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Abstract. Spiking Neural Networks (SNNs) are promising for enabling
low-power event-driven data analytics. The best performing SNNs for
image recognition tasks are obtained by converting a trained deep learn-
ing Analog Neural Network (ANN) composed of Rectified Linear Unit
(ReLU) activation to SNN consisting of Integrate-and-Fire (IF) neurons
with ”proper” firing thresholds. However, this has come at the cost of
accuracy loss and higher inference latency due to lack of a notion of
time. In this work, we propose an ANN to SNN conversion method-
ology that uses a time-based coding scheme, named Temporal-Switch-
Coding (TSC), and a corresponding TSC spiking neuron model. Each
input image pixel is presented using two spikes and the timing between
the two spiking instants is proportional to the pixel intensity. The real-
valued ReLU activations in ANN are encoded using the spike-times of
the TSC neurons in the converted TSC-SNN. At most two memory ac-
cesses and two addition operations are performed for each synapse during
the whole inference, which significantly improves the SNN energy effi-
ciency. We demonstrate the proposed TSC-SNN for VGG-16, ResNet-20
and ResNet-34 SNNs on datasets including CIFAR-10 (93.63% top-1),
CIFAR-100 (70.97% top-1) and ImageNet (73.46% top-1 accuracy). It
surpasses the best inference accuracy of the converted rate-encoded SNN
with 7-14.5× lesser inference latency, and 30-60× fewer addition opera-
tions and memory accesses per inference across datasets.

Keywords: Spiking Neural Network, ANN-SNN Conversion, Temporal
Coding, Energy Efficiency, Deep Learning, Machine Learning

1 Introduction

Deep neural networks, referred to as Analog Neural Networks (ANNs) in this
article (to distinguish them from the digital spiking counterpart), composed of
several layers of interconnected neurons, have achieved state-of-the-art perfor-
mance in various Artificial Intelligence (AI) tasks including image localization
and recognition [18] [33], video analytics [29], and natural language process-
ing [16], among other tasks. For instance, ResNet [12] that won the ImageNet
Large Scale Visual Recognition Challenge in 2015 consists of 152 layers with
over 60 million parameters, and incurs 11.3 billion FLOPS per classification. In
an effort to explore more power efficient neural architectures, recent research
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Fig. 1. Illustration of the ANN-SNN conversion methodology.

efforts have been directed towards devising computing models inspired from bi-
ological neurons that compute and communicate using spikes. These emerging
class of networks with increased bio-fidelity are known as Spiking Neural Net-
works (SNNs)[22]. The intrinsic power-efficiency of SNNs stems from their sparse
spike-based computation and communication capability, which can be exploited
to achieve higher computational efficiency in specialized neuromorphic hardware
[2] [4] [24].

