise. Fast-moving objects or camera mo-
tion cause image blur. Such influences cannot be fully suppressed by sensing
technology, and it is hence essential that CNNs are robust against common im-
age corruptions. Obviously a CNN should also be robust towards adversarial
perturbations (e.g., [58, 33, 10, 27, 4, 47, 3]).

(a) Corrupted validation image (b) Ground truth

(c) Prediction with our training schema (d) Prediction with standard training
schema

Fig. 1. Results of a semantic segmentation model that is trained with our data aug-
mentation schema. (a) An image crop of the Cityscapes validation set is corrupted by
severe image noise. (b) Corresponding ground-truth. (c) Prediction of a model that
is trained with our schema. (d) Prediction of the same model with reference training
schema, where training images are not augmented with noise. The prediction with our
training schema (c) is clearly superior to the prediction of the reference training schema
(d), though our model is not trained with image noise. In particular the classes road,
traffic signs, cars, persons and poles, are more accurately predicted

Training CNNs directly on image corruptions is generally a possibility to
increase the performance on the respective type of image corruption, however,
this approach comes at the cost of increased training time. It is also possible
that a CNN overfits to a specific type of image corruption trained on [23, 60].

Recent work deals with the robustness against common image corruptions for
the task of full-image classification, and less effort has been dedicated to semantic
segmentation. Whereas other work utilizes, e.g., a set of data augmentation
operations [32] we propose a new, robustness increasing, data augmentation
schema (see Fig. 1) that does: a) not require any additional image data, and
b) is easy to implement and c) can be used within any supervised semantic
segmentation network, and d) is robust against many common image corruptions.
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For this, we build upon the work of Geirhos et al. [22], where it has been
shown that increasing the network bias towards the shape of objects does make
the task of full-image classification more robust with respect to common im-
age corruptions. We applied the style-transfer technique of Geirhos et al. to
Cityscapes, but found the resulting images to be quite noisy (see Fig. 2). Train-
ing on such data might, therefore, increase robustness not solely due to an in-
creased shape bias, but rather due to increased image corruption. Our aim is to
find a training schema that does not have any type of image corruption added.

(a) Original data (b) Stylized data (c) Zoom of (a) (d) Zoom of (b)

Fig. 2. Illustration of the style transfer technique of [22]. An original training image
(a) of the Cityscapes dataset is stylized by a painting (b). (c) and (d) show the image
content of the red rectangle of (a), where (d) is clearly noisier compared to the original
data (c)

Whereas the method of [22] delivers high-quality results, their approach re-
quires a computationally intensive style transfer technique and additional image
data. We propose a simple, yet effective, data augmentation scheme, that de-
creases the amount of texture in the training data, and does not need additional
data. The basic idea is to alpha-blend some training images with a texture-
free representation, as illustrated in Fig. 3 (b). By doing so, the texture-based
appearance of a training image is less reliable, forcing the network to develop
additional shape-based cues for the segmentation. In this way, our schema does
not require additional training data, as we directly use the available semantic
segmentation ground-truth. It can be easily utilized for training any supervised
semantic segmentation model. We demonstrate our data augmentation scheme’s
effectiveness on a broad range of common image corruptions, evaluated on the
Cityscapes dataset.

In summary, we give the following contributions:

– We propose a simple, yet effective, data augmentation scheme that increases
the robustness of well-established semantic segmentation models for a broad
range of image corruptions, through increasing the model’s shape-bias. Our
new training schema requires no additional data, can be utilized in any
supervised semantic segmentation model, and is computationally efficient.

– We validate our training schema through a series of validation experiments.
With respect to our 16 different types of image corruptions and five different
network backbones, we are in 74 % better than training with clean data. We
are able to increase the mean IoU by up to 25 %.
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2 Related Work

Recent work has dealt with the robustness of CNNs for common image corrup-
tions. We discuss the most recent work in the following.

Benchmarking robustness with respect to common corruptions. The
work in [2, 18] demonstrates that shifting input pixels can change the outcome
significantly. Dodge and Karam [17] show that CNNs are prone to common
corruptions, such as blur, noise, and contrast variations, for the task of full-
image classification. The authors further show in [16] that the CNN performance
of classifying corrupted images is significantly lower than human performance.
Zhou [68] et al. find similar results. Geirhos et al. [23] show that established
models [57, 30, 56] for image classification trained on one type of image noise can
struggle to generalize well to other noise types. Vasiljevic et al. [60] find a similar
result w.r.t image blur, and further, a reduced performance for clean data.

Hendrycks and Dietterich [31] corrupt the ImageNet dataset [14] by many
common image corruptions and image perturbations. In this work, we apply
the proposed image corruptions to the Cityscapes dataset. Michaelis et al. [48]
benchmark the robustness in object detection and find a significant performance
drop for corrupted input data.

