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Abstract. Real-time 3D object detection is crucial for autonomous cars.
Achieving promising performance with high efficiency, voxel-based ap-
proaches have received considerable attention. However, previous meth-
ods model the input space with features extracted from equally di-
vided sub-regions without considering that point cloud is generally non-
uniformly distributed over the space. To address this issue, we propose a
novel 3D object detection framework with dynamic information model-
ing. The proposed framework is designed in a coarse-to-fine manner.
Coarse predictions are generated in the first stage via a voxel-based
region proposal network. We introduce InfoFocus, which improves the
coarse detections by adaptively refining features guided by the informa-
tion of point cloud density. Experiments are conducted on the large-scale
nuScenes 3D detection benchmark. Results show that our framework
achieves the state-of-the-art performance with 31 FPS and improves our
baseline significantly by 9.0% mAP on the nuScenes test set.
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1 Introduction

With growing interests in autonomous vehicles, 3D object detection has received
considerable attention. Due to the superior capability of modeling 3D objects,
point cloud is the most popular type of data source. Most existing 3D detec-
tors are point-based [17, 25, 11, 21, 27] and voxel-based [12, 30, 26, 28, 7]. Point-
based approaches generate features from raw point cloud data directly. Although
achieving promising performance, these methods suffer from high computational
complexity which discourages their application in real-time scenarios. Voxel-
based approaches [12, 30, 26, 28, 7] firstly convert point cloud into voxels and
then employ deep convolutional neural networks (DCNN) to conduct object de-
tection. Taking advantage of the advanced DCNN architecture, voxel-based ap-
proaches achieve the state-of-the-art performance with low computational cost.
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Fig. 1. Left: we calculate the average point density across different parts of objects in
BEV of nuScenes training set. E1 -E4 indicate four edges sorted by their normalized
density scores (sum to 100%) and others denotes areas inside objects. We set each
edge width as 10% of the length along the object size and only objects over more than
100 points are counted. Middle and right: we visualize an example of the LiDAR point
cloud in 2D image and its corresponding bird’s eye view (BEV). Clearly, most of the
point clouds locate on the contour of the object

Our work follows the setting of voxel-based methods for their advanced balance
of efficiency and effectiveness.

Although much progress has been made in improving the performance of
voxel-based detectors, an important characteristic of point cloud is not well
explored: input data points are usually not uniformly distributed over the space.
The density of point cloud can be affected by different factors, e.g., the distance
of objects from LiDAR sensor and object self-occlusion. As illustrated in Fig. 1,
the density of point cloud over objects highly depends on the relative locations of
different parts. It is also intuitive that the amount of information is highly related
to the point density. However, existing voxel-based detectors extract features
from uniformly divided sub-regions, regardless of the actual distribution of the
points. We believe that this will lead to loss of useful information and ultimately
result in sub-optimal detection performance.

To fully exploit the non-uniform distribution of point cloud, we propose a
novel 3D object detection framework, to adaptively model the rich feature of 3D
objects according to the information density of points. Illustrated in Fig. 2, our
framework contains two stages. Coarse detection results are obtained in the first
stage via voxel-based region proposal network. In the second stage, we introduce
InfoFocus, to model and extract the informative features from regions of interest
(RoI) (formed by the coarse predictions) according to the distribution of point
cloud, and the predictions are improved with the help of the refined features.

The InfoFocus is the core structure of our framework which contains three
sequentially connected modules including the Point-of-interest (PoI) Pooling, the
Visibility Attentive Module, and the Adaptive Point-wise Attention.

PoI Pooling. Unlike 2D objects which contain densely distributed informa-
tion over the whole RoI, more of the points of 3D objects locate on the their



InfoFocus 3

surfaces. Therefore, we hypothesize that most informative feature concentrates
on the edge of RoI. Motivated by this intuition, we propose PoI Pooling which
densely samples features on the edge and sparsely samples feature in the middle
of RoI to accommodate the non-uniform information distribution of point cloud.

Visibility Attentive Module. Heavy self-occlusion is presented because of
the nature of LiDAR data that is no point cloud exists on the backside of object
relatively to the sensor. To mitigate this issue, our proposed Visibility Attentive
Module applies hard attention to emphasize the visible parts of objects and
eliminate the features from invisible points.

Adaptive Point-wise Attention. PoIs may contain different amount of
information, although they are all visible. We introduce Adaptive Point-wise
Attention to re-weight the features to improve the modeling of 3D objects.

