
LST-Net: Learning a Convolutional Neural
Network with a Learnable Sparse Transform

Lida Li1[0000−0001−9386−194X]?, Kun Wang2,1[0000−0001−5954−8036]?, Shuai
Li1,3[0000−0003−0760−5267], Xiangchu Feng2[0000−0002−3463−2060], and Lei

Zhang1,3[0000−0002−2078−4215]??

1 Dept. of Computing, The Hong Kong Polytechnic University, Hong Kong, China
2 School of Mathematics and Statistics, Xidian University

3 DAMO Academy, Alibaba Group
{cslli, csshuaili, cslzhang}@comp.polyu.edu.hk, kwang96@stu.xidian.edu.cn,

xcfeng@mail.xidian.edu.cn

Abstract. The 2D convolutional (Conv2d) layer is the fundamental el-
ement to a deep convolutional neural network (CNN). Despite the great
success of CNN, the conventional Conv2d is still limited in effectively
reducing the spatial and channel-wise redundancy of features. In this
paper, we propose to mitigate this issue by learning a CNN with a learn-
able sparse transform (LST), which converts the input features into a
more compact and sparser domain so that the spatial and channel-wise
redundancy can be more effectively reduced. The proposed LST can be
efficiently implemented with existing CNN modules, such as point-wise
and depth-wise separable convolutions, and it is portable to existing CNN
architectures for seamless training and inference. We further present a hy-
brid soft thresholding and ReLU (ST-ReLU) activation scheme, making
the trained network, namely LST-Net, more robust to image corruptions
at the inference stage. Extensive experiments on CIFAR-10/100, Ima-
geNet, ImageNet-C and Places365-Standard datasets validated that the
proposed LST-Net can obtain even higher accuracy than its counterpart
networks with fewer parameters and less overhead.

Keywords: CNN · network architecture · learnable sparse transform

1 Introduction

The past decade has witnessed a great success of deep convolutional neural ne-
towrk (CNN) in various computer vision problems, such as visual object recog-
nition [34,14], object detection [44,43,35], face recognition [25,30], scene under-
standing [56,64], etc. The 2D convolutional (Conv2d) layer [34] is one of the
key elements in a CNN to extract powerful features from the input image. De-
spite the great success of CNN, the conventional Conv2d is limited in effectively

? The first two authors contribute equally in this work.
?? Corresponding author. This work is supported by HK RGC General Research Fund

(PolyU 152216/18E).

mailto:cslli@comp.polyu.edu.hk,csshuaili@comp.polyu.edu.hk,cslzhang@comp.polyu.edu.hk
mailto:kwang96@stu.xidian.edu.cn
mailto:xcfeng@mail.xidian.edu.cn

2 L. Li et al.

reducing the spatial and channel-wise redundancy of features. When image fea-
tures are propagated through Conv2d, it usually requires a large number of
kernels to model the data and hence introduces exaggerated parameters and
overhead. Meanwhile, Conv2d simply sums up all convolutional responses along
the channel dimension regarding to the same kernel and takes little advantage
of inter-channel cues [24,9], which is less effective.

A lot of efforts have been devoted to improving the performance of Conv2d.
Recent works can be roughly categorized into two categories. The first category
of works aim to enhance what a Conv2d layer sees in the spatial domain. For
representative works in this category, dilated convolution [58] effectively expands
its receptive field by applying predefined gaps, while deformable convolutional
networks [8,65] improve the performance of Conv2d by learning internal pa-
rameters to model geometric transformation or variations so as to adaptively
focus on some more important areas. Though these methods make better use
of spatial information, they fail to take advantage of the channel-wise cues.
The second category of works strengthen the performance of Conv2d by com-
bining both spatial and channel-wise attentions. Representative works in this
category can be found in [24,54,16,4]. For example, squeeze-and-excitation net-
works (SENet) [24] re-weights the features along the channel dimension using an
efficient squeeze-and-excitation block. Usually, these works rely on an extra net-
work path to adjust spatial and channel-wise attentions after the conventional
Conv2d is computed. The redundancy of conventional Conv2d remains but it
requires additional network parameters and overhead. It is interesting to inves-
tigate whether we can develop a new convolutional module, which can better
describe the local features, reduce the spatial and channel-wise feature redun-
dancies, and reduce the parameters and overhead while keeping the accuracy
unchanged or even improved.

We propose to mitigate these issues by learning a CNN with a learnable sparse
transform (LST). We are motivated by the classical harmonic analysis works such
as discrete cosine transform (DCT) [52] and discrete wavelet transform (DWT)
[21,45,5], which can convert the given image into a more compact and sparse
domain to reduce the spatial and channel redundancy of features. In DCT and
DWT, the sparser transforms are manually pre-designed, while in our proposed
LST, the sparse transform is learned from training data together with the process
of CNN training. The proposed LST learning can be efficiently implemented with
existing CNN modules, such as point-wise convolutions [36] (PWConvs) and
depth-wise separable convolutions [23] (DWConvs). This makes LST compatible
with existing CNN architectures for seamless training and inference without
additional operations.

The proposed LST promotes sparser features. In light of the sparsity priors
[50,2,3], we further present a hybrid soft thresholding [13] and ReLU [40] (ST-
ReLU) activation scheme. Compared with the standard ReLU, the ST-ReLU
activation can suppress the noise and trivial features in the learning process,
making the trained network more robust to image corruptions, such as noise,
blur, digital compression, etc. Overall, the proposed LST module can be applied

LST-Net: Learning a CNN with a Learnable Sparse Transform 3

to existing state-of-the-art network architectures such as ResNet and VGGNet.
The obtained new network, namely LST-Net, achieves more robust and accurate
performance with fewer parameters and less overhead. Our major contributions
are summarized as follows.

– A novel learnable sparse transform based Conv2d module is developed, which
can be efficiently implemented and seamlessly integrated into existing CNN
learning process, producing sparser features and improving the effectiveness
of learned CNN models.

– A new activation function is presented by properly combining soft-thresholding
and ReLU operations, which endows the proposed LST-Net better robust-
ness to image trivial features and corruptions.

2 Related Work

2.1 Network bottleneck

To save parameters and overhead of Conv2d layers, group convolution [34] (GConv)
and PWConv [36] are popularly employed in the design of bottlenecks. PWConv
employs a 1× 1 window, performing a linear combination of the input from all
channels. It is often used to align a set of feature maps with different number of
channels [49]. GConv assumes that the input features can be decomposed into
several groups along the channel dimension, where features from different groups
are independent. A successful application of GConv is ResNeXt [57]. DWConv
[23] is a special case of GConv when there is only one input channel per group. It
is widely used to build lightweight models for mobile devices, such as MobileNet
[23,47], ShuffleNet [37,62], etc.