For the task of semantic segmentation, Vasiljevic et al. [60] find that model
performance of a VGG-16 [56] is decreasing for an increasing amount of blur
in the test data. Kamann and Rother [35] ablate the state-of-the-art semantic
segmentation DeepLabv3+ architecture and show that established architectural
design choices affect model robustness with respect to common image corrup-
tions. Other work deals with robustness towards adverse weather conditions [54,
53, 61], night scenes [13], or geometric transformations [20, 51].

Increasing robustness with respect to common corruptions. The
research interest in increasing the robustness of CNN models with respect to
common image corruptions grows. Most methods have been proposed for the task
of full-image classification. Mahajan et al. [46] and Xie et al. [62] show that using
more training data increases the robustness. The same result is found when more
complex network backbones are used, also for object detection [48] and semantic
segmentation [35]. Hendrycks et al. [31] show that adversarial logit pairing [36]
increases the robustness for adversarial and common perturbations. The authors
of [66, 38] increase model robustness through stability training methods.

Several other works apply data augmentation techniques to increase general-
ization performance. Whereas some work occludes parts of images [67, 15], crops,
replaces and mixes several images [63, 64, 59], or applies various (learned) sets
of distortions [32, 12], other methods augment with artificial noise to increase
robustness [24, 45, 52].

Geirhos et al. [22] demonstrate that classifiers trained on ImageNet tend to
classify images based on an image’s texture. They further show that increasing
the shape-bias of a classifier (through style transfer [21]), also increases the ro-
bustness for common image corruptions. This work builds upon this finding to
increase the shape-bias of semantic segmentation models and, thus, the robust-
ness for common image corruptions.
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3 Training Schema: Painting-by-Numbers

Alpha 

Blending

(a) Original training data

(d) Ground truth(c) Texture-free representation 

(Painting-by-Numbers)

(b) Augmented training data

Fig. 3. Overview of our proposed training schema, which we refer to as Painting-by-
Numbers. (a) An RGB image of the Cityscapes training set and the respective ground-
truth in (d). We paint the numbers, i.e., ground-truth IDs of (d) randomly, leading to
the texture-free representation shown in (c). Painting the numbers randomly is essential
since these colors are not likely to appear in real imagery. The final training image (b) is
then generated by alpha-blending (a) and (c). A fraction of training data is augmented
as in b), which is used as training data that increases the robustness against common
corruptions

Our goal is to generically increase the robustness of semantic segmentation
models for common image corruptions. Here, robustness refers to training a
model on clean data and subsequently validating it on corrupted data. Simply
adding corrupted data to the training set does certainly increase the robustness
against common corruptions. However, this approach comes along with draw-
backs: Firstly, a significantly increased training time. Secondly, the possibility
to overfit to specific image corruptions [23, 60] and reduced performance on clean
data [60]. Thirdly, it further may be hard to actually identify all sources of cor-
ruption for new test scenarios. For our training schema, we build on the finding
of [22]. We propose an augmentation schema (Painting-by-Numbers) that mod-
ifies the training process so that the model develops shape-based cues for the
decision of how to segment a pixel, resulting in a generic increase of model ro-
bustness.

The basis of our schema is that we treat the segmentation ground-truth as
a texture-free representation of the original training data (see Fig. 3). We then
colorize (or paint) the ground-truth labels (or numbers) randomly (Painting-
by-Numbers) to generate a representation as shown in Fig. 3 (c). We uniformly
sample the color from the sRGB color gamut with range [0, 255], similar to the
images of the Cityscapes dataset. Painting the numbers randomly is essential
since these colors are not likely to appear in real imagery. Finally, we alpha-blend
this this representation with the original training image, according to eq. 1,
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Iblended = α× Ipainting−by−numbers + (1 − α) × Ioriginal (1)

where Iblended is the resulting alpha-blended training image (Fig. 3 b), α
is the blend parameter (where α = 1 corresponds to a representation where
original training input is entirely blended), Ipainting−by−numbers is the texture-
free representation (Fig. 3 c) and Ioriginal is the original training image (Fig. 3
a). Training a network on such data forces the network to develop (or increase)
its shape-bias since we actively corrupt the textural content of the image. The
texture features of the image are, therefore, less reliable, and a model needs
to develop additional cues to segment pixels correctly. Painting-by-Numbers is
computationally efficient. For our setup, the training time increases by only 2.5 %
(please see the supplementary material for more details).

Motivation blending with 0 < α < 1. We conducted the following anal-
ysis. We trained a model solely on texture-free images, as shown in Fig. 3 c,
meaning that the blend parameter α is fixed to 1. This network achieved a
decent performance when tested on a texture-free variant of the Cityscapes val-
idation set. This is a positive signal because it means that the model is able to
learn from entirely texture-free training data.