We conduct extensive experiments on the largest public 3D object detection
benchmark, i.e, nuScenes [1]. Experimental results show that our approach sig-
nificantly outperforms the baselines, achieving 39.5% mAP with 31 FPS. Results
of comprehensive ablation studies demonstrate the effectiveness of our InfoFocus
and that each sub-module makes considerable contributions to our framework.

2 Related Work

Point-based Detectors. Inspired by the powerful feature learning capability
of PointNet [18, 19] and the advanced modeling structure of 2D object detectors
[5, 4, 20], Frustum PointNets [17] extrude the 2D object proposals into frustums
to generate the 3D bounding boxes from raw point cloud. Lan et al. [11] add
a decomposition-aggregation module modeling local geometry to extract the
global feature descriptor of point cloud. Limited by initial 2D box proposals,
those methods yield low performance when objects are occluded. In contrast,
PointRCNN [21] generates 3D proposals directly from point cloud instead of 2D
images. The recent STD [27] attempts to refine the detection boxes in a coarse-
to-fine manner. However, all those methods are computationally expensive due
to the large amount of data points to be processed.
Multi-view 3D Detectors. MV3D [2] is proposed to fuse multi-view feature
maps for the generation of 3D box proposals. Following [2], Ku et al. [10] ex-
plore high resolution feature maps to compensate the information loss for small
objects. These methods address the feature alignment between multi-modality
in a coarse level and are typically slow. Liang et al. [14] design a continuous
fusion layer to deal with the continuous state of LiDAR and the discrete state of
images. Later, [13, 24] leverage different strategies to jointly fuse related tasks
to improve feature representation.
Voxel-based Detectors. Recently, there is a trend of using regular 3D voxel
grids to represent point cloud such that the input data can be easily processed
by the 3D/2D convolution networks. Among those, VoxelNet [30] is the pioneer-
ing work of performing voxelization on the raw 3D point cloud. To improve its
efficiency, Second [26] adopts Sparse Convolution and speeds up detection pro-
cess without compromising the detection accuracy. PointPillars [12] dynamically
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converts the 3D point cloud into a 2D pseudo image, making it more suitable
for the application of the existing 2D object detection techniques. In [28], Ye et
al. design a new voxel generator to preserve the information loss along the ver-
tical direction. Building upon voxel-based detectors, our model captures richer
information of objects by refining their feature representations at a second stage
guided by the point cloud density and ultimately improves the detection results.

There are several recent studies [3, 16] focusing on fusing the voxel-based
features with PointNet-based features in order to extract more fine-grained 3D
features. InfoFocus is complementary to these techniques and can be further ap-
plied on top of them. WYSIWYG [7] is the most related method to our approach
since we both drive the model to encode visibility information. However, instead
of using a separate branch to generate the hidden invisibility representation,
our method directly aggregates the valuable point-wise features together from
existing backbone network to refine the proposals in an end-to-end manner.

3 Proposed Approach

The proposed framework is illustrated in Fig. 2, which consists of a deep feature
extractor followed by a two-stage architecture. The deep feature extractor con-
taining a Pillar Feature Network and a DCNN, converts the input point cloud
to representative feature maps. Specifically, the Pillar Feature Network divides
the whole space into equal pillars and generates the so-called pseudo images [12].
The pseudo images are then processed by the DCNN to obtain the feature maps
which are shared by the two stages, i.e., Region Proposal Network (RPN) and
InfoFocus. The RPN generates the initial coarse bounding box proposals that
are refined by InfoFocus, with dynamic information modeling. Note that our
Deep Feature Extractor and RPN follow the setting of [12].

3.1 Deep Feature Extractor

Deep Feature Extractor is composed of two parts: 1) voxelization using Pillar
Feature Network that converts the orderless point cloud into a sparse pseudo
image via a simplified PointNet-like architecture and 2) feature extraction using
DCNN to learn informative feature maps.