Xie et al. [57] improved ResNet bottleneck [19] by substituting the conven-
tional 3 × 3 Conv2d in the middle with a GConv of slightly more channels.
One problem of this method is how to set the group number. A larger number
of groups can easily cause loss of inter-channel cues while a smaller number of
groups can hardly reduce redundancy of Conv2d. Recently, Res2Net [17] was
developed by fusing the group with the intermediate results obtained from the
latest group in a recursive manner. Though Res2Net demonstrates higher accu-
racy, it actually sacrifices parallel execution on devices such as GPUs. In this
paper, we naturally incorporate DWConvs and PWConvs to facilitate transforms
in spatial and channel-wise fields.

2.2 Learning space

The conventional Conv2d layer is less effective in reducing the spatial and
channel-wise feature redundancies because each Conv2d kernel interacts with
input features locating in a local grid of limited size and cannot take features
outside the grid into consideration. To mitigate this issue, dilated convolution
[58] applies predefined gaps to enlarge spatial receptive field of Conv2d. De-
formable convolutional networks [8,65] learn to adaptively focus on some more

4 L. Li et al.

important areas by modelling geometric transformation or variations with in-
ternal parameters; however, they fail to further consider the channel-wise cues
of features and require sophisticated implementation skills. SENet [24] and its
variants [54,16,4] focus on designing lightweight network paths to fuse channel-
wise and spatial features to improve the attention of the conventional Conv2d.
Though these methods is effective to boost accuracy, they remain inefficient as
they use more parameters and require extra overhead.

To improve the performance of Conv2d layer, it’s more straightforward to
perform convolution in a more compact and sparser domain. The classical DCT
[52] and DWT [21,45,5] transform the input image into a sparse space for manip-
ulation and they have a wide range of successful applications [52,15,61,1,5,26].
The sparse coding [41] techniques encode the image patches as a sparse linear
combination of learned atoms. However, the transformation filters used in DCT
and DWT are manually designed and they are not effective enough to represent
image structures, while sparse coding is computationally inefficient and is hard
to be extended for deep feature extraction. In this paper, we propose to learn a
sparse transformation together with the deep CNN learning so that the network
can be more efficiently and effectively learned in a sparser space.

2.3 Activation function

Non-linearity introduced by the activation function is among the most critical
factors to the success of a CNN model in various computer vision tasks. ReLU
[40] is a pioneer and the most popular non-linear activation function in deep
CNN. It is a simple yet highly effective segmented function, forcing the input
negative valued features to zeros and keeping only the non-negative features.
To make use the information of negative features, parametric ReLU [18], leaky
ReLU [51], ELU [7] and SELU [31] are proposed to allow adaptive negative ac-
tivation with learnable parameters. However, negative activation functions need
to be carefully designed and they only exhibit better performance in specific
applications.

One problem of ReLU and its variants is that they are not very robust to noise
or other corruptions in the input image. It is well-known that by soft-thresholding
the image features in some sparse domain, such as DWT domain [21,45,5] and
sparse coding domain [41], the latent image features can be well recovered. In our
proposed LST, we adaptively learn a sparse transform together with the CNN
learning, which can make the CNN features sparser. This motivates us to develop
a new activation scheme, i.e., hybrid soft-thresholding and ReLU (ST-ReLU), to
better exploit the merit of sparser features. The ST-ReLU further enhances the
robustness of learned CNN models to various types of corruptions.

3 Proposed Method

3.1 Learnable sparse transform (LST)

Denote by I ∈ RHin×Win×Cin the input feature and O ∈ RHout×Wout×Cout the
output feature of a Conv2D layer, where Hin/Hout, Win/Wout, Cin/Cout denote

LST-Net: Learning a CNN with a Learnable Sparse Transform 5

the height, the width, and the channel number of the input/output feature,
respectively. The sliding window Ω of the Conv2D can be parameterized by the
kernel size sH × sW (for simplicity of expression, we omit the subscripts H and
W in the remaining of this paper), number of kernels Cout, stride, as well as
padding. We denote the kth kernel by K(k).

The Conv2d output feature is redundant in both spatial and channel dimen-
sions. When the sliding window Ω is centered at spatial location (i,j) of I, the
output Oi,j,k by convolving I with kernel K(k) is computed as

Oi,j,k =

s∑
x=1

s∑
y=1

Cin∑
z=1

Ω(I; i, j)x,y,z · K(k)
x,y, (1)

where Ω(I; i, j)x,y,z is the pixel at (x, y, z) of the tensor extracted from I by Ω,

and K(k)
x,y means the pixel at (x, y) of K(k).

We have two observations from Eq. 1. First, all feature pixels in the local
neighborhood at spatial location (i,j) are involved in the computation. While this
is helpful to extract the high frequency features, it is redundant for extracting
the low frequency features, which usually occupy most of the pixels in a feature
map. Second, the subscript z does not follow K but only comes up with Ω.
That is to say, all pixels in the same channel are equally weighted to produce
Oi,j,k. It has been found that the input features have strong similarities along
the channel dimension [53,20]. Therefore, there exists much redundant channel-
wise computations. All these motivate us to develop a learnable sparse transform
(LST), with which the redundancy of conventional Conv2D can be reduced and
hence a more efficient CNN can be learned.

Overview of LST. Our LST consists of three transforms: a spatial trans-
form Ts, a channel-wise transform Tc, and a resize transform Tr. Ts and Tc strive
to reduce the spatial and channel-wise redundancies by transforming the corre-
sponding field into a more compact domain, while Tr aims resize the input to
obtain the desired shape of output. Tr can be placed either before or after Ts
and Tc. The LST, denoted by TLST , can be implemented as

TLST ◦ I = Tr ◦ Ts ◦ Tc ◦ I, (2)

or in the form of
TLST ◦ I = Ts ◦ Tc ◦ Tr ◦ I. (3)

The spatial transform Ts. We propose to reduce the spatial redundancies
of local features by using a learnable spatial transform Ts with associated weights
Ws ∈ Ra2×1×s×s (dimensions are organized in PyTorch [42] style). Inspired by
the success of classical 2D-DCT [39], which decomposes the image local region
into different frequency bands by using sequential column and row transforms, we
can implement Ts by applying column and row transforms, denoted by Tcolumn

and Trow, respectively. Mathematically, the corresponding weights Ws can be
expressed as:

Ws =Wcolumn ⊗Wrow, (4)

6 L. Li et al.

(a) 2D-DCT

�

�
�

�
�

�

� � �
�

� ��
�

�
�

�
�

(b) A tiled spatial transform

�
�

�
�

�
�

�
�
� ��

��

(c) Ts

��_��

��_���

��

��

��

��

(d) Tc

��_��

��_���
��

��

��

��

(e) Tr

Fig. 1: Illustration of different transforms.

where ⊗ means the Kronecker product with necessary dimension insertion and
removal,Wcolumn ∈ Ra×1×s×1 andWrow ∈ Ra×1×1×s are the weights of Tcolumn

and Trow, respectively, and a is a hyper parameter specifying the number of
coefficients to keep.