When we augmented only half of a training batch, instead of every image,
(α is still fixed to 1), the performance on both, the original validation set and
texture-free validation set was, again, considerably high; However, the robustness
of the new model with respect to common image corruptions was not increased.
We hypothesize that such a model learns to predict well for two different do-
mains, which are the original data and the texture-free data. This motivates
us to choose α < 1 for some training images. As we will see, with a varying
degree of alpha-blending, the robustness of the model towards common image
corruptions increases significantly and, at the same time, keeps a consistently
good performance on clean data.

Training protocol. We use the state-of-the-art DeepLabv3+ [6, 8, 7, 5] se-
mantic segmentation architecture as baseline model. We show the effectiveness of
Painting-by-Numbers for many network backbones: MobileNet-V2 [55], ResNet-
50 [30], ResNet-101, Xception-41, Xception-71 [9]. We augment exactly half of
a batch by our Painting-by-Numbers approach and leave the remaining images
unchanged. Doing so ensures that the performance on clean data is compara-
ble to a network that is trained regularly on clean data only. We kindly refer
to the next section for reasonable choices of the hyperparameters. We apply a
similar training protocol as in [8]: crop size 513× 5133, initial learning rate 0.01,
“poly” [43] learning rate schedule, using the Atrous Spatial Pyramid Pooling
(ASPP) module [5, 26, 28, 39, 65], fine-tuning batch normalization [34] param-
eters, output stride 16, random scale data augmentation and random flipping
during training. As suggested by [8], we apply no global average pooling [42].
We train every model using TensorFlow [1].

3 Due to hardware limitations we are not able to train on the suggested crop size of
769.
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Evaluation protocol. We use the image transformations provided by the
ImageNet-C [31] dataset to generate Cityscapes-C, similar to [35]. The ImageNet-
C corruptions give a huge selection of transformations. They consist of several
types of blur (Gaussian, motion, defocus, frosted glass), image noise (Gaussian,
impulse, shot, speckle), weather (snow, spatter, fog, frost), and digital transfor-
mations (JPEG, brightness, contrast). Please see the supplementary material for
examples. Each corruption type (e.g., Gaussian noise) is parameterized in five
severity levels. We evaluate the mean-IoU [19] of many variants of the Cityscapes
validation set, which is corrupted by the ImageNet-C transformations.

4 Experimental Evaluation and Validation

In this section, we demonstrate the effectiveness of Painting-by-Numbers. In
section 4.1 we discuss implementation details. We then show the results w.r.t
the Cityscapes dataset in section 4.2. We conduct a series of experiments to
validate the increased shape-bias of a model trained with Painting-by-Numbers
in section 4.3.

4.1 Implementation Details

We experiment with varying implementations and augmentation schemes, which
we discuss next.

Parameters for alpha-blending. Our experiments show that a fixed value
for α does not yield the best results. Instead, we use two parameters for alpha-
blending, αmin and αmax. These values define an interval from which α is drawn.
They are the essential hyperparameters needed to achieve the best results to-
wards common image corruptions. If αmin is too low, i.e., the amount of texture
in the image is high, the robustness increase for common corruptions is minor. If
αmin is too high, i.e., the amount of texture in the image is further diminished,
the robustness decreases with respect to common corruptions (as discussed pre-
viously). We observe that the models only connect learned features from the two
domains (original data domain and alpha-blended data domain) if the latter’s
texture is present, i.e., 0 < α < 1.

Batch augmentation schemes. We always augment exactly the half of
a batch by Painting-By-Numbers for each iteration of the forward path. To
summarize, the only parameters to be optimized are αmin and αmax. We do not
observe better results when for every image in the mini-batch is individually
decided if it shall be augmented by Painting-by-Numbers.

Incorporating instance labels. Beside semantic segmentation ground-
truth, the Cityscapes dataset also contains instance labels for several classes.
We additionally utilize them in our augmentation scheme to paint each instance
with a randomly chosen color (instead of painting each instance of a class with
the same color), as illustrated in Fig. 4 (a). This produces promising results with
respect to further increasing network robustness. Since Painting-by-Numbers is
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(a) Instances are painted
randomly

(b) Instances are painted
by RGB-mean

(c) Instances are painted
by RGB-median

Fig. 4. Examples of several coloring schemes used for Painting-by-Numbers

targeted for semantic segmentation task, we base our schema on the more general
semantic labels, which are available for all reference datasets.

Paint with mean and median RGB. We further paint the images with
a more consistent color, such as the mean and median RGB value of the class
or instance (instead of painting the semantic classes randomly), as illustrated
in Fig. 4 (b) and (c). This approach does, as expected, not increase the model
robustness. Instead of forcing a model to not rely on texture and color appear-
ance, by corrupting these very properties, the network learns to assign a mean or
median value to classes and instances, contrary to the effect of random painting.
Hence, there is no need to increase the shape-bias for predicting the segmentation
map when the colors are likely to appear in real imagery.