Pillar Feature Network. The Pillar Feature Network operates on the raw point
cloud, and learns point-wise features for each pillar. After voxelizing raw point
cloud into evenly spaced pillars, we randomly sample N points from each non-
empty pillar and then obtain a dense tensor with the size of D × P ×N , where
D indicates the information dimension of each point, P denotes the number
of non-empty pillars, and N denotes the number of points in each pillar. The
Pillar Feature Network utilizes a PointNet-like block to learn a multi-dimensional
feature vector for each pillar. The pillar-wise features are encoded into a 2D
pseudo image with the shape of W ×L×C, where W and L indicate the width
and length of the pseudo image, and C is the channel of the feature map.
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Fig. 2. The proposed 3D object detection framework. It consists of three parts: Deep
Feature Extractor(DFE), Region Proposal Network, and InfoFocus. InfoFocus contains
three modules: PoI Pooling, Visibility Attentive Module, and Adaptive Point-wise At-
tention Module

Deep Convolution Neural Network (DCNN). DCNN learns feature maps
from the generated pseudo 2D image. The DCNN uses conv-deconv layers to
extract features of different levels, and concatenates them to get the final features
from different strides.

3.2 Region Proposal Network (RPN)

The RPN takes the feature maps provided by DCNN as inputs and produces
high-quality 3D object proposals. Similar to the proposal generation in 2D ob-
ject detection, anchor boxes are predefined at each position and proposals are
generated by learning the offsets between anchors and the ground truths. To han-
dle different scales of objects, a dual-head strategy is adopted. Specifically, the
small-scale head takes features from the first conv-deconv phase of the DCNN,
while the large-scale head takes the features from its concatenation phase.

3.3 InfoFocus

The InfoFocus serves as the second stage of our framework, which takes the
candidate proposals from RPN and extracts features of objects in a hierarchical
manner from the feature maps produced by the DCNN. Specifically, given each
3D object proposal, InfoFocus dynamically focuses on the informative parts of
the feature maps by gradually emphasizing the representative PoIs in the fol-
lowing three steps: 1) the edge points are selected out from the whole proposal
region by PoI Pooling; 2) Visibility Attention module emphasizes on the infor-
mative points according to their relative visibility to the LiDAR sensor and 3)
in the Adaptive Point-wise Attention module, the features of the visible points
are further weighted adaptively. The re-weighted features of the visible points
are then fused to form the final representation of the proposal, on top of which
two fully-connected layers are utilized to predict the refined box.
PoI Pooling. When representing a 3D proposal, the most intuitive way is adopt-
ing the commonly used strategy in the two-stage 2D object detectors, i.e., RoI
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Fig. 3. RoI Pooling vs. PoI Pooling. The grid represents the feature map, and the dots
denotes sampling points of interest. RoI Pooling samples the whole box, while PoI
Pooling focuses on the key-points from edge-of-interest

Pooling (see Fig. 3 left). However, unlike the 2D images that have densely dis-
tributed information over the region proposals, the 3D point cloud mostly resides
on the object surface which results in non-uniform information over the regions
(most information locates on the edges of proposals).

The proposed PoI pooling is illustrated in Fig. 3 (right). Instead of equally
sampling points over a region of the feature maps, we focus on sampling the
points on the informative parts including four corners, the center point and key-
points on the edges. Note that we consider the center position as an additional
useful signal since it is likely to capture the semantic-level information.

We first project the 3D proposal to the birds’ view coordinate system. Let
p0, p1, p2 and p3 represent the positions of top-left, top-right, bottom-right, and
bottom-left corners of a proposal on the pseudo image, respectively and pc de-
notes the center point. Along each edge, n more key-points are uniformly sam-
pled. For example, for the top edge between p0 and p1, the position of a sampled
key-point kpj = (p0

j
n+1 +p1

n+1−j
n+1 ), where j is an integer and 1 ≤ j ≤ n. To this

end, (5 + 4 ∗ n) PoIs are obtained. A high-dimensional feature is extracted for
each PoI according to its relative position on the feature map and then we obtain
a feature set Fpoi = {fpoi1 , fpoi2 , ..., fpoiNpoi

}, where Npoi = (5 + 4 ∗ n) representing
the number of selected PoIs within the considered region.