Considering the rapid strides in accuracy achieved by ANNs over the past few
years, SNN training algorithms are much less mature and are an active field of re-
search. The ANN to SNN conversion based training approaches have yielded the
best performing SNNs (typically composed of Integrate-and-Fire (IF) neurons),
which are converted from a trained non-spiking ANN (consisting of Rectified
Linear Units (ReLUs) as the neural activation) [3] [6] [7] [31] [37] [47] as illus-
trated in Fig. 1. However, this has come at the cost of large inference latency
(time-steps) and accuracy degradation. Recent work has shown that, the soft-
reset membrane potential [35] [36] in SNN can alleviate the information loss
that occurs during ANN-SNN conversion by retaining the membrane potential
above threshold at the firing instants. Near loss-less ANN-SNN conversion has
been achieved using the ”soft-reset” Residual-Membrane-Potential (RMP) spik-
ing neuron and the required RMP-SNN firing threshold initialization [10]. The
conversion schemes intelligently assign ”appropriate” firing thresholds to the
neurons at different layers of the network, thereby, ensuring that the IF spik-
ing rates (number of spikes over large enough time interval) are proportional to
the corresponding analog ReLU activations. However, it still requires sizeable
number of inference time-steps, and the spiking activity is relatively high due
to the rate-based neural coding for SNNs. The number of spikes for encoding a
real-valued activation increases with both the ANN ReLU activation value and
the SNN inference time-steps performed. A large number of spikes are fired to
achieve accuracy comparable to the ANN accuracy, which leads to high compu-
tational cost [6] [36] [37]. Although several recent methods [34] [45] [46] reduced
the number of spikes by employing more efficient neural coding, these methods
relied on complex neuron models that continually perform expensive operations
and the computational costs remain high (will be discussed in section 2). The
benefits of using spike-times as an additional dimension for computation has not
been fully explored due to lack of general learning algorithms for SNNs. The
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Spike Timing Dependent Plasticity (STDP) based supervised [5] [23] [40] [43]
and semi-supervised learning algorithms [17] [19] [26] [42] have thus far been
restricted to shallow SNNs (with ≤5 layers) yielding considerably lower than ac-
ceptable accuracy on complex datasets like CIFAR-10 [9] [41]. In order to scale
the networks much deeper, the spike-based error backpropagation algorithms
have been proposed for supervised training of SNNs [1] [15] [20] [21] [28] [30] [32]
[38] [44]. However the training complexity incurred for performing backpropaga-
tion of the rate-encoded spikes (error) over time has limited their scalability for
SNNs beyond 9-11 layers [20].

In this work, we propose an ANN to SNN conversion methodology that uses
a time-based neural coding scheme, named Temporal-Switch-Coding (TSC), and
a corresponding TSC spiking neural model. The proposed TSC encoding scheme
is more energy efficient than the First-spike latency based encoding schemes such
as Time-To-First-Spike (TTFS). In the converted SNN with TTFS encoding, a
real-valued ReLU activation in ANN was approximated by the latency to the
first spike of the corresponding spike train in the SNN, and at most one spike
needs to be fired for each activation. Even though total spikes are reduced, the
memory access and computational costs remain high, because the spiking neuron
needs to keep track of a synapse, at every time-step afterwards, ever since the
synapse received its first spike. In SNN with the proposed TSC encoding scheme,
at most two spikes are fired for each activation, but the spiking neuron keeps
track of a synapse only at the instant of an input-spike to reduce the memory
access and computational costs (details discussed in section 3).

2 Related Work

Recent ANN to SNN conversion methods reduced the number of spikes used to
encode activations by employing more efficient neural coding. In [45], an ANN
was converted to an Adapting SNN (AdSNN) based on synchronous Pulsed
Sigma-Delta coding. When driven by a strong stimulus, an Adaptive Spiking
Neuron (ASN) adaptively raises its dynamic firing threshold every time it fires
a spike, reducing its firing rate. However, an ASN has to perform four multi-
plications every time step to update its postsynaptic current, firing threshold,
and refractory response. In [34], an ANN was converted to an SNN based on the
Time-To-First-Spike (TTFS) temporal coding, where an activation in the ANN
was approximated by the latency to the first spike of the corresponding spike
train in the SNN. Thus, at most one spike needs to be fired for each activation,
which reduces the number of spikes in inference. However, the spiking neuron
needs to keep track of a synapse, at every time-step till the end of the inference,
ever since this synapse received its first spike. At each time-step, a large number
of synapses including those that receive an input-spike at the current time-step
and those that have received an input-spike at any prior time-step are added to
the membrane potential of the spiking neuron, which incurs expensive memory
access and computational costs. In [25], each activation of an ANN was approxi-
mated with a power of two, where the exponents of the powers were constrained
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within a set of several consecutive integers. The error tolerance of an ANN allows
it to compensate for approximation errors in the corresponding SNN during the
training phase, which in turn helps close the performance gap between the SNN
and the ANN. Authors in [46] proposed Logarithmic Temporal Coding (LTC),
where the number of spikes used to encode an activation value grows logarith-
mically with activation. The Exponentiate-and-Fire (EF) spiking neuron only
involves bit-shift and addition operations. However, the energy benefit comes
at the cost of large accuracy loss due to the approximation error introduced by
LTC, and requires constrained ANN training to compensate for the loss. The
method is implemented for shallow network consisting of 2 convolutional layers
and evaluated on MNIST dataset. The performance on deeper architectures such
as VGG and more complex datasets such as CIFAR-10 are not clear.