As illustrated in Fig. 1a, a 2D-DCT transforms a local region into different
frequencies. The low frequency coefficients concentrate at the top left corner
and they dominate the energy (high amplitude), while many high frequency
coefficients are close to zero (low amplitude) and can be neglected. Based on
this fact, to save unnecessary parameters and computation, we set 1 ≤ a < s so
that the low amplitude trivial features can be excluded from calculation. Since
for almost all existing CNN architectures, it is true that the kernel size s ≥ 3,
we set a = d s2e by default in this paper.

Fig. 1c depicts our implementation of Ts. One can see that the output of Ts
is arranged along the channel dimension (this will ease much the implementa-
tion of our resize transform Tr). For each s × s local region, by convolving it
with Ws, we obtain an a2-dim output vector. Thus, for each input feature map,
it is transformed into a number of a2 feature maps by aggregating the a2-dim
output vectors. That is, Ts maps RHs in×Ws in×Cs to RHs out×Ws out×(a2×Cs),
where Cs is the channel number of the input argument of Ts, and Hs in/Hs out

and Ws in/Ws out are the input/output height and width, respectively. In con-
trast, the conventional spatial transform organizes the output in the height
and width fields, instead of the channel domain. We term the conventional
spatial transform as tiled spatial transform, which maps RHs in×Ws in×Cs to
R(a×Hs in)×(a×Ws in)×Cs , as illustrated in Fig. 1b. Comparing our Ts with tiled
spatial transform, we can obtain three findings.

First, Ts is simpler to implement than tiled spatial transform. In practice,
we can adopt a DWConv operation to implement it. Second, Ts only affects
the channel dimension, which allows us to easily use the existing efficient im-
plementations for the resize transform Tr. (Please see the following section of
resize transform for details.) In contrast, a tiled spatial transform increases both

LST-Net: Learning a CNN with a Learnable Sparse Transform 7

the height and width of feature maps so that Tr must be changed to deal with
the enlarged spatial dimensions. Third, our Ts always holds memory continu-
ity, making it faster in both training and inference. In contrast, a tiled spatial
transform needs channel shuffle, which requires extra memory alignment.

Owe to the physical meaning of Ts (i.e., to reduce feature spatial redun-
dancy), 2D-DCT can be effectively used to initialize Ws with Eq. 4. This makes
the training of LST converge efficiently to a good local minimum. In Section 4.2,
we will show that initialization of Ws by 2D-DCT exhibits much better perfor-
mance than random initialization.

Channel-wise transform Tc. Tc is used to reduce the redundancy along
channel dimension. It is a RHc×Wc×Cc in → RHc×Wc×Cc out mapping, where
Cc in/Cc out is the channel number of the input/output of Tc, and Hc and Wc

denote the height and width of the input, respectively. Tc encourages features
to be more separable along the channel and simplifies the resize transform Tr in
reweighting data.

A PWConv operation can be naturally leveraged for Tc with its associated
weightsWc ∈ RCc out×Cc in×1×1. Similar to Ts, 2D-DCT can be used to initialize
Tc for compact features. We fill Wc with the 2D-DCT basis functions shaped
as Cc in × Cc out and expand its dimensions where necessary. Fig. 1d illustrates
the implementation of Tc. One can see that the output of Tc is organized in
order by the expected feature amplitude like 2D-DCT. It should be noted that
Tc is similar to the resize transform Tr since both of them adopt PWConv for
implementation. However, they are initialized in different ways.

The resize transform Tr. A conventional Conv2d equally treats all the
samples in the window without considering their importance. To fill this gap, the
resize transform Tr is designed as a RHr×Wr×Cr in → RHr×Wr×Cr out mapping,
where Hr/Wr is the height/width of the input, and Cr in and Cr out are the
channel number of the input and output, respectively. Tr is learned to adaptively
reweight the input features with its weights Wr ∈ RCr out×Cr in×1×1. Fig. 1e
illustrates how Tr works. With the help of our design of Ts and Tc, Tr can be
implemented by directly leveraging a normal PWConv operation in our paper.

Discussions. To better understand the role of LST, in Fig. 2 we visualize
the learned features by the standard ResNet50 (with conventional Conv2d) and
our LST-Net with a ResNet50 architecture on ImageNet [11]. (The details of the
model can be found in our supplementary material.) Once trained, a validation
image is randomly selected and its center crop is fed into the two models. Fig. 2
visualizes 16 channels of the features (other channels are similar) from the first
bottleneck (the features after the Ts transform are visualized for our LST-Net).
We clip the amplitude of the feature in the range of [0, 0.1] and stretch the fea-
tures in each channel as a vector. Each column in Fig. 2 represents the vectorized
features of a channel.

One can see that the output features of conventional Conv2d in ResNet50
are mixed up along the channel dimension. In contrast, the features output by
LST-Net are sparser (with lower amplitude) and well-structured along channel
dimension. Specifically, every a2 = 22 = 4 channels form a unit where the four

8 L. Li et al.

1 5 9 13

Channel-wise

1

1568

3136

S
p

a
ti
a

l

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(a)

1 5 9 13

Channel-wise

1

1568

3136

S
p

a
ti
a

l

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(b)

Fig. 2: Visualization of output features obtained by (a) a conventional Conv2d
layer in ResNet50 and (b) our LST-Net after Ts. One can see that the features
output by LST-Net are sparser and well-structured along the channel dimension.

channel features are de-correlated into different frequency bands (please also refer
to Fig. 1c). Such kind of sparser and structured features are highly suited to the
successive channel-wise operations such as PWConv (used by resize transform
Tr) or a sequential of global average pooling (GAP) [36] plus a dense layer.