Visibility Attentive Module. Severe self-occlusion typically occurs in point
cloud, but is ignored by most of the existing methods. The Visibility Attentive
Module (see Fig. 4 left) is proposed to mitigate this issue by focusing on the
information provided by the visible parts of objects. We argue that visible regions
contain more useful information than the occluded ones. Formally, we propose to
re-weight features of PoIs according to their corresponding visibility by exploiting
the geometric relationship between the proposals and the LiDAR sensor in bird’s
eye view. As shown in Eq. 1, Fvis denotes the updated feature set, where vpoii

indicates the visibility score of the ith PoI. Different weighting strategies can be
used and we use a hard attention strategy in this work for its simplicity, that
is assigning vpoii = 1 if the ith PoI is visible and vpoii = 0 otherwise. In other
words, we only take PoIs on the visible edges to represent the proposal.
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Fvis = {fpoi1 ∗ vpoi1 , fpoi2 ∗ vpoi2 , ..., fpoiNpoi
∗ vpoiNpoi

} (1)

For the consideration of model efficiency, a simple yet effective method is
used to estimate the visibility of points in the bird’s eye view. To figure out the
sides of proposals facing to the sensor, we first compute the distance of each
corner to the LiDAR sensor and determine the one that is closest to the sensor.
Then, we consider the two edges passing this closest corner as the visible edges
and the other two as the occluded ones.
Adaptive Point-wise Attention Module. PoI Pooling and Visibility Atten-
tive Module are motivated by the nature of the non-uniform density of point
cloud. However, two points may offer different amount of information even
though they are all visible by the sensor. Adaptive Point-wise Attention Module
provides the flexibility for the visible PoIs to contribute unequally to the pre-
diction. Suppose Fvis = {fvis1 , fvis2 , ..., fvisNvis

} indicates the feature set of visible
PoIs. Adaptive Point-wise Attention Module learns an attention weight, wi, for
each fvisi adaptively for the next-step feature aggregation. Specifically, a shared
fully connected (FC) layer with sigmoid as the activation function is used to learn
the attention weights, formally expressed as vvisi = Sigmoid(Wfvisi +b). We use
Fatt = {fatt1 , fatt2 , ..., fattNvis

} to represent the re-weighted feature set of visible

PoIs updated using Fvis and the attention weights, where fatti = fvisi ∗ vvisi .
The final representation of each proposal aggregates the features of its visible

PoIs. Let e0, e1, e2 and e3 denote the top, right, down, left edges of a proposal,
respectively. We first compute fei by applying max pooling to all the visible
points on ei. Then, the final representation is obtained by fe0 ||fe1 ||fe2 ||fe3 ||fpc ,
where fpc indicates the feature of the center point and || indicates concatenation.

3.4 Loss Function

Given the output PoI feature representation from the aforementioned three mod-
ules topped by fully-connected layers, the head network consists of three branches
predicting the box class, localization and direction. The ground truth and an-
chor boxes are parameterized as (x, y, z, w, l, h, θ), where (x, y, z) is the center
of box, (w, l, h) is the dimension of box, and θ is the heading along the z-axis
in the LiDAR coordinate system. The box regression target is computed as the
residuals between the ground truth and the anchors as:

4x =
xgt − xa

da
,4y =

ygt − ya

da
,4z =

zgt − za

ha
,

4w = log(
wgt

wa
),4l = log(

lgt

la
),4h = log(

hgt

ha
),

4θ = θgt − θa

(2)

where xgt and xa refer to ground truth and anchor box respectively, and
da =

√
(wa)2 + (la)2. To deal with severe class imbalance problem in the dataset,
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Visibility Attention

…

Adaptive Point-wise Attention

…

Fig. 4. Left: illustration of the Visibility Attentive Module. We compute hard attention
for each sampled point depending on whether it is visible to the sensor. We also show
the visibility map on the bottom left. Points on the blue line are visible while points
on the orange line are invisible. Right: the architecture of the Adaptive Point-wise
Attention Module. The point-wise attention is generated using a fully connected (FC)
layer followed by a Sigmoid function. The input of FC layer is the feature of each point

we adopt the focal loss [15] for the classification loss. Smooth L1 loss [5] is used
for the regression loss. In addition, to compensate for direction prediction missing
in the regression, we adopt a softmax classification loss on orientation prediction.

Similar with that of the vanilla PointPillars network [12], we formally define
a multi-task loss for both stages as threefold,

Lstage i =
1

Npos
(βclsLcls i + βregLreg i + βdirLdir i), (3)

where i could be either RPN or InfoFocus stage, Npos refers to the number
of positive anchors and βcls, βreg, βdir are chosen to balance the weights among
classification loss, regression loss and direction loss.