3 Temporal Switch Coding Scheme

The real-valued pixel intensities of input image are mapped to the spike-times
over a large enough time interval for SNN during inference. The time-step dt is
used to keep track of the discrete time, and the total time-steps (latency) required
are dictated by the desired inference accuracy. Note that the input images fed to
ANN are typically normalized to zero mean and unit standard deviation, yielding
pixel intensities between ±1, and bipolar spikes are used to represent the positive
and negative pixels. In our proposed TSC time-based coding scheme, at most
a pair of spikes with opposite signs are used to encode one real-valued pixel in
time. Suppose N(N ≥ 2) time-steps are used to encode a pixel p (−1 ≤ p ≤ 1).
The magnitude of p is first quantized into N levels as described by Eq.1, where
p∗(0 ≤ p∗ ≤ N) is the pixel magnitude after quantization. As described by Eq
2, two spikes will be produced at time t = 1 and t = p∗, if p∗ is greater or equal
to 2; no spike will be produced otherwise. As shown in Fig.2(a), the real-valued
pixel p (p 6= 0) is encoded using the spike-times (t+s , t

−
s ) of a pair of spikes. The

first spike which occurs at t+s = 1 always has the same sign as p, and the second
spike that occurs at t−s = p∗ always has the opposite sign as p.

p∗ = b|p| (N − 1)c+ 1

(−1 ≤ p ≤ 1, 1 ≤ p∗ ≤ N, and b cis the floor operation)
(1)

T (t) =


sgn(p), if (p∗ ≥ 2, t = 1)

−sgn(p), if (p∗ ≥ 2, t = p∗)

0, else

(where ”sgn” is the sign function, sgn(p) = |p|
p )

(2)

We use time-based TTFS and rate-based Poisson coding schemes as bench-
marks to evaluate the performance of our proposed TSC encoding. In time-based
TTFS, the real-valued pixel p (p 6= 0) is encoded using the spike time ts of a
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Fig. 2. Illustration of encoding a real-valued pixel p (−1 ≤ p ≤ 1) of static image to
spike trains for SNN using: (a) Temporal-Switch-Coding (TSC), (b) Time-To-First-
Spike (TTFS), and (c) Poisson rate-based encoding.

single spike, which always has the same sign as p. The spike-time ts = N+1−p∗,
where p∗ is the quantized pixel intensity as described by Eq.1. As shown in Fig.2
(b), larger the quantized pixel intensity p∗, earlier the spike occurs. In Poisson
rate coding, pixels are mapped to spike trains firing at a rate (number of spikes
over time) proportional to the corresponding pixel intensities as shown in [13].
The pixel intensity is first mapped to instantaneous spiking probability of the
corresponding input neuron. We use Poisson process to generate the input-spike
in a stochastic manner as explained below. At every time-step of SNN opera-
tion, we generate a uniform random number between 0 and 1, which is compared
against the magnitude of the pixel intensity |p| (|p| ≤ 1). A spike is produced if
the random number is lesser than |p|. As shown in Fig.2(c), the spikes produced
with Poisson rate coding always have the same sign as p, and total number of
spikes over N time-steps is proportional to the magnitude |p|.