Best Setup. We train MobileNet-V2, ResNet-50, ResNet-101, Xception-41,
and Xception-71 with Painting-by-Numbers. We evaluate the models on Gaus-
sian noise to select the final values for α. For ResNet-50, and Xception-41, we
observe the best results when we draw α uniformly from the interval αmin = 0.70
and αmax = 0.99. For the remaining networks, we observe the best results for
αmin = 0.50 and αmax = 0.99.

4.2 Results on Cityscapes

In the following, we refer to a network that is trained with standard training
schema as the reference model (i.e., trained on clean data only), and to a model
that is trained with Painting-by-Numbers as our model. Fig. 5 shows qualitative
and quantitative results on corrupted variants of the Cityscapes dataset, when
a network (ResNet-50) is trained with both training schemes. Every image cor-
ruption is parameterized with five severity levels. Severity level 0 corresponds to
the clean data.

The reference model (third row) struggles to predict well in the presence
of image corruptions (Fig. 5 top). It segments large parts of road wrongly as
building for spatter and image noise. When the same model is trained with
Painting-by-Numbers, the predictions are clearly superior (fourth row). With
respect to quantitative results (Fig. 5 bottom), our model performs significantly
better for image corruptions of category speckle noise, shot noise, and contrast.
Corruption contrast decreases the contrast of the full image, corrupting hence the
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textural image content strongly. A network that is able to rely also on shape-
based cues for the image segmentation is hence a well-performing model for
contrast reduction. The mean IoU on spatter is for both models comparable for
the first severity level, but it is for our model higher by almost 15 % for the
fourth severity level.

(a) Speckle Noise (b) Shot Noise (c) Contrast (d) Spatter
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Fig. 5. (top) Qualitative results by the ResNet-50 backbone on four corrupted images
of the Cityscapes validation dataset for both the reference model and our model (i.e.,
trained with Painting-by-Numbers). (bottom) Quantitative results on the corrupted
variants of the Cityscapes dataset. Each image corruption is parameterized with five
severity levels, where severity level 0 corresponds to clean (i.e., original) data. While
for clean data, both models’ performance is more or less the same, we see that our
model is clearly superior for all types of noise added. For consistent performance on
clean data, the performance on corrupted data increases when the model is trained
with Painting-by-Numbers. For the first severity level of shot noise, the mIoU of our
model is higher by 25 %

The results for the remaining image corruptions for the Cityscapes dataset
are listed in Table 1. We show the effectiveness of Painting-by-Numbers besides
ResNet-50 also for MobileNet-V2, ResNet-101, Xception-41, and Xception-71.
In the first column, we report the performance on clean data, i.e., the original
Cityscapes validation set. The mIoU evaluated on several types of image corrup-
tions is listed accordingly. Each value is the average for up to five severity levels.
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We report for both clean and corrupted data, the result of the reference model
and our model. In the following, we discuss the main results of Table 1.

Table 1. Results on the Cityscapes dataset. Each entry is the mean IoU of several
corrupted variants of the Cityscapes dataset. Every image corruption is parameterized
with five severity levels, and the resulting mean IoU are averaged. For image noise-
based corruption, we exclude every severity level whose signal-to-noise ratio less than
10. The higher mIoU of either the reference model or the respective model trained with
Painting-by-Numbers is bold. Overall, we see many (74 %) more bold numbers for our
Painting-by-Numbers model

Blur Noise Digital Weather

Network Clean Motion Defocus
Frosted
Glass

Gaussian Gaussian Impulse Shot Speckle Brightness Contrast Saturate JPEG Snow Spatter Fog Frost

Reference
MobileNet-V2 73.0 52.4 47.0 44.7 48.1 9.6 14.2 9.8 25.6 50.4 43.8 32.5 20.3 10.8 43.3 47.7 16.1

ResNet-50 76.6 57.1 55.2 45.3 56.5 10.7 13.4 12.1 37.7 59.8 52.7 41.7 23.4 12.9 39.8 56.2 19.0
ResNet-101 76.0 58.9 55.3 47.8 56.3 22.9 22.9 23.1 45.5 57.7 56.8 41.6 32.5 11.9 45.5 55.8 23.2
Xception-41 77.8 61.6 54.9 51.0 54.7 27.9 28.4 27.2 53.5 63.6 56.9 51.7 38.5 18.2 46.6 57.6 20.6
Xception-71 77.9 62.5 58.5 52.6 57.7 22.0 11.5 21.6 48.7 67.0 57.2 45.7 36.1 16.0 48.0 63.9 20.5

Painting-by-Numbers
MobileNet-V2 72.2 49.5 41.4 40.7 43.0 17.4 18.4 16.8 35.7 62.5 50.8 51.0 17.6 12.1 46.9 56.5 22.4