3.5 Comparisons with Existing Approaches

Point-based Approaches. Our framework uses PointNet to extract features
from equally divided sub-grids and employs a DCNN to generate 2D feature maps
while point-based techniques [17, 25, 11, 21] only use PointNet as its backbone.
Both our approach and point-based approaches apply two-stage architecture to
infer objects. Meanwhile, we both sample features considering the distribution of
point cloud. However, compared to PointNet, InfoFocus is more computationally
efficient without performance degradation.
Fusion-based Approaches. Fusion-based detectors [3, 16] make use of both
RGB images and point cloud data for 3D object detection. InfoFocus is much
faster than fusion-based approaches, since they contain two backbones to process
multi-view sources and are heavily engineered. On the other hand, InfoFocus also
achieves competitive results compared to fusion-based approaches.
Traditional Voxel-based Approaches. Our method shares the similar back-
bone as the existing voxel-based architectures [12, 30, 26, 28]. However, previous
voxel-based detectors pay less attention to the distribution of LiDAR data that
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most 3D point cloud locates on the surface of the objects. Our proposed PoI
Pooling, Visibility Attentive Module, and Adaptive Point-wise Attention model
the non-uniform point cloud using dynamic information focus. First, the PoI
Pooling decreases the sampling from the inside of objects where few points lo-
cate. Next, the Visibility Attentive Module eliminates the noise from the back
of objects where points are occluded. Last, we apply the Adaptive Point-wise
Attention to learn the focus on each sampled points. Jointly, these modules
contribute significantly to the superior performance of InfoFocus.

4 Experiments

Our method is mainly evaluated on the nuScenes dataset [1] which is considered
as the most challenging 3D object detection benchmark. We first present our
implementation details. We compare with the existing approaches both quan-
titatively and qualitatively. Then, extensive ablation studies are conducted to
demonstrate the effectiveness of each designed module. Last, we analyze the in-
ference time and the desired speed accuracy trade-off provided by our method.

4.1 Dataset and Evaluation Metric

NuScenes [1] is one of the largest datasets for autonomous driving. There are
1000 scenes of 20s duration each, including 23 object classes annotated with
28,130 training, and 6,019 validation samples. We use the LiDAR point cloud
as the only input to our method and all the experiments follow the standard
protocol on the training and validation sets. Officially, nuScenes evaluates the
detection accuracy across different classes, based on the average precision metric
(AP) which is computed based on 2D center distance between ground truth and
the detection box on the ground plane. In details, the AP score is determined as
the normalized area under the precision recall curve above 10%. The final mean
AP (mAP) is the average among the set of ten classes over matching thresholds
of D = {0.5, 1, 2, 4} meters.

4.2 Implementation Details

We integrate InfoFocus into a state-of-the-art real-time 3D object detector [12] to
improve the detection performance without largely compromising speed. Closely
following the codebase1 recommended by the authors of PointPillars [12], we use
PyTorch to implement our InfoFocus modules and integrate it into vanilla Point-
Pillars network. More details will be introduced in the supplementary materials.
RPN. For each class of objects, the RPN anchor size is set by calculating the
average of all objects from the corresponding class in training set of nuScenes.
In addition, the matching thresholds are based on the custom configuration
following the suggested codebase. 1,000 proposals are obtained from RPN, on

1 https://github.com/traveller59/second.pytorch.
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which NMS with a threshold of 0.5 is applied to remove the overlapping proposals
for both training and inference. The final top-ranked 300 proposals are kept for
the InfoFocus stage to simultaneously predict the category, location and direction
of objects during both the training and inference.
InfoFocus. The second stage is our proposed InfoFocus. The three novel mod-
ules process object-centric feature sequentially based on the initial bounding box
proposals from RPN. The number of sampled key-points for each edge, n, is set
to be 2. Thus, the total number of PoIs, Npoi, is 13, including a center, 4 corners
and 2 key-points on each edge. Similar to RoIAlign [6], bi-linear interpolation
is used to compute the deep feature from four neighboring regular locations of
each point.

As mentioned before, we apply a max-pool layer to summarize the features
of points along each edge, resulting in 5 features for each proposal, including
features from top, right, down, left edges and the center. When concatenating
these features, we always treat the edge that is closest to the sensor as the top
edge. A fully connected layer with a single node is used to generate point-wise
attention weight for each point.