3.1 Computation Reduction

In this section, we first formalize the derivation of the proposed TSC coding
scheme, which is obtained from modifying the TTFS, and explain reasons for
the increased performances and decreased computation in SNN inference. Let us
assume spike-trains X1(t) to Xm(t) are encoded from an input image consisting
of m pixels using TTFS coding as shown in Fig.3(a). The spike-trains are fed
to a spiking neuron through real-valued synaptic weights w1 to wm. The total
number of inference time-steps is N . For simplicity, let us assume all pixels of
the input image are of different values (between 0 and 1), and the m spike-trains
from X1(t) to Xm(t) have been sorted according to the spike-time (from early
to late). As shown in Fig.3(a), at time-step t, the spiking neuron receives only
one spike from the input image through weight wj . However, computing the
weighted-sum of spike-input at t requires summing up synaptic weights from w1

to wj . Hence, both the TTFS spike-trains in Fig.3(a) and the modified TTFS
spike-trains in Fig.3(c) incur the same amount of addition operations as shown
in Fig.3(b) and (d).



6 B. Han et al.

𝑋"(𝑡)

𝑋&(𝑡)

𝑋'(𝑡)

𝑋((𝑡)

1 2 … … … 𝑡…… … N  time
(b)

𝑋",(𝑡)

𝑋&,(𝑡)

𝑋',(𝑡)

𝑋(, (𝑡)

1 2 … … … 𝑡…… … N  time
(d)

1 2 … … … 𝑡…… … N  time

-
./"

'

𝑤.. 𝑋.,(𝑡)

(a) (c)
1 2 … … … 𝑡… … … N  time

𝑤"

𝑤(

Σ𝑤..𝑋., (𝑡)

𝑤'

TTFS-equivalent

𝑋", (𝑡)

𝑋&,(𝑡)

𝑋',(𝑡)

𝑋(, (𝑡)

𝑤&
𝑉(Σ

-
./"

'

𝑤.. 𝑋.(𝑡)
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spike for one pixel. (c) Weighted-sum of the TTFS spikes. (d) Weighted-sum of the
modified TTFS spikes.
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Now let us transform the modified TTFS spike-trains in Fig.3(c) to the pro-
posed TSC spike-trains using the ”spike-shifting” (shown in Fig.4) and ”frame-
subtracting” (shown in Fig.5) operations. First the ”spike-shifting” operation is
performed, in which, all ”late” spikes in Fig.4(a) are shifted in time to become
the ”early” spikes in Fig.4(c), and the number of spikes for encoding the pixel
does not change. The corresponding weighted-sum of input-spikes are shown in
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Fig.4(b) and (d). Larger activation arrives earlier due to the ”spike-shifting”
operation. Next the ”frame-subtracting” operation is performed to transform
the shifted TTFS spike-trains in Fig.5(a) to the proposed TSC spike-trains in
Fig.5(c). Suppose X

′′

j (t) is one of the shifted TTFS spike-trains that consists
of t consecutive spikes as highlighted in Fig.5(a). Every spike in the spike-train
is subtracted by the previous spike (except for the first spike) as described by
X

′′

j (t)−X ′′

j (t−1). As shown in Fig.5(c), only one positive spike (at time-step 1)
and one negative spike (at time-step t+1) remain in the resulting TSC spike-train
Tj(t). All spikes from time-step 2 to time-step t become zeros. At each time-step,
membrane potential Vm(t) in the spiking neuron is updated as described by Eq.3.
Computing the weighted-sum of input-spike using the shifted TTFS spike-trains
at t requires j addition operations as described by Eq.4. However, by reusing
the computation at t− 1 as described by Eq.5, the addition operations required
for computing the weighted-sum of input-spike at time t is reduced to 1 using
TSC spike-trains as described by Eq.6.

Vm(t) = Vm(t− 1) +
dVm
dt

∣∣∣
(t)

(3)

dVm
dt

∣∣∣
(t)

=

j∑
i=1

wi.X
′′

i (t) (4)

dVm
dt

∣∣∣
(t)

=
dVm
dt

∣∣∣
(t−1)

+
d2Vm
dt2

∣∣∣
(t)

(5)

d2Vm
dt2

∣∣∣
(t)

=

j∑
i=1

wi.Ti(t) = wj .Tj(t) (6)

4 ANN to TSC-SNN Conversion

The fundamental distinction between ANN and SNN is the notion of time. In
ANNs, input and output of neurons in all the layers are real-valued as shown
in Fig.6(a), and inference is performed with single feed-forward pass through
the network. On the other hand, input and output of the TSC spiking neurons
are encoded temporally using sparse spiking events over certain time period as
shown in Fig.6(b). Hence, inference in TSC-SNN is carried out over multiple
feed-forward passes or time-steps (also known as inference latency), where each
pass entails sparse spike-based computations. Achieving close to ANN accuracy
with minimal inference latency is key to obtaining favorable trade-off between
accuracy and computational efficiency. The proposed conversion methodology
significantly advances the state-of-the-art in this regard as will be detailed in
this section.