ResNet-50 76.1 58.1 53.5 50.3 55.1 35.7 34.3 36.1 56.7 68.8 64.2 60.5 21.3 10.6 46.1 61.0 22.9
ResNet-101 76.3 58.1 54.2 48.7 54.7 41.6 44.3 40.6 57.4 70.5 64.4 65.0 25.6 10.8 50.1 56.9 28.0
Xception-41 78.5 65.5 54.2 51.1 51.8 46.9 44.9 46.9 64.3 73.4 60.2 68.8 15.7 19.3 55.8 65.7 28.2
Xception-71 78.6 63.0 53.6 48.6 52.2 35.5 38.4 34.2 57.6 74.9 63.9 69.1 22.2 18.2 57.4 65.4 25.5

Performance w.r.t clean data. Even though we paint the exact half of
the training data and train both models for the same amount of iterations, the
performance on clean data is oftentimes barely affected.

Performance w.r.t image blur. The robustness of our model with respect
to image blur does not notably increase. We assume that Painting-by-Numbers
does not increase the performance for this category of image corruptions because
blur corrupts the object shapes by smearing the object boundaries. Hence, our
learned shape-bias does not work well.

Performance w.r.t image noise. Painting-by-Numbers increases the ro-
bustness with respect to image noise the most (see figures above). For example,
the absolute mIoU of Xception-41 for Gaussian noise, impulse noise, shot noise,
and speckle noise increases by 19.0 %, 16.5 %, 19.7 %, and 11.0 %, respectively.

Performance w.r.t digital corruptions. A network trained with Painting-
by-Numbers increases significantly the robustness against the corruptions bright-
ness, contrast, and saturation–but not JPEG artifacts. The reason is that JPEG
compression corrupts the boundary of objects and incorporates new boundaries
through posterization artifacts. Our network cannot hence profit from its in-
creased shape-bias. We refer to the supplement for an illustration.

Performance w.r.t weather corruptions. Xception-71 and Xception-41
increases the performance with respect to spatter by 9.4 % and 9.2 %, respec-
tively. Xception-41 further increases the mIoU against frost by 7.6 %. Every
model increases the performance against fog. We cannot observe a significant
performance increase for snow.

Though the performance increase on image corruptions of category weather
is less than, e.g., for image noise, the predictions of a network trained with
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Painting-by-Numbers are improved for key-classes such as cars, persons, and
traffic signs than for a regularly trained network. Please see the supplementary
material for more results.

4.3 Understanding Painting-by-Numbers

We explain the increased robustness towards common image corruptions, i.e.,
when a network is trained with Painting-by-Numbers, by an increased shape-
bias. To validate this assumption, we conduct a series of experiments that are
based on the following consideration: Classes that either have a) no texture at
all or b) texture that is strongly corrupted should be more reliably segmented
by a network trained with Painting-by-Numbers. In more detail, we generate
numerous, on class-level corrupted, variants of the Cityscapes validation set,
as illustrated in Fig. 6. In (a), we remove the texture of cars and replace it
by the dataset-wide RGB-mean of the training set of the respective class. The
respective class does, in this way, not contain any texture but homogeneous
color information. In (b) and (c) we corrupt building and car by a high degree of
additive Gaussian noise and Gaussian blur, respectively. Please note that Fig. 6
shows only a small set of examples. We apply these corruptions for every class.

We test the models on such images to evaluate if they are capable of segment-
ing the respective class when they cannot rely on the class texture. To achieve
this, a network needs to utilize other cues, such as shape-based cues.

(a) Replaced car by RGB-
mean

(b) Corrupted building by
severe noise

(c) Corrupted car by severe
blur

Fig. 6. Examples of image data to validate an increasing shape-bias when models are
trained with Painting-by-Numbers. We remove, or strongly corrupt, the texture of
each class in the Cityscapes dataset and evaluate the segmentation performance when
a network cannot rely on the class texture. (a) Texture is fully replaced by the dataset-
wide RGB-mean value of the respective class. (b) Class is corrupted by severe noise.
(c) Class is corrupted by severe blur

Instead of IoU, we use the sensitivity s (s = TP/(TP + FN), where TP are
true-positives, and FN are false-negatives) as evaluation metric. The sensitivity
is for these experiments more appropriate than IoU (IoU = TP/(TP + FN +
FP )) since we are solely interested in the segmentation performance on the class-
level. Because all classes but one is clean (i.e., not corrupted), false-positively
(FP) segmented pixels are of less interest. Utilizing IoU could, especially for
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classes covering fewer image regions, result in misleading scores. The results of
these experiments are listed in Table 2.