The feature of each proposal is transformed by two consecutive FC layers with
512 nodes each and passed to three sibling linear layers, a box-regression branch,
a box-classification branch and a box-direction branch. For the regression target
assignment, anchors having Intersection over Union (IoU) bigger than 0.6 with
the ground truth are considered positive, and smaller than 0.55 are assigned
negative labels.
Training Parameters. Experiments are conducted on a single NVIDIA 1080Ti
GPU. The weight decay is set to be 0.01. We adopt the Adam optimizer [9], and
use a one-cycle scheduler proposed in [23]. We train our model with a total of
20 epochs as a default choice, taking about 40 hours from scratch. For the first
8 epochs, the learning rate progressively increases from 3× 10−4 to 3× 10−3

with decreasing momentum from 0.95 to 0.85, while in the remaining 12 epochs
learning rate decreases from 3× 10−3 to 3× 10−6 with increasing momentum
from 0.85 to 0.95. The focal loss [15] with α = 0.25 and γ = 2.0 is adopted for
the classification loss. The balancing weights for the classification, box regression,
and direction loss βcls, βreg, βdir of both stages are 1, 2 and 0.2, respectively.

4.3 Main Results

First, we compare our framework with the state-of-the-art methods on the
nuScenes validation set, including the vanilla PointPillars [12] as our baseline,
and recently published WYSIWYG [7]. As can be seen from Table. 1, the base-
line has an mAP of 29.5% with a single stage, while InfoFocus improves it by a
massive 6.9%. This demonstrates the effectiveness of InfoFocus. We also visual-
ize the detection results of our framework on 2D and 3D BEV images in Fig. 5.
As shown in Fig. 6, compared to the vanilla PointPillars qualitatively, InfoFocus
helps remove the false positives significantly and obtains better results.

In addition, we submit the detection results of test set on the nuScenes test
server. The results show that our method achieves the state-of-the-art perfor-
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Table 1. Object detection results (%) on nuScenes validation set

Method car peds. barri. traff. truck bus trail. const. motor. bicyc. mAP

PointPillars [12] 70.5 59.9 33.2 29.6 25.0 34.3 16.7 4.5 20.0 1.6 29.5
WYSIWYG [7] 80.0 66.9 34.5 27.9 35.8 54.1 28.5 7.5 18.5 0 35.4

Ours 77.6 61.7 43.4 33.4 35.4 50.5 25.6 8.3 25.2 2.5 36.4

mance with inference speed of 31 FPS, improving the baseline performance by
7% mAP. Note that all methods listed in Table. 2 are LiDAR-based except that
MonoDIS [22] and CenterNet[29] are camera-based methods. Without bells and
whilstles, our approach works better than WYSIWYG [7]. Considering that our
model contains more parameters than the vanilla PointPillars, we empirically
increase the number of the training epoch by 2 times. With all the others set-
tings the same, our method is improved by 2% mAP on the nuScenes test set as
shown in Table. 2 (Ours 2×). In total, our method outperforms WYSIWYG[7]
by 4.5% mAP on the nuScenes test set. In the rest of paper, the default setting
of training epochs is adopted. To the best of our knowledge, our framework is
superior than all the published real-time methods with respect to mAP.

Table 2. Object detection results (%) on nuScenes test set. Note that MonoDIS and
CenterNet are camera based methods, and the rest are LiDAR based. Ours 2× indicates
2× training time with other settings being the same with Ours

Method car peds. barri. traff. truck bus trail. const. motor. bicyc. mAP

MonoDIS [22] 47.8 37.0 51.1 48.7 22.0 18.8 17.6 7.4 29.0 24.5 30.4
PointPillars [12] 68.4 59.7 38.9 30.8 23.0 28.2 23.4 4.1 27.4 1.1 30.5
SARPNET [28] 59.9 69.4 38.3 44.6 18.7 19.4 18.0 11.6 29.8 14.2 32.4
CenterNet [29] 53.6 37.5 53.3 58.3 27.0 24.8 25.1 8.6 29.1 20.7 33.8
WYSIWYG [7] 79.1 65.0 34.7 28.8 30.4 46.6 40.1 7.1 18.2 0.1 35.0

Ours 77.2 61.5 45.3 40.4 31.5 44.1 35.9 9.8 25.1 4.0 37.5
Ours 2× 77.9 63.4 47.8 46.5 31.4 44.8 37.3 10.7 29.0 6.1 39.5