ANNs used for conversion to SNNs are typically trained with ReLU non-
linearity [27] as shown in Fig.6(a), where Y is the output of ReLU-based artificial
neruon,

∑
i wi.pi + b is the weighted sum of input pi with weight wi and bias
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Fig. 6. (a) Non-spiking ReLU neuron driven by a set of analog input pixels via weights
(w). (b) TSC spiking neuron driven by a set of time-encoded spikes via weights (w).
(c) TSC-SNN requires finding the appropriate firing threshold Vth to balance the spike-
times across layers to achieve the best performance.

b. The bias is usually set to zero for effective ANN-SNN conversion [37]. The
ReLU ouput varies linearly with the input for positive inputs. On the other
hand,

∑
i wi.Ti(t) is the weighted-sum of spike-input received by the TSC spiking

neuron as shown in Fig.6(b). The TSC spiking neuron integrates the weighted-
sum of spike-input into the membrane potential as described by Eq.5 and Eq.6.
The average input Vin to the spiking neuron equals to the total amount of
potential integrated by the TSC spiking neuron divided by the inference time
steps N as described by Eq.7. The membrane potential update mechanism in the
TSC spiking neuron is similar to the ”soft-reset” IF neuron. At any time-step,
if the membrane potential Vm(t) is higher than the firing threshold Vth (Vth >
0), the firing threshold is subtracted from the membrane potential Vm(t) =
Vm(t) − Vth. However, a positive spike is produced only at time t+out when its
membrane potential exceeds the firing threshold Vth (Vth > 0), and a negative
spike is produced only at time t−out when its membrane potential drops below
the firing threshold Vth (Vth > 0); otherwise, no spike is fired during the whole
inference. The linear ReLU input-output dynamics are roughly mimicked using
the input potential Vin and the output spike-times T (t+out, t

−
out) of the proposed

TSC spiking neuron as illustrated in Fig. 6(b).

Vin =
1

N

N∑
t=1

N∑
t=1

m∑
i=1

wi.Ti(t) (7)

4.1 Threshold Balancing for TSC-SNN

Setting threshold too high causes no spike to be fired in the spiking neuron,
whereas setting threshold too low causes the spiking neuron to operate in the
non-linear regime, both lead to significant accuracy loss in ANN-SNN conver-
sion. The extended linear input-output relationship of TSC spiking neuron (see
Fig. 6(b)) provides ”wider operating range” for the neuronal firing threshold
compared to that for the IF neuron which ”hard reset” the membrane potential
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to 0 irrespective of the amount by which the membrane potential exceeds the
threshold. This begets the following couple of questions that need to be answered
to ensure appropriate threshold balancing for the TSC spiking neuron.

1. For any given Vin, what is the desired operating range for the TSC neuron
firing threshold to ensure loss-less ANN-SNN conversion?

2. How should the absolute value of threshold be determined so that the TSC
neuron operates in the desired range?

We determine the upper and lower bounds for the TSC neuron firing threshold
based on the desired output spike-time T (t+out, t

−
out). Fig. 6(c) indicates that the

output spike time t−out must be larger than the input spike-time t+in, and smaller
than the total inference time steps N . This is because the membrane potential
integration does not start until it receives the first input spike at t+in, and the
negative spike can not be fired if the membrane potential does not drop below
the firing threshold by the end of time-step N . The desirable range for t−out is
[t−in, N). Satisfying t−out≤N requires η=Vin

Vth
≤ 1 or Vth≥Vin as highlighted in Fig.