Table 2. Sensitivity score per class for several corrupted variants on the class-level of
the Cityscapes datasets. Clean: The performance on clean (i.e. original, non-corrupted)
data. RGB-mean: The texture of a class is replaced by the dataset-wide RGB mean of
that class. Noise: The texture of a class is corrupted by severe additive Gaussian noise.
Blur: The texture of a class is corrupted by severe Gaussian blur. The higher sensitivity
score of a network backbone of either the reference (top) or our model (bottom) is bold.
Overall, we see many more bold numbers for our Painting-by-Numbers model
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Noise (scale = 0.5) 5.8 0.8 95.0 0.2 1.7 4.7 6.4 39.2 0.1 1.4 2.8 8.1 2.9 4.5 0.0 0.0 7.1 0.2 3.4
Noise (scale = 1.0) 2.9 0.0 94.0 0.1 1.2 2.0 6.4 40.2 0.0 0.5 0.2 4.4 1.2 3.6 0.0 0.0 3.0 0.2 2.0

Blur (σ = 20) 94.6 42.8 89.3 38.0 1.8 63.6 18.4 19.1 0.6 7.3 94.0 55.4 55.5 56.7 32.5 24.0 7.7 9.0 0.9
Blur (σ = 30) 94.1 42.1 89.4 33.2 1.2 62.3 14.0 16.2 0.6 2.3 93.8 54.6 51.8 44.2 29.8 18.6 8.1 4.2 1.1

Painting-by-Numbers
Clean 99.0 90.3 96.3 56.0 67.1 68.9 76.5 81.1 96.2 66.3 97.1 89.5 74.0 96.8 89.7 86.0 59.6 72.2 87.8

RGB-mean 97.9 53.8 51.2 34.2 14.9 79.7 38.4 40.5 1.8 2.3 97.4 78.4 66.3 78.6 37.6 3.5 0.4 9.1 4.6
Noise (scale = 0.5) 97.4 50.9 92.1 8.4 37.4 34.1 8.2 11.1 23.3 30.6 32.3 50.1 19.7 49.8 31.5 1.9 0.0 0.3 26.7
Noise (scale = 1.0) 95.9 51.7 91.3 9.6 29.4 32.3 7.1 9.9 12.2 27.2 33.6 52.7 21.3 40.6 25.8 1.1 0.0 0.4 23.3

Blur (σ = 20) 49.3 43.5 86.5 18.7 4.7 73.6 55.1 29.8 1.0 0.8 94.3 75.5 73.2 71.9 56.6 7.9 0.5 20.2 3.5
Blur (σ = 30) 46.3 48.0 83.2 14.1 4.5 73.6 49.7 25.4 1.0 0.5 94.7 74.6 71.1 73.7 47.9 3.8 0.2 18.2 3.8

Quantitative results. The results in Table 2 are created by DeepLabv3+
with ResNet-50 as network backbone. As previously, we refer to a network that
is trained with the standard training schema as the reference model (i.e., only
clean data used), and to a model that is trained with Painting-by-Numbers as
our model. The top (bottom) part of the Table contains the sensitivity score for
each class of the reference model (our model). Each line shows the sensitivity
for the corrupted data as described previously (the performance on clean data is
also listed). The higher sensitivity of a network backbone of either the reference
model (top) or our model (bottom) is bold. We separately discuss in the following
the quantitative results for class categories “stuff” and “things”.

Both networks perform well for classes “stuff” since the amount of texture
is often poor, such as for road, wall, sidewalk, and sky. The sensitivity of both
models differs for road by 5.2 %, for wall by 6.5 %, and for sky by 0.3 %. Whereas
the absolute sensitivity for both models is above 90.0 % for road and sky, it is
less than 41 % for wall. Our model performs for sidewalk better by 32.7 %.

Painting-by-Numbers performs worse than the reference for classes “stuff”
with a large amount of textual information, such as building, vegetation, and
terrain. For example, the sensitivity score of our model for building is 37.7 %
less. Classes “stuff” have no distinct shape, hence, Painting-by-Numbers does
not aid performance. When, additionally, the amount of texture of a class is
large, the sensitivity of our model is less than of the reference model.
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The reference model performs well when the texture of the category “things”
is replaced by RGB-mean. Its sensitivity for person is 73.4 %, which is only 5.0 %
less than for our model. The result for class rider is similar.

However, our model performs often significantly better than the reference
model for most of the remaining “things” such as car. The sensitivity score
of our model for this class is sours = 78.6 %, which is 54.1 % higher than the
sensitivity score of the reference model. We explain this high score with a large
shape-bias due to both the distinct shape of cars and the comparatively large
number of cars in the training set [11]. Our model performs for other classes of
“things” also better than the reference model. For example, the sensitivity score
for classes traffic light, traffic sign and pole is higher by 25.6 %, 9.0 %, and 9.8 %,
respectively. Both models perform poorly on “vehicles” that are, compared to
cars, less frequent present in the training set (e.g., truck, motorcycle, train).