4.4 Ablation Studies

To understand the contribution of our major component to the success of In-
foFocus, Table. 3 summarizes the performance of our framework when a cer-
tain module is disabled, including PoI Pooling, Visibility Attention Module and
Adaptive Attention Module.
PoI Pooling. To investigate the effect of PoI Pooling, we simply add the PoI
Pooling on top of the vanilla PointPillar. This baseline introduces 3.0% mAP
improvement. However, when we vary the number of pooling key-points on each
edge, we see that our framework with four key-points (n = 4) on each edge
degrades slightly by 0.8% mAP than that of two key-points (n = 2). A possible
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Table 3. Ablation studies on nuScenes validation set. ”Vis. Att” and ”Adp. Att.” refer
to Visibility Attention Module and Adaptive Attention Module, respectively

PoIPool Vis. Att. Adp. Att. mAP

29.5
X 32.5
X X 34.8
X X 34.8
X X X 36.4

reason is that the higher number of samples along each edge might bring more
noise which harms the detection performance.
Visibility Attention. We further add the Visibility Attention module to fil-
ter out invisible edges before PoI pooling. Table. 3 shows that when using the
features from two visible edges, the mAP result is improved by 2.3% mAP com-
pared to baseline+PoIPool. Generally, the visible parts of objects correspond to
their sides closer to the LiDAR sensor, thus they may capture richer information.
By applying visibility attention, our method focuses more on the representative
information which results in better performance.
Adaptive Point-wise Attention. Without the Adaptive Point-wise Attention
module, the framework naturally allows the same weight for each PoI feature. As
we can see in Table. 3, when adding this module, the result of baseline+PoIPool
improves by 2.3% mAP and that of baseline+PoIPool+Vis.Att. improves by
1.6%. These results suggest that the Adaptive Point-wise Attention module helps
emphasize on useful points which leads to a better performance.

Table 4. Inference time of 3D object detectors. Note that inference time for the baseline
here is the network reproduced by ourselves

Method Input Format mAP Inference Time (ms)

Baseline [12] LiDAR 30.5 26.9
MonoDIS [22] RGB 30.4 29.0
SARPNET [28] LiDAR 32.4 70.0

Ours LiDAR 37.5 32.9

Rotated RoIAlign Comparison. One widely considered way to extract the
region-wise features in the two-stage architecture is RoIAlign [6]. So, it is intu-
itive to compare with this strategy under the setting of 3D object detection. We
implement rotated RoIAlign (RRoI) operation [8] to compensate for the rotated
bounding box, since in our case they are often not axis-aligned. We conduct ex-
periments exploring two different pooling sizes, 4× 4 (pooled length and pooled
width), and 8× 4 with 4 sampled points in each bin. One of the reasons that we
use 8×4 is that most of the objects like car and bus’s length is larger than their
width. With all other implementations the same as InfoFocus, Table. 5 presents
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Fig. 5. We visualize the detection results on nuScenes with 2D and 3D BEV images.
On the top, we demonstrate the 2D images with the 3D bounding box annotated, while
the BEV of LiDAR with ground truth (red) and detection (blue) box are shown on the
bottom. Note that the line in the frame denotes the direction of the object

detection results utilizing the rotated-RoI with different pooling sizes. Compared
with the vanilla PointPillars [12], adding the RoIAlign layer with size of 4 × 4
increases the mAP performance by 4.4%. However, InfoFocus still outperforms
RoIAlign by 2.5% with the better information modeling scheme.

Table 5. Comparison with rotated RoIAlign feature extraction results (%) on the
nuScenes validation set

Method car peds. barri. traff. truck bus trail. const. motor. bicyc. mAP

RRoI 4x4 76.9 60.1 37.6 29.5 32.4 50.6 22.4 5.0 20.8 3.8 33.9
RRoI 8x4 77.0 59.5 36.7 29.2 33.2 51.5 25.4 4.5 24.0 1.8 34.3

Ours 77.6 61.7 43.4 33.4 35.4 50.5 25.6 8.3 25.2 2.5 36.4

4.5 Real-time Inference Analysis

As indicated in Table. 4, our framework takes about 32.9 ms to perform detection
on an example of point cloud in the nuScenes, compared with 26.9 ms of the
vanilla PointPillars when both are evaluated on a single NVIDIA 1080Ti GPU.
In details, the pillar feature extraction time is 12.6 ms, the DCNN costs 1.1 ms,
RPN takes 7.3 ms to generate proposals, and the InfoFocus stage takes 11.9 ms.
Specifically, the proposal generation for the InfoFocus stage including NMS is
5.1 ms, the PoI feature extraction time is 3.1 ms, and the second stage including
three branches takes 0.7 ms. We also note that WYSIWYG [7] provides the
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PointPillars InfoFocus