6(c), which ensures the linearity in TSC activation. Using smaller η or larger
Vth helps to reduce the output spike-time t−out, which intends to improve the
inference latency. However, it also delays the spike time t+out, which causes more
delay to the successive layers. Hence, setting appropriate firing thresholds to
balance the spike-times t+out and t−out across layers is the key to achieve the best
latency in TSC-SNN.

Let us now address the second question concerning the precise Vth estimation
methodology. In our analysis thus far, we estimated Vth using Vin as described
by Eq.7, which is the average weighted input sum to the TSC neuron over time.
Prior works proposed setting Vth to the maximum weighted input sum to the
neuron across time-steps [6] [37]. Note that, rate encoding was used for the
estimation. In this work, we followed a similar procedure to estimate the V max

in

for each layer of the TSC-SNN. The maximum estimate V max
in can enable the

TSC neuron to operate in the linear region (where t−in<t
−
out<N as highlighted

in Fig. 6(c)). We initialize the thresholds of each layer to the estimated V max
in

times a scaling factor α(α ∈ [0, 1]). According to our simulation, setting α ≈ 0.8
helps the TSC-SNN to achieve the best accuracy with minimal latency. Before
presenting the results, we describe the methodology, originally proposed in [37],
used to initialize the layer-wise threshold of deep SNN using the ANN-trained
weights and SNN spiking statistics. We transfer the trained weights from ANN
to SNN, and feed the TSC spike-inputs (for the entire training set) to the first
layer of the SNN. We record the weighted input sum to all the neurons in the first
layer across time-steps. We set the threshold of TSC neurons in the first layer
to the maximum weighted input sum, across neurons and time-steps, over the
training dataset. We then freeze the threshold of the first layer, and estimate the
threshold of the second layer using the same procedure outlined previously. The
threshold estimation process is carried out sequentially in a layer-wise manner
for all the layers.

ResNet-20 SNN, with its layer-wise threshold assigned to V max
in , achieved

91.36% on CIFAR-10 using 1024 time-steps, which is comparable to that (91.47%)
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Fig. 7. Threshold balancing for ResNet-20 TSC-SNN inference on CIFAR-10 dataset.

achieved by the corresponding ANN as illustrated in Fig. 7. The x-axis is SNN
inference latency, the y-axis on the left measures the SNN top-1 inference ac-
curacy, and the y-axis on the right measures the percentage of neurons those
fire spikes per time-step. We thereafter scaled the threshold by a factor of up to
0.6× and found that the TSC-SNN, with scaled threshold, converged to the same
accuracy obtained using Vth=V max

in . This corroborates our hypothesis that the
TSC neuron operates in the linear region for a wide range of firing thresholds,
thereby, causing the TSC-SNN to yield higher accuracy using fewer time-steps
as depicted in Fig. 7. As the threshold is scaled further by up to 0.2×, we notice
significant drop in accuracy. At such low thresholds, the TSC neuron operates in
the non-linear regime, leading to higher accuracy loss during inference. We pro-
pose initializing the threshold of TSC-SNN with scaled version of V max

in (scaling
factor α ≈ 0.8 in this example) to achieve the optimal accuracy-latency trade-off.
We validate the presented threshold initialization scheme across different SNN
architectures and datasets. Improving the inference latency by reducing the fir-
ing threshold do not increase the spiking activity in TSC-SNN. In an effort to
quantify the spiking activity of TSC-SNN for different thresholds, we measure
the average spike rate as defined by the following equation.

R =
total spikes

total neurons× inference time-steps
× 100% (8)

The spike rate R in (8) indicates the average percentage of neurons that spike
per time-step. Our analysis indicates that the TSC-SNN, with scaled thresholds,
provides significant benefits in accuracy and latency with no increase in spiking
activity as shown in Fig. 7.