In the presence of severe Gaussian noise, the reference model is struggling
to segment classes. The sensitivity is poor for every class, except for traffic
signs and building. In the presence of image noise, the reference model tends
to segment pixels oftentimes as these very classes, as illustrated in Fig. 5 and
Fig 7. The sensitivity scores of our model are often significantly higher. Similar to
the previously discussed results, the sensitivity with respect to “stuff” with less
texture is often high (e.g., sours = 95.9 % for road). The sensitivity scores are also
high for “things” such as persons and cars (sours = 52.7 %, and sours = 40.6 %,
respectively). Our model segments many classes well that are corrupted by severe
image noise, even though our model has not seen image noise during the training.

The reference model generally performs well when classes are low-pass filtered
by severe Gaussian blur. This result is in accordance with [35], where the authors
found semantic segmentation models to be relatively robust towards image blur.
Again, for class category “things”, our model outperforms the reference model
in most cases. For example, the sensitivity score of our model for person, rider,
and car is by approx. 20.0 % higher.

Qualitative results. See Fig. 7 for qualitative results of the previously
discussed experiments. Please see the caption of Fig. 7 for discussion.

5 Conclusions

We proposed a simple, yet effective, data augmentation schema (Painting-by-
Numbers) for semantic image segmentation in this work. This training schema
increases the robustness for a wealth of common image corruptions in a generic
way. Painting-by-Numbers corrupts training data so that the texture of image
classes becomes less reliable, forcing the neural network to develop and increase
its shape-bias to segment the image correctly. Painting-by-Numbers’ benefits
are that it does not require any additional data, is easy to implement in any
supervised segmentation model, and is computationally efficient. It would be
interesting to enforce other network biases, such as context bias or layout bias,
and even to combine these with a shape bias, to further increase the robustness
of semantic segmentation models with respect to common image corruptions.
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Fig. 7. Qualitative results of our experiments to understand the effect of Painting-by-
Numbers. We train the ResNet-50 network backbone on Cityscapes with a standard
training schema (i.e., with clean data only, reference model) and with Painting-by-
Numbers (our model). (top) The first row shows the original validation image and
the corrupted variants for class car and the respective ground truth in the second
row. We replace either the class texture by the dataset-wide RGB-mean, strongly low-
pass filtered the class, or added severe Gaussian image noise. The third row shows the
predictions of the reference model. The fourth row shows the predictions of our model.
The predictions in the fourth row (our model) are superior to the third row (reference
model). Our model is able to withstand the image noise based corruption (last column)
for which the reference model confuses cars with traffic signs mostly. (bottom) For
persons, the reference model predicts well, when the RGB-mean replaces the texture
of the class. Both models are relatively robust when the classes are low-pass filtered
by severe Gaussian blur. Similar to the results with respect to class car, the reference
model struggles to predict well for severe image noise and confuses persons also with
traffic signs mostly
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F.A.: Generalisation in humans and deep neural networks. In: Advances in Neural
Information Processing Systems 31 (2018), https://arxiv.org/abs/1808.08750

24. Gilmer, J., Ford, N., Carlini, N., Cubuk, E.: Adversarial examples are a natural
consequence of test error in noise. In: Chaudhuri, K., Salakhutdinov, R. (eds.)
Proceedings of the 36th International Conference on Machine Learning. Proceed-
ings of Machine Learning Research, vol. 97, pp. 2280–2289. PMLR, Long Beach,
California, USA (Jun 2019), http://proceedings.mlr.press/v97/gilmer19a.html

25. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
26. Grauman, K., Darrell, T.: The pyramid match kernel: Discriminative classification

with sets of image features. In: ICCV (2005)
27. Gu, S., Rigazio, L.: Towards deep neural network architectures robust to adver-

sarial examples. NIPS Workshop on Deep Learning and Representation Learning
abs/1412.5068 (2014)

28. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars,
T. (eds.) Computer Vision – ECCV 2014. pp. 346–361. Springer International
Publishing, Cham (2014)

29. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. ICCV pp. 1026–1034 (2015)

30. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for im-
age recognition. In: CVPR (2016). https://doi.org/10.1109/CVPR.2016.90,
http://ieeexplore.ieee.org/document/7780459/

31. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common
corruptions and perturbations. ICLR (2019)

32. Hendrycks, D., Mu, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshminarayanan, B.:
Augmix: A simple data processing method to improve robustness and uncertainty.
ICLR (2020)

33. Huang, X., Kwiatkowska, M.Z., Wang, S., Wu, M.: Safety verification of deep
neural networks. In: Computer Aided Verification (2017)

34. Ioffe, Sergey, Szegedy, Christian: Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In: ICML (2015)



Increasing Robustness with Painting-by-Numbers 17

35. Kamann, C., Rother, C.: Benchmarking the robustness of semantic segmentation
models. In: CVPR (June 2020)

36. Kannan, H., Kurakin, A., Goodfellow, I.: Adversarial logit pairing. arXiv preprint
arXiv:1803.06373 (2018)

37. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems. pp. 1097–1105 (2012)