3.2 Hybrid ReLU-ST activation scheme

By using the proposed LST introduced in Section 3.1, we are able to generate
more compact and sparser features than the conventional Conv2D layers in a
CNN, as illustrated in Fig. 2. It has been shown in the many works of WT
[13,12] and sparse coding [41] that a soft-thresholding (ST) operation in the
sparse feature domain can increase the robustness to noise and trivial features.
The ST operation for the input feature x can be written as

y =

{
sgn(x)(|x| − τ), |x| ≥ τ,
0, otherwise.

(5)

where τ is a hyper parameter for the threshold. To exploit the merit of sparser
features brought by LST, we propose a new activation scheme for our LST-Net
by jointly using ST and ReLU, namely ST-ReLU.

Specifically, ST is adopted at two places in LST-Net; otherwise, ReLU is
used. First, ST is inserted in the middle of Tc and Ts. It not only reduces the
noises along the channel dimension but also further forces sparsity and suppresses
trivial features in the spatial domain. Second, ST is used as the last activation
function for an LST to allow adaptive negative activation. Unlike existing meth-
ods such as parametric ReLU [18], leaky ReLU [51], ELU [7] and SELU [31], ST
is a natural selection of activation in the sparse feature domain, and it accords
with the findings on spiking states of neurons in neuroscience [27,28,60,46,10].

LST-Net: Learning a CNN with a Learnable Sparse Transform 9

���� ����� � ��� � �����PWConv,

BN, ST

DWConv,

BN, ReLU

��� ���� � ��� ��� ���� � ���� PWConv,

BN

EWPlus,

ST

���� ����� � ���� ���� ����� � ����
I O

�
�

�
�

�
�

PWConv,

BN

���� ����� � ����

�

(a)

PWConv,

BN, ReLU

��� ���� � ���
��� ���� �

����

�� DWConv,

BN

EWPlus,

ST

���� ����� � ���� ���� ����� � ����
I O

�
� �

�
�
�

DWConv,

BN

���� ����� � ����

��� ���� �
����

��

�

PWConv,

BN, ST

(b)

Fig. 3: Illustration of the two LST bottlenecks with downsample operators. (a):
LST-I; (b): LST-II. EWPlus means element-wise plus. Red font indicates initial-
ization with 2D-DCT while blue font suggests random initialization.

3.3 The bottleneck

We construct a novel bottleneck, namely LST bottleneck, to wrap LST and the
hybrid ST-ReLU activation scheme. A shortcut path is introduced in our LST
bottleneck to avoid gradient exploding or vanishing when a model goes deeper.
As a result, an LST bottleneck can be written as follows when the shape of input
feature I is the same as that of output O:

O = TLST ◦ I + I (6)

If the input shape is different from the output shape, the bottleneck becomes

O = TLST ◦ I +D ◦ I, (7)

where D is a downsample operator to adjust the shape of features. D is adopted
when the stride of Ω is greater than 1 or Cin 6= Cout.

According to the arrangement of Ts, Tc and Tr defined in Eq. 2 and Eq. 3,
we design two bottleneck structures, namely LST-I and LST-II, as illustrated
in Fig. 3. One difference between LST-I and LST-II lies in how the bottleneck
expands. LST-I is similar to the basic bottleneck in [19]. It first expands the
number of channels by a2 times with Ts; then, it reduces the number of channels
back to Cout with Tr. The expansion factor of LST-I is 1. In contrast, LST-
II adopts a similar ideology to the ResNet bottleneck [19]. It starts to reduce
the channel number to Cout

a2 with Tr and then increases it to Cout with Ts. Like
ResNet bottleneck [19], we refer the planes (core number of channels) of an LST-
II bottleneck to Cch out, i.e.,

Cout

a2 . Meanwhile, the expansion factor of LST-II is
determined by Ts, which equals to a2.

Another difference between the two bottlenecks lies in the implementation
of D. LST-I adopts the widely used structure, i.e., a PWConv followed by a

10 L. Li et al.

BN. In contrast, we propose to leverage a 1 × 1 DWConv followed by BN for
the downsample operator D of LST-II by assuming that Cout is divisible by Cin.
Such an assumption usually holds in many modern architectures, e.g., VGG [48],
ResNet [19], ResNeXt [57], etc. It shifts the original definition of “identity” in
such cases to a group-wise mapping by expanding one channel to Cout

Cin
channels.

Each input feature map only interacts with its Cout

Cin
associated output feature

maps regarding to the DWConv, making it very efficient to handle hundreds or
even thousands of feature maps. With LST-I or LST-II, one can easily build an
LST-Net by using existing network architectures with fewer parameters and less
overhead. Code is available at: https://github.com/lld533/LST-Net.

4 Experiments

4.1 Experiment setup and datasets

To evaluate our method, we build up LST-Nets by replacing conventional Conv2d
operations with our proposed LST bottlenecks w.r.t. some widely used CNN
architectures. The datasets used include CIFAR-10/100 [33] and ImageNet [11].
Besides, ImageNet-C [22] dataset is used to demonstrate the robustness of LST-
Net to common image corruptions. Ablation studies are performed to discuss the
initialization, the selection of parameter τ in ST-ReLU, the difference between
LST-I and LST-II and comparison of ReLU-ST to other activations. Results on
Places365-Standard [64] can be found in the supplementary material.

4.2 Ablation study

Initialization. As discussed in Section 3, 2D-DCT is used to initialize our spatial
and channel-wise transforms Ws and Wc to reduce the feature redundancy. It is
wondering whether random initialization (R.I.) can achieve similar results. We
build LST-Nets of 20∼164 layers in depth using the vanilla ResNet architecture
[19] to test this (LST-II bottleneck is used). We use the uniform distribution
within [−

√
u,
√
u] to randomly initialize Ws and Wc, where u = 1

Cin×a2×s2 for

Ws and u = 1
Cin×a×s for Wc.

Table 1a summarizes the error rates on CIFAR-100 (similar conclusions can
be obtained on CIFAR-10). One can see that 2D-DCT initialization obtains much
better performance than R.I., which lags behind the former by 2.7% ∼ 7.0%.
Besides, an LST-Net with R.I. is even worse than the baseline vanilla ResNet.
This is because LST-Net will drop a certain amount of trivial frequencies after
2D-DCT initialization, while R.I. is difficult to transform the channel and spatial
fields of the input feature into different frequencies with PWConv and DWConv
operations, resulting in unnecessary loss of some crucial information.