5 Results

We evaluated TSC-SNNs on standard visual object recognition benchmarks,
namely the CIFAR-10, CIFAR-100 and ImageNet datasets. We use VGG-16 ar-
chitecture [39] for all three datasets. ResNet-20 configuration outlined in [12]
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is used for the CIFAR-10 and CIFAR-100 datasets while ResNet-34 is used
for experiments on the ImageNet dataset. Our implementation is derived from
the Facebook ResNet implementation code for CIFAR and ImageNet datasets.
The code can be found online at https://github.com/facebookarchive/fb.

resnet.torch. Proper weight initialization is crucial to achieve convergence in
such deep networks without batch-normalization. Similar weights initialization
was done as outlined in [11] although their networks were trained without both
dropout and batch-normalization. For VGG networks, a dropout layer is used af-
ter every ReLU layer except for those layers which are followed by a pooling layer.
For Residual networks, we use dropout only for the ReLUs at the non-identity
parallel paths but not at the junction layers. We found this to be crucial for
achieving training convergence. We found this to be crucial for achieving train-
ing convergence. The most recent state-of-the-art ANN-SNN conversion works
are provided for comparison as shown in Table.1, 2 and 3. Note that authors
in [36] reported a top-1 SNN error rate of 25.04% for an Inception-V3 network,
with their ANN trained to an error rate of 23.88%. The resulting accuracy loss
is 1.52% which is much higher than our proposal. The Inception-V3 network
conversion was also optimised by a voltage clamping method, that was found
to be specific for the Inception network and did not apply to the VGG network
[36]. In addition, the results reported on ImageNet in [36] are on a subset of 1382
image samples for Inception-V3 network and 2570 samples for VGG-16 network.
Hence, the performance on the entire dataset is unclear. Our proposed TSC-SNN
achieved not only the best SNN inference accuracy but also the lowest accuracy
loss in ANN-SNN conversion across all network architectures and datasets we
evaluated.

The VGG-16 TSC-SNN inference performance on CIFAR-10, CIFAR-100 and
ImageNet datasets are shown in Fig.8(a) (c) and (e). In each figure, x-axis is the
SNN inference latency, the y-axis on the left measures the SNN top-1 inference
accuracy, and the y-axis on the right measures the percentage of neurons those
fire spikes per time-step. As shown in Fig.8 (a), TSC-SNN (green curve) achieved
the same accuracy 93.63% as the trained ANN, whereas the SNN with IF neurons
achieved 93.50% using 2048 time-steps. TSC-SNN reaches an accuracy 92.79%
using only 64 time-steps, which is 3 times faster than the RMP-SNN (blue curve)
that uses about 200 time-steps, and 10 times faster than the SNN with IF neurons
(black curve) that uses about 640 time-steps. The TSC-SNN attains a spike rate
around 0.03%, which is 66.3 times lower than the RMP-SNN, and 20.3 times
lower than the SNN with IF neuron. As mentioned above, lower spiking rate
does not guarantee low computation in temporal SNNs. Hence, the number of
addition operations performed in SNNs inference are also provided in Fig.8(b) (d)
and (f). In each figure, x-axis is the SNN inference latency, the y-axis measures
the number of addition operations performed for computing the weighted sum of
spike-input and updating the membrane potential in SNN inference. As shown in
Fig.8(b). The proposed TSC-SNN reduces the number of addition computation
by one order of magnitude than SNN with IF neuron in [37], and two orders
of magnitude than the RMP-SNN in [10]. The VGG-16 TSC-SNN inference
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Table 1. Accuracy loss due to ANN-SNN conversion of the state-of-the-art SNNs on
CIFAR-10 dataset

Network Architecture Spiking Neuron Model ANN (Top-1 Acc) SNN (Top-1 Acc) Accuracy Loss

