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Abstract. In 3D recognition, to fuse multi-scale structure information,
existing methods apply hierarchical frameworks stacked by multiple fu-
sion layers for integrating current relative locations with structure infor-
mation from the previous level. In this paper, we deeply analyze these
point recognition frameworks and present a factor, called difference ratio,
to measure the influence of structure information among different levels
on the final representation. We discover that structure information in
deeper layers is overwhelmed by information in shallower layers in gen-
erating the final features, which prevents the model from understanding
the point cloud in a global view. Inspired by this observation, we propose
a novel channel normalization scheme to balance structure information
among different layers and avoid excessive accumulation of shallow in-
formation, which benefits the model in exploiting and integrating mul-
tilayer structure information. We evaluate our channel normalization in
several core 3D recognition tasks including classification, segmentation
and detection. Experimental results show that our channel normalization
further boosts the performance of state-of-the-art methods effectively.
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1 Introduction

Recently, 3D point cloud recognition has attracted much attention in computer
vision, since it benefits many real-life applications, such as autonomous driving
[4] and robot manipulation. Compared to 2D recognition, this task is challenging
because of several unique characteristics of point cloud for its sparse, unordered
and locality sensitive properties.

To deal with raw point-cloud data, PointNet [19] extracts features for each
point and aggregates them by max-pooling. Though effective, this method does
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not capture multi-scale structure information, which is of great importance in
point cloud recognition considering the diversity of 3D object size.

To fill this gap, later methods utilize a hierarchical structure stacked by
several fusion layers to exploit multi-scale structure information. There are a
variety of fusion layers. In general, they can be classified into two main streams.
The first one is explicit fusion layer who applies concatenation, multiplication
or summation to explicitly fuse current relative locations with previous features.
Set Abstraction (SA) layers [20] and RS-CNN [14] are two representative struc-
tures of this track who apply concatenation or multiplication after multi-layer
perceptron (MLP) encoding network to fuse current relative locations with pre-
vious features. Another track is implicit fusion layer. These layers [11, 29, 26, 16]
utilize continuous convolution to encode relative locations to dynamic weights
and merge previous features by matrix multiplication.

These fusion layers yield consistent performance boost for classification [30,
26, 14, 16], segmentation [30, 20, 16], and object detection [18, 22, 2]. Albeit per-
formance improvement, existing fusion layers either require heavy computation
[29, 14, 16, 26] or have their performance bottlenecks [20]. In this paper, we in-
stead aim at a light-weight parameter-free and yet effective fusion layer.

Motivation Despite intensive research on fusion layer structures [14, 16, 26,
20, 13], it is rare to see systematic analysis to understand these operations for
principled design. Importantly, we propose to evaluate its ability in aggregating
multilayer structure information by a quantitative metric, called difference ra-
tio. We note that difference ratio reflects the contribution of relative locations
in various fusion layers on the final generated feature. If the difference ratio of a
fusion layer is greater than a threshold, information of this layer generally dom-
inates and consequently overwhelms information of other layers, which hampers
the model from capturing multilayer structure information. Our empirical ob-
servation in Table 1 manifests that fusion layers with difference ratio closer to
1 tend to yield better performance since they fill the gap of influence among
different layers.

Although existing methods are capable of alleviating the imbalance, the dif-
ference ratio of these fusion layers is still large and they introduce computa-
tional overhead. In this paper, we propose a simple and effective mechanism,
called channel normalization, to fully utilize multilayer structure information. In
each fusion layer, we rescale previous features by their difference ratios so as to
enforce the model to treat location information from each fusion layer equally.

Our channel normalization does not introduce any extra parameters but
yields impressive improvement in several 3D recognition tasks of classification,
segmentation, and detection. Experimental results on multiple datasets including
ModelNet40 [30], ShapeNet3D [30], and KITTI [4] prove that our CN pushes the
performance of state-of-the-art (SOTA) recognition models further. Our overall
contribution is the following.
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– We propose to analyze fusion layers by difference ratio, which can reflect the
effect of relative locations from different fusion layers on the final generated
3D representation features.

– We analyze the bottleneck of 3D recognition frameworks by difference ratio
and raise the imbalance issue between shallower and deeper layers, which
hampers the model from extracting proper multilayer structure information.

– We propose channel normalization, to accomplish considerable improvement
on SOTA methods for all vital 3D recognition tasks without using extra
parameters.

2 Related Work

View- and Voxel-based Methods View-based methods [5, 25, 3] treat 3D
shape as a set of 2D images from different views and use deep neural networks
to recognize them. These methods ignore the structure information in the point
cloud and demand other operations to ensure performance, which may lead to
considerable computation cost.

Voxel-based methods [30, 17] subdivide the raw point cloud to equally dis-
tributed voxels and employ CNN to extract their 3D representations. These
methods are straightforward and efficient; but quantization during voxelization
may cause information loss and performance bottleneck. In this paper, we focus
on methods dealing with raw point cloud directly.