The selection of parameter τ . We study the effect of parameter τ (refer to
Eq. 5) on LST-Net. We built a 20-layer LST-Net in favor of ResNet architecture,
and tested on CIFAR100. We search for the optimal value of τ in the range of
{0, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6}. The error rates are {28.92%, 28.32%,

https://github.com/lld533/LST-Net

LST-Net: Learning a CNN with a Learnable Sparse Transform 11

Table 1: Comparison (error rates, %) on CIFAR-100.

(a) Different initialization methods.

Method / Depth 20 56 110 164

ResNet [19] (R.I.) 30.88 27.62 26.23 26.07

LST-Net (R.I.) 31.12 29.92 28.95 28.94
LST-Net (2D-DCT) 28.21 24.09 22.66 21.94

(b) Different bottlenecks.

Method / Depth 20 56 110 164

ResNet [19] 30.88 27.62 26.23 26.07

LST-I 27.64 25.08 23.76 23.15
LST-II 28.21 24.09 22.66 21.94

(c) Different activation methods.

Depth ReLU-ST LReLU [38] SELU [31] ReLU [40] PReLU [18] ELU [7]

20 28.21 28.37 28.69 28.92 29.35 31.60
164 21.94 22.44 22.84 22.86 23.91 29.94

28.28%, 28.86%, 28.21%, 28.43%, 28.70%}, where the best result is 28.21% when
τ = 10−4. Thus, we set τ = 10−4 by default in all experiments of this paper.
Note that when τ = 0, ST-ReLU is reduced to standard ReLU, but its error
rate is larger than other values of τ . This validates that our hybrid ReLU-ST
activation scheme works better than ReLU for LST-Net.

LST-I vs LST-II. We discuss the pros and cons of our proposed LST-I and
LST-II bottlenecks in building up a LST-Net. For LST-I, one is free to replace
a conventional Conv2d with it in many existing architectures, such as ResNet
[19], AlexNet [32], VGG [48], etc. For example, a basic ResNet bottleneck can
be replaced by a pair of LST-I bottlenecks as it has two Conv2d operations. For
LST-II, due to the expansion factor of LST-II, parameters and overhead of the
associated PWConv operation in the shortcut path are increased by a2 times
compared to LST-I. Thus, LST-II is not suitable to architectures with larger
spatial size at earlier layers, such as AlexNet and VGG. LST-II will also increase
the output channel number of the last bottleneck, but this issue can be easily
solved with an extra PWConv operation, which is cheap compared to the entire
CNN model in terms of number of parameters and computational cost. When
building a deeper CNN model, such as ResNet-50 or ResNet-101, it is more
suitable to use LST-II than LST-I. In Table 1b, we construct LST-Nets with
LST-I and LST-II bottlenecks w.r.t. ResNet architecture and compare them on
CIFAR-100. The vanilla ResNet is included as the baseline. Both LST-I and
LST-II outperform the baseline by a large margin, while LST-II performs better
than its LST-I counterpart. In the remaining experiments of this paper, if not
specified, we adopt LST-II bottleneck to build ResNet models by default.

Comparison of ST-ReLU to other activations. We use a 20-layer and
a 164-layer LST-Net to compare our ReLU-ST with ReLU [40], leaky ReLU
(LReLU) [38], parametric ReLU (PReLU) [18], ELU [7] and SELU [31] on
CIFAR-100. For comparison, we remove ST operations in LST bottleneck and re-
place ReLU by other activations. Table 1c presents the Top-1 error rates achieved
by different activations. One can see that ReLU-ST outperforms other activa-
tions for both 20- and 164-layer LST-Nets. The gain is higher for deeper models.

12 L. Li et al.

Table 2: Results (error rates, %) by different networks on CIFAR-10/100.

(a) ResNet family.

Depth Model Param/FLOPs C10/C100

20

ResNet [19] 0.27M/40.8M 7.7/30.9
PreactResNet [19] 0.27M/40.8M 7.7/30.8
ShiftResNet [55] 0.16M/27M 9.0/31.4

FE-Net [6] 0.16M/27M 8.3/30.8
SENet [24] 0.28M/40.8M 7.6/30.5
CBAM [54] 0.28M/40.8M 7.3/30.3

LST-Net 0.20M/34M 6.7/28.2

56

ResNet [19] 0.86M/126M 6.6/27.6
PreactResNet [19] 0.86M/126M 6.5/27.6
ShiftResNet [55] 0.55M/84M 7.3/27.9

FE-Net [6] 0.55M/84M 8.3/30.8
SENet [24] 0.87M/126M 6.4/27.5
CBAM [54] 0.87M/126M 6.0/27.1

LST-Net 0.59M/94M 5.6/24.1

110

ResNet [19] 1.73M/253M 6.6/25.2
PreactResNet [19] 1.73M/253M 6.2/24.1
ShiftResNet [55] 1.18M/187M 6.8/27.4

FE-Net [6] N.A. N.A.
SENet [24] 1.74M/253M 5.2/23.9
CBAM [54] 1.74M/253M 5.1/23.5

LST-Net 1.17M/183M 5.0/22.7

(b) WRN.

Depth Multiplier Model Param/FLOPs C10/C100

16
8

WRN [59] 10.96M/2.00G 4.80/22.03
LST-Net 6.03M/0.98G 4.70/20.88

10
WRN [59] 17.12M/3.12G 4.49/21.52
LST-Net 9.36M/1.52G 4.46/20.21

22
8

WRN [59] 17.16M/2.91G 4.56/21.21
LST-Net 8.87M/1.40G 4.40/19.33

10
WRN [59] 26.80M/4.54G 4.44/20.75
LST-Net 16.99M/2.79G 4.31/18.57

28
10

WRN [59] 36.48M/5.95G 4.17/20.50
LST-Net 22.47M/3.60G 4.03/18.23

12
WRN [59] 43.42M/8.56G 4.33/20.41
LST-Net 26.06M/4.03G 3.94/17.93

40
4

WRN [59] 8.91M/1.41G 4.97/22.89
LST-Net 4.98M/0.72G 4.31/19.14

8
WRN [59] 35.75M/5.63G 4.66/19.38
LST-Net 19.88M/3.16G 3.76/18.56

4.3 Evaluation on CIFAR-10 and CIFAR-100

We build our LST-Net models w.r.t. the popular architectures, including ResNet
[19] and Wide Residual Networks (WRN) [59], and compare LST-Net with state-
of-the-art CNNs in those families, e.g. Pre-activation ResNet [19], SENet [24],
CBAM [54], and two other models, i.e., ShiftResNet [55] and FE-Net [6].