8-layered [14] LIF (rate-based) 83.72% 83.54% 0.18%

3-layered [8] LIF (rate-based) - 89.32% -

6-layered [36] IF (rate-based) 91.91% 90.85% 1.06%

ResNet-20 [37] IF (rate-based) 89.1% 87.46% 1.64%

ResNet-20 [10] RMP (rate-based) 91.47% 91.36% 0.11%

ResNet-20 [This work] TSC (time-based) 91.47% 91.42% 0.05%

VGG-16 [37] IF (rate-based) 91.7% 91.55% 0.15%

VGG-16 [10] RMP (rate-based) 93.63% 93.63% < 0.01%

VGG-16 [This work] TSC (time-based) 93.63% 93.63% < 0.01%

Table 2. Accuracy loss due to ANN-SNN conversion of the state-of-the-art SNNs on
CIFAR-100 dataset

Network Architecture Spiking Neuron Model ANN (Top-1 Acc) SNN (Top-1 Acc) Accuracy Loss

ResNet-20 [37] IF (rate-based) 68.72% 64.09% 4.63%

ResNet-20 [10] RMP (rate-based) 68.72% 67.82% 0.9%

ResNet-20 [This work] TSC (time-based) 68.72% 68.18% 0.54%

VGG-16 [37] IF (rate-based) 71.22% 70.77% 0.45%

VGG-16 [10] RMP (rate-based) 71.22% 70.93% 0.29%

VGG-16 [This work] TSC (time-based) 71.22% 70.97% 0.25%

Table 3. Accuracy loss due to ANN-SNN conversion of the state-of-the-art SNNs on
ImageNet dataset

Network Architecture Spiking Neuron Model ANN (Top-1 Acc) SNN (Top-1 Acc) Accuracy Loss

ResNet-34 [37] IF (rate-based) 70.69% 65.47% 5.22%

ResNet-34 [10] RMP (rate-based) 70.64% 69.89% 0.75%

ResNet-34 [This work] TSC (time-based) 70.64% 69.93% 0.71%

VGG-16 [36] RMP (rate-based) 63.89% 49.61% 14.28%

VGG-16 [37] IF (rate-based) 70.52% 69.96% 0.56%

VGG-16 [10] RMP (rate-based) 73.49% 73.09% 0.4%

VGG-16 [This work] TSC (time-based) 73.49% 73.46% 0.03%

performance on CIFAR-100 and ImageNet datasets are shown in Fig.8 (c) (d)
and Fig.8 (e) (f) respectively. Note, no VGG-16 SNN was evaluated on CIFAR-
100 dataset in [37]. In this work, the results of VGG-16 on CIFAR-100 using the
TSC-SNN, RMP-SNN and the baseline SNN with IF neurons were converted
from our trained ANN with top-1 inference accuracy of 71.22%. The ResNet-20
and ResNet-34 TSC-SNNs inference performance on the CIFAR-10, CIFAR-100
and ImageNet datasets are also provided in Fig.9.

6 Conclusion and Discussion

In this work, we propose an ANN to SNN conversion technique. It uses a novel
time-based coding scheme (TSC) and TSC spiking neuron model. We also pro-
pose a threshold balancing technique which alleviates the ANN-SNN conversion
accuracy loss and significantly improved the latency and scalability of TSC-SNNs
to deep architectures. We implemented large scale deep network architectures
such as VGG and Residual networks using the proposed conversion based train-
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Fig. 8. Inference accuracy ((a) (c) and (e)) and computational cost ((b) (d) and
(f)) comparisons between TSC-SNN and the two baseline SNNs (RMP-SNN [10] and
SNN(IF) [37]) using VGG-16 architecture on CIFAR-10, CIFAR-100 and ImageNet
datasets.

ing and evaluated performance on cifar-10, cifar-100 and ImageNet datasets.
Our proposed TSC-SNNs achieve the best accuracies and latencies, the lowest
accuracy loss and the lowest computational cost than the state-of-the-art across
all network architectures and datasets we tested.
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Fig. 9. Inference accuracy ((a) (c) and (e)) and computational cost ((b) (d) and
(f)) comparisons between TSC-SNN and the two baseline SNNs (RMP-SNN [10] and
SNN(IF) [37]) using ResNet architectures on CIFAR-10, CIFAR-100 and ImageNet
datasets.
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