38. Laermann, J., Samek, W., Strodthoff, N.: Achieving generalizable robustness of
deep neural networks by stability training. In: Fink, G.A., Frintrop, S., Jiang, X.
(eds.) Pattern Recognition. pp. 360–373. Springer International Publishing, Cham
(2019)

39. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In: CVPR. Washington, DC,
USA (2006)

40. LeCun, Y., Bengio, Y., Hinton, G.E.: Deep learning. In: Nature (2015),
https://doi.org/10.1038/nature14539

41. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE (1998)

42. Lin, M., Chen, Q., Yan, S.: Network in network. In: ICLR (2014)

43. Liu, W., Rabinovich, A., Berg, A.C.: Parsenet: Looking wider to see better.
arXiv:1506.04579 [cs.CV] (2015)

44. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: CVPR. vol. abs/1411.4038 (2015)

45. Lopes, R.G., Yin, D., Poole, B., Gilmer, J., Cubuk, E.D.: Improving robustness
without sacrificing accuracy with patch gaussian augmentation. arXiv preprint
arXiv:1906.02611 (2019)

46. Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe,
A., van der Maaten, L.: Exploring the limits of weakly supervised pretraining.
In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision –
ECCV 2018. pp. 185–201. Springer International Publishing, Cham (2018)

47. Metzen, J.H., Genewein, T., Fischer, V., Bischoff, B.: On detecting adversarial
perturbations. In: ICLR (2017), https://arxiv.org/abs/1702.04267

48. Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E., Bringmann, O., Ecker,
A.S., Bethge, M., Brendel, W.: Benchmarking robustness in object detec-
tion: Autonomous driving when winter is coming. In: Machine Learning for
Autonomous Driving Workshop, NeurIPS 2019. vol. 190707484 (Jul 2019),
https://arxiv.org/abs/1907.07484

49. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmen-
tation. In: ICCV. pp. 1520–1528 (2015)

50. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified,
real-time object detection. In: CVPR. pp. 779–788 (2016)

51. Ruderman, A., Rabinowitz, N.C., Morcos, A.S., Zoran, D.: Pooling is neither nec-
essary nor sufficient for appropriate deformation stability in CNNs. arXiv preprint
arXiv:1804.04438 (2018)

52. Rusak, E., Schott, L., Zimmermann, R., Bitterwolf, J., Bringmann, O., Bethge,
M., Brendel, W.: Increasing the robustness of DNNs against image corruptions by
playing the Game of Noise. arXiv (Jan 2020), https://arxiv.org/abs/2001.06057

53. Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with
synthetic data. IJCV 126(9), 973–992 (2018)



18 C. Kamann and C. Rother

54. Sakaridis, C., Dai, D., Van Gool, L.: Guided curriculum model adaptation and
uncertainty-aware evaluation for semantic nighttime image segmentation. In: ICCV
(2019)

55. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. In: CVPR (2018)

56. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR (2015), http://arxiv.org/abs/1409.1556

57. Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed, S., Anguelov,
D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with con-
volutions. In: CVPR (2015). https://doi.org/10.1109/CVPR.2015.7298594,
http://ieeexplore.ieee.org/document/7298594/

58. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fer-
gus, R.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199
(2013)

59. Takahashi, R., Matsubara, T., Uehara, K.: Data augmentation using random image
cropping and patching for deep CNNs. IEEE Transactions on Circuits and Systems
for Video Technology (2019)

60. Vasiljevic, I., Chakrabarti, A., Shakhnarovich, G.: Examining the impact of blur on
recognition by convolutional networks. arXiv:1611.05760 [cs.CV] abs/1611.05760
(2016), http://arxiv.org/abs/1611.05760

61. Volk, G., Stefan, M., von Bernuth, A., Hospach, D., Bringmann, O.: Towards robust
cnn-based object detection through augmentation with synthetic rain variations.
In: ITSC (2019)

62. Xie, Q., Hovy, E., Luong, M.T., Le, Q.V.: Self-training with noisy student improves
imagenet classification. arXiv preprint arXiv:1911.04252 (2019)

63. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: Regularization
strategy to train strong classifiers with localizable features. In: ICCV. pp. 6023–
6032 (2019)

64. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk
minimization. ICLR (2017)

65. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2017), http://arxiv.org/abs/1612.01105

66. Zheng, S., Song, Y., Leung, T., Goodfellow, I.J.: Improving the robustness of deep
neural networks via stability training. In: CVPR. pp. 4480–4488 (2016)

67. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmenta-
tion. In: AAAI (2017)

68. Zhou, Y., Song, S., Cheung, N.M.: On classification of distorted images with deep
convolutional neural networks. International Conference on Acoustics, Speech, and
Signal Processing (ICASSP) (2017)