Table 2 presents the results on CIFAR-10/100. We can have the following
findings. First, LST-Net achieves the lowest error rates under different network
depths with almost the least number of parameters and FLOPs (very close to
ShiftResNet and FE-Net). This validates its effectiveness and efficiency. LST-
Net outperforms ResNet and PreactResNet while reducing over 40% parameters
and 35% overhead. Compared to SENet and CBAM, LST-Net does not need
extra paths while it achieves even better results. For instance, a 110-layer LST-
Net improves SENet/CBAM of the same depth by 0.2%/0.1% and 1.2%/0.8%
on CIFAR-10 and CIFAR-100, respectively. Besides, LST-Net outperforms both
ShiftResNet and FENet by a large margin with comparable parameters and
overhead. For example, a 20-layer LST-Net reduces the error rates of ShiftResNet
and FE-Net by 2.3/3.2% and 1.6/2.6% on CIFAR-10/100, respectively.

Second, when we switch to wider CNN models, our bottleneck can save more
parameters and computational cost because the computation of PWConv domi-
nates an entire LST bottleneck when it is wide enough (the cost of DWConv can
be neglected). We can obtain consistent performance boost of our LST-Net with
the increase of width and/or depth. In contrast, the corresponding WRN archi-
tecture is less effective to improve its results with more channels and/or layers.
For example, for a 28-layer WRN, the error rates will rise by 4.17% ∼ 4.33% on
CIFAR-10 when the width multiplier is increased from 10 to 12.

LST-Net: Learning a CNN with a Learnable Sparse Transform 13

Table 3: Results (error rates, %) by different networks on ImageNet.

(a) ResNet family.

Depth Model Param/FLOPs Top-1/Top-5

18

ResNet [19] 11.69M/1.81G 30.24/10.92
SENet [24] 11.78M/1.81G 29.41/10.22
CBAM [54] 11.78M/1.82G 29.31/10.17

LST-Net 8.03M/1.48G 26.55/8.59

34

ResNet [19] 21.79M/3.66G 26.70/8.58
SENet [24] 21.96M/3.66G 26.13/8.35
CBAM [54] 21.96M/3.67G 26.01/8.40

LST-Net 13.82M/2.56G 23.92/7.24

50

ResNet [19] 25.56M/4.09G 23.85/7.13
SENet [24] 28.09M/4.09G 23.14/6.70
CBAM [54] 28.09M/4.10G 22.98/6.68

LST-Net 23.33M/4.05G 22.78/6.66

101

ResNet [19] 44.55M/7.80G 22.63/6.44
SENet [24] 49.29M/7.81G 22.35/6.19
CBAM [54] 49.29M/7.81G 21.65/5.95

LST-Net 42.36M/7.75G 21.63/5.94

(b) WRN.

Depth Mulp. Model Param/FLOPs Top-1/Top-5

18

1
WRN [59] 11.69M/1.81G 30.24/10.92
LST-Net 8.03M/1.48G 26.55/8.59

1.5
WRN [59] 25.88M/3.87G 27.06/9.00
LST-Net 14.40M/2.49G 24.44/7.51

2
WRN [59] 45.62M/6.70G 25.58/8.06
LST-Net 25.12M/4.31G 23.49/6.93

3
WRN [59] 101.78M/14.72G 24.06/7.33
LST-Net 55.44M/9.43G 22.33/6.52

34

1
WRN [59] 21.79M/3.66G 26.70/8.58
LST-Net 13.82M/2.56G 23.92/7.24

1.5
WRN [59] 48.61M/8.03G 24.50/7.58
LST-Net 24.78M/4.41G 22.29/6.30

2
WRN [59] 86.04M/14.09G 23.39/7.00
LST-Net 43.44M/7.69G 21.44/6.11

50
1

WRN [59] 25.56M/4.09G 23.85/7.13
LST-Net 23.33M/4.05G 22.78/6.66

2
WRN [59] 68.88M/11.40G 21.90/6.03
LST-Net 66.10M/11.09G 20.89/5.76

(c) Other CNNs.

Model Param/FLOPs Top-1/Top-5

AlexNet [32] 61.10M/0.71G 43.45/20.91
AlexNet (BN) 61.10M/0.71G 41.93/20.02

AlexNet (GAP) 2.73M/0.66G 51.13/26.33
LST-Net (FC) 60.30M/0.62G 39.32/17.40

LST-Net (GAP) 2.25M/0.60G 39.91/17.86

VGG [48] 132.86M/7.61G 30.98/11.37
VGG (BN) 132.86M/7.61G 29.62/10.19

VGG (GAP) 9.73M/7.49G 33.40/12.20
LST-Net (FC) 128.63M/5.89G 28.56/9.79

LST-Net (GAP) 6.63M/5.04G 29.23/10.26

ShiftNet-A [55] 4.1M/1.4G 29.9/10.3
ShiftNet-B [55] 1.1M/N.A. 38.8/16.4
ShiftNet-C [55] 0.78M/N.A. 41.2/18.0
LST-Net (A) 4.3M/1.2G 29.3/10.0
LST-Net (B) 1.2M/389.5M 36.9/14.8
LST-Net (C) 0.84M/342.5M 38.9/16.3

MobileNet V2 [47] 3.4M/300M 28.1%/N.A.
LST-Net (M-V2) 3.4M/300M 27.7%/9.4%

4.4 Evaluation on ImageNet

We then evaluate LST-Net on ImageNet [11] for large-scale image classification.
We construct LST-Nets regarding to the widely used network architectures, in-
cluding ResNet [19], WRN [59], AlexNet [32] and VGG (with 11 layers) [48]. We
also build LST-Nets w.r.t. ShiftNet [55] and MobileNet V2 [47].

Specifically, for ResNet or WRN architecture, we construct LST-Net using
LST-II bottleneck, and for AlexNet/VGG, we build LST-Net (FC) by replacing
Conv2d layers with LST-I bottlenecks. We also change the original classifier layer
in AlexNet/VGG into GAP [36] plus a dense layer following [63], resulting in
LST-Net (GAP). Similarly, the standard AlexNet/VGG can be modified in the
same way, resulting in AlexNet (GAP)/VGG (GAP). Since BN [29] is used in our
bottleneck, we further insert a BN layer after each Conv2d of AlexNet/VGG,
termed as AlexNet/VGG (BN). For ShiftNet architecture, we build the LST-
Nets by adjusting the stride, kernel size, number of stages, etc., according to its
variants A, B, and C with different depth and width. For MobileNet V2, we build
LST-Net (M-V2) by replacing Inverted Residual bottlenecks with our modified
LST-I bottlenecks. Details can be found in our supplementary material.