PointNet-based Methods To extract 3D representations from the raw point
cloud data, PointNet [19] applies MLP network to learn features for each point
and aggregates them by a symmetric function of max-pooling to extract 3D
representation. Nonetheless, it ignores multi-scale structure information that is
common and effective in 2D recognition.

To address this issue, later SOTA methods utilize hierarchical structures
stacked by different types of fusion layers to fuse multi-scale structure informa-
tion. In general, a fusion layer consists of two steps. The first one receives relative
locations of points within a specific range as structure information. It also uses
previous features as shallow structure information and merges them together.
In the second step, merged features are sent to a MLP network to extract high-
level representation. In the following subsection, we review these different fusion
layers in current PointNet-based recognition frameworks.

Fusion Layers in PointNet-based Methods There are a variety of fusion
layers that differ mainly in the first step. In general, they can be classified into
two types. The first type is explicit fusion layer, who applies concatenation,
summation or multiplication to explicitly fuse current relative locations and
former features. The most straightforward one is direct concatenation, which
is used in the SA layer of PointNet++ [20]. Other methods adopt an extra
MLP network to encode relative locations and aggregate these encoded results
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Fig. 1. Examples of explicit fusion layers. “RL”, “N”, Fpre, and Fout represent current
relative locations, the number of interior points, previous features and output features
respectively. “SOP” means symmetric operations, like max-pool.

with previous features by summation, concatenation or multiplication, like RS-
CNN [14]. These methods achieve SOTA recognition performance but double
the computation compared to direct concatenation.

The second type is implicit fusion layer. The most representative operation
among these types of layers is continuous convolution, which is utilized in [11, 29,
26, 16]. For each point, these methods employ the relative location to generate
the unique kernel weight and apply matrix multiplication based on the previous
feature and the kernel weight. Multilayer structure information is obtained in an
implicit way.

The recognition performance between these two types of fusion layers are
comparable. In this paper, we mainly analyze the explicit ones systematically
since their effectiveness and simpleness, and give an explanation behind the
discrepancy of performance. We also develop a parameter-free normalization
module to further boost the performance of these explicit SOTA recognition
models.

3 Systematic Analysis

3.1 Background

Current 3D recognition frameworks are all hierarchical networks stacked by many
fusion layers [26, 20, 16, 29]. The fusion layer is responsible for generating local
structure features for target points and has a unique spherical range to cover
structure information on a specific scale. The spherical range is similar to the
receptive field of CNNs. Shallower fusion layers usually have smaller spherical
ranges to extract local detail information, and those in deeper layers retain
larger spherical ranges to capture structure information for the whole object. In
this paper, we mainly focus on explicit fusion layers since they are simple and
effective. All fusion layers below represent for explicit ones.

Normally, there are two parts in a fusion layer. The first combines relative
locations of interior points in the current layer with features from the previous
fusion layer. The second is an MLP network to extract high-dimension features.
We illustrate two representative ones in Fig. 1.
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Fig. 2. A 3-layer MLP network. Nodes in “red” and “blue” represent activated (greater
than 0) and inactivated (equal to 0) neuron nodes respectively. “Red” and “Yellow”
lines illustrate the complete computation flow as Eq. (2) and merged computation flow
as Eq. (3) respectively from input features to the certain activated node (the 3rd node)
in final generated features. Wi and W ?

0,3 stand for activated kernel weight in layer i
and merged kernel weight computed by Eq. (3) respectively.

3.2 Analysis

In this subsection, we analyze the fusion layers considering the impact of relative
locations in different fusion layers on the final extracted representation since it
directly reflects the relative importance of different fused structure information.
Our analysis further enables us to understand and explain how different fusion
layers work and why they lead to varying performance. To quantify the impact,
we propose an impact factor. It is followed by our development of “difference
ratio” to measure impact rates, so as to compute the relative importance.

Impact Factor Since all kinds of fusion layers consist of an MLP network in
the second step, we first consider a small MLP network with 3 layers in Fig. 2.
Generally, a layer in an MLP network is composed of three parts: kernel multi-
plication, batch normalization and the non-linear unit. Since the batch normal-
ization is a linear transformation, we can merge it with kernel multiplication (in
the inference stage) and define the output of a 3-layer MLP network as

M3 = σ(W3 · σ(W2 · σ(W1 ·X))), (1)

where Wi, X and σ represent merged kernel weight in layer i, input feature and
the non-linear unit “ReLU” respectively.

For any channel in M3, if its value is greater than 0, there must be non-zero
channels in M2 multiplied with their corresponding kernel weights. This fact also
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Fig. 3. We illustrate distributions of values in I0,j among different input features, where
0 and j represent indexes of different layers within an MLP network with 4 layers. The
X-axis means the impact value. The Y -axis shows the number of channels with this
impact value. The Z-axis contains indexes of different features within an MLP network.

holds for features M2 and M1. Generally, for an MLP network, for each non-zero
channel in the final feature, there must be a computation flow from the original
input X to current channel value as illustrated by “red” lines in Fig. 2.