Fig. 6. We visualize the BEV detection results for the same point cloud sample on
nuScenes with the vanillar PointPillars (left) and InfoFocus (right)

overhead of computing visibility over a 32-beam LiDAR point to be 24.4 ± 3.5
ms on average and InfoFocus is faster than WYSIWYG [7] since we share the
similar backbone network. The framework with RROIAlign has an inference
time of 32.2 ms. Further, compared with other point-based methods [21, 27],
InfoFocus is considerably faster and conceptually simpler.

5 Conclusions

Non-uniform distribution of point cloud causes varying amount of information
at different locations. Therefore, we argue that this imbalance distribution of
information may result in degradation on previous 3D voxel-based detectors
when modeling 3D objects. To address this issue, we propose a 3D object detec-
tion framework with InfoFocus to dynamically conduct information modeling.
InfoFocus contain three effective modules including PoI Pooling, the Visibility
Attentive Module, and the Adaptive Point-wise Attention. Demonstrated by the
comprehensive experiments, our framework achieves the state-of-art performance
among all the real-time detectors on the challenging nuScenes dataset.
Acknowledgement. This work was supported by the Intelligence Advanced Re-
search Projects Activity (IARPA) via DOI/IBC contract numbers D17PC00345
and D17PC00287. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes not withstanding any copyright an-
notation thereon. The authors would like to thank Zuxuan Wu and Xingyi Zhou
for proofreading the manuscript.



InfoFocus 15

References

1. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A.,
Pan, Y., Baldan, G., Beijbom, O.: nuscenes: A multimodal dataset for autonomous
driving. arXiv preprint arXiv:1903.11027 (2019)

2. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection network
for autonomous driving. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 1907–1915 (2017)

3. Chen, Y., Liu, S., Shen, X., Jia, J.: Fast point r-cnn. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 9775–9784 (2019)

4. Girshick, R.: Fast r-cnn. In: The IEEE International Conference on Computer
Vision (ICCV) (December 2015)

5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (June 2014)

6. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the
IEEE international conference on computer vision. pp. 2961–2969 (2017)

7. Hu, P., Ziglar, J., Held, D., Ramanan, D.: What you see is what you get: Exploiting
visibility for 3d object detection. arXiv preprint arXiv:1912.04986 (2019)

8. Huang, J., Sivakumar, V., Mnatsakanyan, M., Pang, G.: Improving rotated text
detection with rotation region proposal networks. arXiv preprint arXiv:1811.07031
(2018)

9. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

10. Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.L.: Joint 3d proposal
generation and object detection from view aggregation. In: 2018 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS). pp. 1–8. IEEE
(2018)

11. Lan, S., Yu, R., Yu, G., Davis, L.S.: Modeling local geometric structure of 3d point
clouds using geo-cnn. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2019)

12. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars:
Fast encoders for object detection from point clouds. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 12697–12705 (2019)

13. Liang, M., Yang, B., Chen, Y., Hu, R., Urtasun, R.: Multi-task multi-sensor fusion
for 3d object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 7345–7353 (2019)

14. Liang, M., Yang, B., Wang, S., Urtasun, R.: Deep continuous fusion for multi-sensor
3d object detection. In: The European Conference on Computer Vision (ECCV)
(September 2018)

15. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proceedings of the IEEE international conference on computer vision.
pp. 2980–2988 (2017)

16. Liu, Z., Tang, H., Lin, Y., Han, S.: Point-voxel cnn for efficient 3d deep learning.
In: Advances in Neural Information Processing Systems. pp. 963–973 (2019)

17. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d object
detection from rgb-d data. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 918–927 (2018)

18. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets
for 3d classification and segmentation. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 652–660 (2017)



16 J. Wang, S. Lan et al.

19. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. In: Advances in neural information processing
systems. pp. 5099–5108 (2017)

20. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. In: Advances in neural information processing
systems. pp. 91–99 (2015)

21. Shi, S., Wang, X., Li, H.: Pointrcnn: 3d object proposal generation and detection
from point cloud. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 770–779 (2019)

22. Simonelli, A., Bulo, S.R., Porzi, L., López-Antequera, M., Kontschieder, P.: Disen-
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