Table 3 summarizes the results. One can see that LST-Net consistently sur-
passes ResNet, SENet and CBAM of the same depth with fewer parameters
and less overhead. An 18-layer LST-Net even achieves lower Top-1 error rates
than the standard ResNet-34 on ImageNet. Despite of different depth, increasing
width of LST-Net with WRN architecture steadily increases its accuracy. Mean-
while, LST-Net saves larger proportion of parameters and overhead compared to
WRN. LST-Net with AlexNet or VGG architecture is much more robust to dif-
ferent classifier structures than the standard AlexNet or VGG because LST-Net
learns structured features, which are well suited for channel-wise operations (see
our discussion in Section 3.1). Meanwhile, LST-Net (FC) can reduce Top-1/Top-
5 error rates of AlexNet (BN) and VGG (BN) by 2.61%/2.62% and 1.06%/0.40%,
respectively. LST-Net also shows better performance under the ShiftNet archi-
tecture. Compared with all the three variants, our LST-Net reduces the Top-1

14 L. Li et al.

Table 4: Comparison of robustness to common corruptions on ImageNet-C.
Network mCE

Noise Blur Weather Digital Extra
Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Saturate Spatter Gaus. Blur Speckle

ResNet-18 [19] 85.29 87 89 89 88 93 90 88 88 87 81 73 81 93 81 89 72 81 86 86
SENet-18 [24] 83.97 85 86 87 87 93 88 88 85 85 79 73 82 92 84 92 71 81 86 82
CBAM-18 [54] 84.97 86 88 87 88 93 89 90 85 86 80 74 82 92 81 89 71 81 87 85

LST-Net-18 (w/o ST) 80.34 81 82 85 85 91 83 85 82 83 75 68 79 90 74 85 66 75 84 78
LST-Net-18 (w/ ST) 79.89 80 81 83 84 91 83 85 82 82 75 68 78 90 73 85 66 74 83 76

ResNet-50 [19] 77.01 78 80 80 79 90 81 80 80 78 69 62 75 88 76 78 62 74 78 76
SENet-50 [24] 74.47 76 77 76 77 89 79 82 75 76 70 59 75 85 71 74 58 69 76 71
CBAM-50 [54] 72.56 69 71 71 80 86 77 78 75 76 69 61 74 85 63 70 58 68 78 66

LST-Net-50 (w/o ST) 70.85 71 72 71 77 85 77 75 73 72 66 58 70 82 61 72 56 65 76 67
LST-Net-50 (w/ ST) 70.54 71 72 71 76 84 77 75 73 72 65 58 70 81 61 72 56 65 75 67

error rate of its corresponding counterpart by 0.6% ∼2.3% with similar number
of parameters. LST-Net (M-V2) achieves a 72.3% Top-1 accuracy, outperforming
MobileNet V2 by 0.4% using the same number of parameters and computational
cost. This again validates the generality and superiority of our LST method.

4.5 Evaluation on ImageNet-C

We study the robustness of LST-Net to common corruptions in input by using
the ImageNet-C dataset [22]. The mean corruption error (mCE) defined in [22] is
used as our criteria. We construct LST-Net according to the ResNet architecture
and compare it with the vanilla ResNet [19], SENet [24] and CBAM [54]. To
examine the role of ST (please refer to Section 3.2) in improving the robustness
of LST-Net, we also test LST-Net without ST in activation.

Table 4 lists the mCE and corruption errors for each type of corruption.
One can see that LST-Net achieves lower mCE than its competitors of the same
depth. It significantly reduces the mCE of the vanilla ResNet by 3.69% (18-layer)
/ 6.47% (50-layer), and also improves SENet and CBAM by at least 2.76% (18-
layer) / 2.02% (50-layer). Though SENet and CBAM use extra paths which work
well on clean images, the pooling operations in these paths may produce biased
results in the existence of corruptions when the model is shallow. In contrast,
LST does not need such extra paths and its robustness comes from the compact
and sparser features. In addition, the ST operation in our ST-ReLU activation
function can strengthen the robustness of LST-Net to most types of corruptions.
With ST, the mCE of LST-Net-18/50 is reduced by 0.45%/0.31%.

5 Conclusion

In this paper, we proposed to train deep CNNs with a learnable sparse transform
(LST), which learns to convert the input features into a more compact and
sparser domain together with the CNN training process. LST can more effectively
reduce the spatial and channel-wise feature redundancies than the conventional
Conv2d. It can be efficiently implemented with existing CNN modules, and is
portable to existing CNN architectures for seamless training and inference. We
further presented a hybrid ST-ReLU activation to enhance the robustness of the
learned CNN models to common types of corruptions in the input. Extensive
experiments validated that the proposed LST-Net achieves even higher accuracy
than its counterpart networks of the same family with lower cost.

LST-Net: Learning a CNN with a Learnable Sparse Transform 15

References

1. Cai, J.F., Dong, B., Osher, S., Shen, Z.: Image restoration: Total variation, wavelet
frames, and beyond. JAMS 25(4), 1033–1089 (2012)

2. Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Trans. Inf.
Theory 52(2), 489–509 (2006)

3. Candes, E.J., Wakin, M.B., Boyd, S.: Enhancing sparsity by reweighted `1 mini-
mization. J. Fourier Anal. Appl. 14, 877–905 (2008)

4. Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: GCNet: Non-local networks meet squeeze-
excitation networks and beyond. arXiv preprint arXiv:1904.11492 (2019)

5. Chang, T., Kuo, C.C.: Texture analysis and classification with tree-structured
wavelet transform. IEEE Trans. Image Process. 2(4), 429–441 (1993)

6. Chen, W., Xie, D., Zhang, Y., Pu, S.: All you need is a few shifts: Designing efficient
convolutional neural networks for image classification. In: Proc. CVPR (2019)

7. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learn-
ing by exponential linear units (elus). In: Proc. ICLR (2016)

8. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convo-
lutional networks. In: Proc. ICCV (2017)

9. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, X.P.: Second-order attention network
for single image super-resolution. In: Proc. CVPR (2019)

