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1 More Implementation Details

As mentioned in the Section 4.2, here we further introduce our implementation
details to encourage reproductivity.

1.1 Deep Feature Extractor

Pillar Feature Network. Closely following the codebase1, we focus on the
input LiDAR point cloud range with [-50, -50], [-50, 50] and [-5, 3] meters in x,
y, z axis respectively. The voxel size is [0.25, 0.25, 8] and thus the pillars’ size
is 400 × 400 after the voxelization. The generated pseudo 2D image[5] is 400 ×
400 × 64 from Pillar Feature Network with 64-d output channels. Specifically,
the width and length of the pseudo image, W and L, are set to be 400 and 400,
while the channel size C is 64.
DCNN. The structure of DCNN includes three blocks of fully convolutional lay-
ers, where each of block consists of down-sampling convolutional layers to pro-
duce top-down features and de-convolutional layers to upsample and concatenate
the feature maps from different strides [5]. Each convolution/deconvolutional
uses the kernel with size 3 × 3 and is followed by a BatchNorm layer and a
ReLU layer. In details, the input/output size of the first convolutional block is
400× 400× 64 and 200× 200× 64, respectively. After the first deconvolutional
layer, the dimension of first block feature map becomes 100×100×128. Similarly,
the input/output size of the second convolutional block is 200 × 200 × 64 and
100×100×128. After the second deconvolutional layer, the dimension of second
block feature map is 100 × 100 × 128. For the last deconvolutional layer, the
input/output size is 100×100×128 and 50×50×256. After the last deconvolu-
tional layer, the dimension of third block feature map becomes 100× 100× 128.
The final concatenated feature map from the output of three deconvolutional
layers has a size of 100× 100× 384.

? Equal contribution.
1 https://github.com/traveller59/second.pytorch.
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Table 1. Object detection results (%) on KITTI val set with IoU threshold of 0.7 for
Car class

Method Easy Moderate Hard

VoxelNet [12] 81.97 65.46 62.85
Second [9] 87.43 76.48 69.10

PointRCNN [7] 88.88 78.63 77.38
Fast Point R-CNN [2] 89.12 79.00 77.48

STD[11] 89.70 79.80 79.30
PointPainting[8] 87.15 76.66 74.75

3DSSD[10] 89.71 79.45 78.67

Ours 89.21 78.94 78.06

1.2 RPN

Unlike the original PointPillars [5] that adopts a Single Shot Detector (SSD)
[6] as detection head, we utilize an improved implementation with a dual-head
for the RPN. Specifically, an 1 × 1 convolutional layer is used in each of three
branches following 1. The dataset is empirically divided into two groups based on
the object size, e.g., {car, bus, construction vehicle, trailer, truck} and {barrier,
bicycle, motorcycle, pedestrian, traffic cone}. Specifically, the small-scale head
takes the feature map from the first convolutional block with size of 200× 200×
64, while the large-scale head takes the concatenated feature map with size of
100×100×384, both from the deep feature extractor. The output of RPN is the
candidate proposals with classification, bounding box and direction predictions.

1.3 Data Preparation

Similar with [5, 4, 1, 9], we adopt the temporal aggregation from multiple LiDAR
sweeps to form a richer point cloud as input. Specifically, we aggregate the
current single frame with 10 previous different frames to form the final input.

2 Results on KITTI

KITTI dataset [3] is a widely used dataset for 3D object detection task. We also
conduct experiments on KITTI benchmarks to illustrate the effectiveness and
robustness of our approaches as shown in Table. 1. We observe that our method
achieves comparable performance to the state-of-the-art (STD) [11] on the Car
class of the KITTI validation set.

3 Additional Qualitatively Visualization on nuScenes

We report additional visualization results of our framework2 on the nuScenes
validation set in Fig. 1.

2 Here, we use the model that is trained with the default setting of training epochs.
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Fig. 1. Visualization results of 3D BEV images with ground truth (red) and detection
(blue) box on the nuScenes validation set



4 J. Wang, S. Lan et al.

References

1. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A.,
Pan, Y., Baldan, G., Beijbom, O.: nuscenes: A multimodal dataset for autonomous
driving. arXiv preprint arXiv:1903.11027 (2019)

2. Chen, Y., Liu, S., Shen, X., Jia, J.: Fast point r-cnn. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 9775–9784 (2019)

3. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The kitti
dataset. The International Journal of Robotics Research 32(11), 1231–1237 (2013)

4. Hu, P., Ziglar, J., Held, D., Ramanan, D.: What you see is what you get: Exploiting
visibility for 3d object detection. arXiv preprint arXiv:1912.04986 (2019)

5. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars:
Fast encoders for object detection from point clouds. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 12697–12705 (2019)

6. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.:
Ssd: Single shot multibox detector. In: European conference on computer vision.
pp. 21–37. Springer (2016)

7. Shi, S., Wang, X., Li, H.: Pointrcnn: 3d object proposal generation and detection
from point cloud. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 770–779 (2019)

8. Vora, S., Lang, A.H., Helou, B., Beijbom, O.: Pointpainting: Sequential fusion for
3d object detection. arXiv preprint arXiv:1911.10150 (2019)

9. Yan, Y., Mao, Y., Li, B.: Second: Sparsely embedded convolutional detection.
Sensors 18(10), 3337 (2018)

10. Yang, Z., Sun, Y., Liu, S., Jia, J.: 3dssd: Point-based 3d single stage object detector.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 11040–11048 (2020)

11. Yang, Z., Sun, Y., Liu, S., Shen, X., Jia, J.: Std: Sparse-to-dense 3d object detector
for point cloud. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 1951–1960 (2019)

12. Zhou, Y., Tuzel, O.: Voxelnet: End-to-end learning for point cloud based 3d object
detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 4490–4499 (2018)


