Supplementary Materials of Consistency-based Semi-supervised Active Learning: Towards Minimizing Labeling Cost

Mingfei Gao^{1*}, Zizhao Zhang², Guo Yu³, Sercan Ö. Arık², Larry S. Davis¹, and Tomas Pfister²

¹University of Maryland ²Google Cloud AI ³University of Washington

1 Proof of Proposition

Proof. Denote \mathcal{X} as the feature space and $\{1, \ldots, J\}$ as the label space. Note that by Baye's formula and the law of total probability, we have

$$\begin{split} &R_{H}[p(\hat{Y}|X)] = \mathcal{E}_{X} \left\{ H\left[p(Y|X), p(\hat{Y}|X) \right] \right\} \\ &= -\sum_{x \in \mathcal{X}} \sum_{y=1}^{J} p(Y=y|X=x) \log p(\hat{Y}=y|X=x) p(X=x) \\ &= -\sum_{y=1}^{J} \sum_{x \in \mathcal{X}} p(X=x, Y=y) \log \left[\frac{p(\hat{Y}=y)p(X=x|\hat{Y}=y)}{p(X=x)} \right] \\ &= -\sum_{y=1}^{J} \sum_{x \in \mathcal{X}} p(X=x, Y=y) \log p(\hat{Y}=y) \\ &- \sum_{y=1}^{J} \sum_{x \in \mathcal{X}} p(X=x, Y=y) \log \left[\frac{p(X=x|\hat{Y}=y)}{p(X=x)} \right] \\ &= -\sum_{y=1}^{J} p(Y=y) \log p(\hat{Y}=y) - \sum_{x \in \mathcal{X}} \sum_{y=1}^{J} p(X=x, Y=y) \log \left[p(X=x|\hat{Y}=y) \right] \\ &+ \sum_{x \in \mathcal{X}} \sum_{y=1}^{J} p(X=x, Y=y) \log \left[p(X=x) \right] \\ &= H\left[p(Y), p(\hat{Y}) \right] + \sum_{x \in \mathcal{X}} p(X=x) \log \left[p(X=x) \right] \\ &- \sum_{x \in \mathcal{X}} \sum_{y=1}^{J} p(X=x, Y=y) \log \left[p(X=x) \right] \end{split}$$

^{*} Work done while the author was an intern at Google; now at Salesforce Research. Email: mgao@cs.umd.edu

2 M. Gao, Z. Zhang et al.

$$=H\left[p(Y), p(\hat{Y})\right] - H\left[p(X)\right] - \sum_{x \in \mathcal{X}} \sum_{y=1}^{J} p(X = x, Y = y) \log\left[p(X = x | \hat{Y} = y)\right].$$
(1)

We first give a lower bound. Note that $p(X = x | \hat{Y} = y) \le 1$ for any $(x, y) \in \mathcal{X} \times [J]$, so Eq. 1 implies that

$$\mathbb{E}_X\left\{H\left[p(Y|X), p(\hat{Y}|X)\right]\right\} \ge H\left[p(Y), p(\hat{Y})\right] - H\left[p(X)\right]$$

To prove the upper bound, denote $\min_{(x,y)\in\mathcal{X}\times[J]} p(X=x|\hat{Y}=y) = \hat{Z} \in (0,1)$ where $(x,y)\in\mathcal{X}\times[J]$. Then from Eq. 1

$$E_X \left\{ H\left[p(Y|X), p(\hat{Y}|X) \right] \right\} \leq H\left[p(Y), p(\hat{Y}) \right]$$

$$- H\left[p(X) \right] - \log \hat{Z} \sum_{x \in \mathcal{X}} \sum_{y=1}^J p(X = x, Y = y)$$

$$= H\left[p(Y), p(\hat{Y}) \right] - H\left[p(X) \right] - \log \hat{Z}.$$

Fig. A1. An illustration of Proposition: the blue curve represents the (expected) crossentropy, and the two red curves are the lower and upper bounds. The value $-\log \hat{Z}_t$ characterizes the range of the bounds.

2 Consistency-based Selection with Other SSL methods

To investigate the effectiveness of our method, we combine our selection method with two more SSL methods, *i.e.*, Pi-Model [1] and VAT [2]. We consider Pi-

Methods	Selection	# of labeled samples in total				
		1000	1500	2000	2500	3000
Pi-Model[1]	k-center Ours	67.82±1.34	71.72±0.39 72.06±0.30	74.56±0.36 74.96±0.20	$\begin{array}{c} 75.98{\pm}0.53\\ \textbf{77.05}{\pm}\textbf{0.50}\end{array}$	77.7±0.32 78.64±0.48
VAT[2]	k-center Ours	80.52±0.32	82.71±0.46 85.22±0.20	84.51±0.25 87.05±0.25	86.03±0.08 88.32±0.19	86.61±0.19 89.1±0.13

Table A1. Comparison between our method and k-center trained with different SSL methods on CIFAR-10. The reported results are averaged over 3 trials

Model and VAT, since they use consistency-related regularization which matches our assumption. The experiments are conducted against our strongest baseline, k-center, on CIFAR-10. All models start from 1000 labels to avoid cold start problems. We follow the experimental setting of CIFAR-10 in our main paper. In each AL cycle, the model is initialized with the model trained in the previous cycle. We use the implementation of these SSL methods provided by MixMatch¹. As shown in Table A1, our consistency-based selection works consistently better than k-center with these SSL methods.

¹ https://github.com/google-research/mixmatch

4 M. Gao, Z. Zhang et al.

References

- 1. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. ICLR (2017)
- 2. Miyato, T., Maeda, S.i., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. TPAMI (2018)