10. Denève, S., Alemi, A., Bourdoukan, R.: The brain as an efficient and robust adap-
tive learner. Neuron 94(5), 969–977 (2017)

11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: Proc. CVPR. IEEE (2009)

12. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3),
613–627 (1995)

13. Donoho, D.L., Johnstone, J.M.: Ideal spatial adaptation by wavelet shrinkage.
Biometrika 81(3), 425–455 (1994)

14. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zis-
serman, A.: The pascal visual object classes challenge: A retrospective. Int. J.
Comput. Vis. 111(1), 98–136 (Jan 2015)

15. Fracastoro, G., Fosson, S.M., Magli, E.: Steerable discrete cosine transform. IEEE
Trans. Image Process. 26(1), 303–314 (Jan 2017)

16. Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H.: Dual attention network
for scene segmentation. In: Proc. CVPR (2019)

17. Gao, S.H., Cheng, M.M., Zhao, K., Zhang, X.Y., Yang, M.H., Torr, P.: Res2Net:
A new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell.
(2020). https://doi.org/10.1109/TPAMI.2019.2938758

18. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: Proc. ICCV (2015)

19. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.
In: Proc. ECCV. Springer (2016)

20. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural
networks. In: Proc. ICCV (2017)

21. Heil, C., Walnut, D.F.: Continuous and discrete wavelet transforms. SIREV 31(4),
628–666 (1989)

22. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common
corruptions and perturbations. In: Proc. ICLR (2019)

https://doi.org/10.1109/TPAMI.2019.2938758

16 L. Li et al.

23. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. In: Proc. CVPR (2017)

24. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proc. CVPR (2018)
25. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild:

A database for studying face recognition in unconstrained environments. Tech.
Rep. 07-49, University of Massachusetts, Amherst (October 2007)

26. Huang, K., Aviyente, S.: Wavelet feature selection for image classification. IEEE
Trans. Image Process. 17(9), 1709–1720 (2008)

27. Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate
cortex. J. Physiol. 148(3), 574–591 (1959)

28. Huys, R., Jirsa, V.K., Darokhan, Z., Valentiniene, S., Roland, P.E.: Visually evoked
spiking evolves while spontaneous ongoing dynamics persist. Front. Syst. Neurosci.
9, 183 (2016)

29. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: Proc. ICML (2015)

30. Kemelmacher-Shlizerman, I., Seitz, S.M., Miller, D., Brossard, E.: The megaface
benchmark: 1 million faces for recognition at scale. In: Proc. CVPR (2016)

31. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural
networks. In: Proc. NeurIPS (2017)

32. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks.
arXiv preprint arXiv:1404.5997 (2014)

33. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Tech. rep., University of Toronto (2009)

34. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Proc. NeurIPS (2012)

35. Li, S., Yang, L., Huang, J., Hua, X.S., Zhang, L.: Dynamic anchor feature selection
for single-shot object detection. In: Proc. ICCV (2019)

36. Lin, M., Chen, Q., Yan, S.: Network in network. In: Proc. ICLR (2014)
37. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: Practical guidelines for

efficient cnn architecture design. In: Proc. ECCV (2018)
38. Maas, A., Hannun, A., Ng, A.: Rectifier nonlinearities improve neural network

acoustic models. In: Proc. ICML (2013)
39. Makhoul, J.: A fast cosine transform in one and two dimensions. IEEE Trans.

Acoust., Speech, Signal Process 28(1), 27–34 (1980)
40. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann ma-

chines. In: Proc. ICML (2010)
41. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by

learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)
42. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,

Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. In:
Proc. NeurIPS-W (2017)

43. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: Proc. CVPR (2016)

44. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object
detection with region proposal networks. In: Proc. NeurIPS (2015)

45. Rioul, O., Duhamel, P.: Fast algorithms for discrete and continuous wavelet trans-
forms. IEEE Trans. Inform. Theory 38(2), 569–586 (1992)

46. Roland, P.E.: Space-time dynamics of membrane currents evolve to shape excita-
tion, spiking, and inhibition in the cortex at small and large scales. Neuron 94(5),
934–942 (2017)

LST-Net: Learning a CNN with a Learnable Sparse Transform 17

47. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: In-
verted residuals and linear bottlenecks. In: Proc. CVPR (2018)

48. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: Proc. ICLR (2015)

49. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, Inception-ResNet
and the impact of residual connections on learning. In: AAAI (2017)

50. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996)

51. Wang, S.H., Phillips, P., Sui, Y., Liu, B., Yang, M., Cheng, H.: Classification of
alzheimer’s disease based on eight-layer convolutional neural network with leaky
rectified linear unit and max pooling. J. Med. Syst. 42(5), 85 (2018)

52. Watson, A.B.: Image compression using the discrete cosine transform. Mathematica
Journal 4(1), 81 (1994)

53. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep
neural networks. In: Proc. NeurIPS (2016)

54. Woo, S., Park, J., Lee, J.Y., So Kweon, I.: CBAM: Convolutional block attention
module. In: Proc. ECCV (2018)

55. Wu, B., Wan, A., Yue, X., Jin, P., Zhao, S., Golmant, N., Gholaminejad, A.,
Gonzalez, J., Keutzer, K.: Shift: A zero flop, zero parameter alternative to spatial
convolutions. In: Proc. CVPR (2018)

56. Xiao, J., Ehinger, K.A., Hays, J., Torralba, A., Oliva, A.: Sun database: Exploring
a large collection of scene categories. Int. J. Comput. Vis. 119(1), 3–22 (2016)

57. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: Proc. CVPR. IEEE (2017)

58. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In:
Proc. ICLR (2016)

59. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: Proc. BMVC (2016)
60. Zerlaut, Y., Destexhe, A.: Enhanced responsiveness and low-level awareness in

stochastic network states. Neuron 94(5), 1002–1009 (2017)
61. Zhang, L., Bao, P., Wu, X.: Multiscale lmmse-based image denoising with optimal

wavelet selection. IEEE Trans. Circuits Syst. Video Technol. 15(4), 469–481 (April
2005)

62. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices. In: Proc. CVPR (2018)

63. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features
for discriminative localization. In: Proc. CVPR (2016)

64. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: A 10 million
image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell.
40(6), 1452–1464 (2018)

65. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable ConvNets v2: More deformable, better
results. In: Proc. CVPR (2019)

	LST-Net: Learning a Convolutional Neural Network with a Learnable Sparse Transform

