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Abstract. We include the following additional results and discussions
supporting the material presented in the main submission:
– Discussion regarding other decomposition methods (Sec. 1)
– Visualizations of ACD pre-trained features using clustering (Sec. 2)
– Per-category results for baseline and self-supervised models on few-

shot part segmentation (Sec. 3)

1 On shape decomposition methods

In our current work, we have focused on ACD, which approximates shapes as
a collection of (approximately) convex parts. There are however various other
decomposition methods that might correspond better to notions of semantic
parts, and yield a better self-supervisory signal. The current section gives a brief
overview of other shape decomposition methods and connections to classical
works in early computer vision –

We refer to shape decomposition as a procedure that computes a set of simpler
proxy-shapes from complex ones. Such procedures have been extensively stud-
ied in the geometric processing literature and they operate without resorting
to any learning-based technique or human annotated labels – multiple methods
have shown that complex shapes can be reliably decomposed relying solely on
geometric cues. Biederman’s recognition-by-components theory [1] attempts to
explain object recognition in humans by the ability to assemble basic shapes
such as cylinders and cones, called geons, into the complex objects encountered
in the visual world. Early work in cognitive science [6] shows that humans are
likely to decompose a 3D shape along regions of maximum concavity, resulting
in parts that tend to be convex, often referred to as the “minima rule”. Clas-
sical approaches in computer vision have modeled three-dimensional shapes as
a composition of simpler primitives, e.g. work by Binford [2, 3] and Marr [7].
More recent work in geometric processing has developed shape decomposition
techniques that generate different types of primitives which are amenable to
tasks like editing, grasping, tracking and animation. Those have explored primi-
tives like 3D curves [4,5,8], cages [11], sphere-meshes [10] and generalized cylin-
ders [12]. Given the promising results from ACD in our experiments, exploring
other decomposition methods is a reasonable direction for future research in
self-supervised learning on point clouds.
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Table 1. Per-category few-shot segmentation on the ShapeNet dataset.

K-shot Method mIoU Aero Bag Cap Car Chair Earph Guitar Knife Lamp Laptop Motor Mug Pistol Rocket Skate Table

1 Baseline 53.14 48.89 44.85 50.42 23.94 69.50 63.57 78.31 67.34 50.84 87.00 19.69 48.60 54.33 33.84 43.72 65.45
ACD 62.37 66.74 57.30 76.04 41.10 77.61 61.16 86.00 60.91 46.99 92.77 23.58 68.28 70.23 36.03 67.78 65.36

3 Baseline 58.15 61.59 60.86 76.35 32.16 79.20 30.36 86.21 73.15 54.03 93.59 25.59 48.62 57.15 41.50 43.74 66.31
ACD 69.56 62.49 52.11 78.79 59.88 81.64 66.89 87.35 76.08 52.57 93.32 50.79 92.94 76.29 48.84 67.88 65.15

5 Baseline 68.01 62.24 75.12 80.68 57.64 81.34 63.29 86.10 76.05 48.34 94.43 27.41 91.39 74.95 38.09 62.68 68.48
ACD 72.66 68.63 68.54 80.03 54.53 83.03 61.31 85.75 73.62 64.76 94.34 62.87 92.52 75.72 56.69 71.17 69.09

10 Baseline 71.37 63.09 74.55 75.98 65.37 82.55 62.87 86.34 80.73 66.03 94.46 42.40 92.77 75.60 46.50 65.66 67.01
ACD 74.50 67.01 76.71 80.05 68.51 82.84 54.16 88.81 73.36 68.29 95.16 65.83 92.59 77.99 57.60 66.85 76.19

2 Visualizing point features trained on ACD

We visualize the per-point features learned while training the network to per-
form ACD using contrastive loss. Refer to Section 3 of the main paper for a
detailed explanation. In this experiment, we train a PointNet++ [9] backbone
by minimizing the loss in Equation 4. After training, we compute per-point em-
beddings by concatenating features from the first two set aggregation layers (SA1
and SA2), resulting in a per-point feature of dimensionality 384. Then, for every
point cloud, we cluster its points according to those embeddings using Mean
Shift. Results are presented in Figure 1. As we can see, the network learns to
decompose the shapes in approximately convex parts reasonably well.

3 Per-category results for few-shot segmentation

Part segmentation performance across ShapeNet categories is listed in Table 1.
We can see that performance varies widely across categories, indicating some
are significantly harder to segment than others. In all cases, for mean IoU aver-
aged across shape categories, including the ACD loss over additional unlabeled
data provides a gain in performance over a fully-supervised baseline PointNet++
model. We see consistent gains in performance in categories like Aeroplane, Lap-
top, Motorcycle, Pistol, Rocket and Skateboard.
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Fig. 1. Visualizing per-point embeddings trained using ACD. For each shape, different
colors represent different clusters computed using Mean Shift on the point embeddings
from PointNet++ trained to perform ACD.
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