This makes it possible to estimate the concrete contribution of input from
a certain layer to each channel in the last generated features. For example, we
assume that the list with k+i , k−i and ki contains activated channel indexes
(channels with positive values), inactivated channel indexes and total channel
indexes for layer i respectively. This computation flow can be formulated as

M1(k+1 ) = W1(k+1 , k0) ·X
M2(k+2 ) = W2(k+2 , k

+
1 ) ·M1(k+1 )

M3(k+3 ) = W3(k+3 , k
+
2 ) ·M2(k+2 )

(2)

where (k1, k2) means “index operation” that gathers values by query indexes.
Based on Eq. (2), we merge these multiplication matrices, and build up a

merged computation flow as

M3(k+3 ) = W3(k+3 , k
+
2 ) ·W2(k+2 , k

+
1 ) ·W1(k+1 , k0) ·X

= W0,3 ·X
W ?

0,3(k+3 , k0) = W0,3, W
?
0,3(k−3 , k0) = 0

M3 = W ?
0,3 ·X

(3)

which is highlighted by yellow lines in Fig. 2. Suppose X has n input chan-
nels, W ?

0,3 should have a shape of [cout, n] to transform X to features with cout
dimensions in a straightforward way.

Eq. (3) enables us to directly link the input to each output feature channel.
Thus, we propose to use

∥∥W ?
0,i

∥∥ to measure the impact of input in layer 0 on
each channel imposed on the output feature in layer i , where ‖·‖ is an operation
to calculate the L2-norm of each row of the matrix.

∥∥W ?
0,i

∥∥ is a vector whose
size is equal to the number of feature channels in layer i. For simplicity’s sake,
we denote this as impact factor I0,i and form it as

I0,i =
∥∥W ?

0,i

∥∥ (4)
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The impact factor is a vector reflecting the impact of input over output, whose
size equals to the output channel number. Each value in this vector represents
the input influence on the corresponding channel of the output feature.

In Fig. 3, we count I0,i among a 4-layer MLP network with different input
features, which illustrates that the influence of input grows rapidly with the
increase of depth of layer i.

Similarly, the impact of relative locations in a certain fusion layer on dif-
ferent generated features can also be calculated. We adopt PointNet++ in our
study since it has been widely adopted in multiple 3D computer vision tasks of
detection [33], generation [9], scene flow [12], etc.

In a SA layer, it directly concatenates relative locations with the previous
feature, and adopts an MLP network to extract high-level representation. In
order to analyze the effect of relative locations in the current layer and previous
features respectively, we rewrite the computation process in the SA layer as

F l
i = W l

i ·Xi

F f
i = W f

i · Fi−1

Fi = Mi(F
l
i + F f

i )

(5)

In each SA layer, it first transforms relative locations Xi and previous features
Fi−1 by weights W l

i and W f
i to obtain F l

i and F f
i , and then employ an MLP

network Mi based on the sum of F l
i and F f

i to generate final features Fi.

F f
i in Eq. (5) is derived from F l

i−1 and F f
i−1 while F f

i−1 is derived from F l
i−2

and F f
i−2. In the beginning, F f

0 equals to 0, since there is no previous features

in the first layer. We eliminate all F f
i in Eq. (5) in a recursive way. Based on

Eqs. (5) and (3), the recursion formula is given as

F f
i = W f

i · Fi−1 = W f
i ·Mi−1(F l

i−1 + F f
i−1)

= W f
i ·W

?
i−1,i ·W l

i−1 ·Xi−1 +W f
i ·W

?
i−1,i · F

f
i−1

(6)

where W ?
i−1,i is the merged multiplication matrix in MLP network Mi−1 by Eq.

(3). This iteration process makes it possible to calculate features F f
i generated

by Xi−1.
We then calculate Ii−1,i and Ii,i as

Ii−1,i =
∥∥∥W f

i ·W
?
i−1,i ·W l

i−1

∥∥∥ ,
Ii,i =

∥∥W l
i

∥∥ , (7)

and repeat the process above to obtain Ii,j where (i ≤ j) for any fusion layers i
and j in PointNet++ network.

In Fig. 4, we illustrate distributions of I0,j , which measure the impact of
input relative locations in fusion layer 0 imposed upon output features of fusion
layer j. The contribution of relative locations in the first fusion layer grows even
faster with the increase of index j.
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Fig. 4. Illustration of distributions of values in I0,j among different SA layers. The
X-axis means the impact value. The Y -axis shows the number of channels with this
impact value. The Z-axis represents indexes of different input points for an SA layer.

Methods PointNet++ [20] RS-CNN [14] CN

Layer j
0 1 1 1
1 16.35 1.22 1.04
2 116.31 19.21 1.33

Accuracy (%) 90.7 92.9 93.3
Table 1. Comparison among different methods in terms of average D0,j and classifi-
cation accuracy, where 0 indexes the first layer and j indexes other fusion layers.

Difference Ratio The impact factor quantifies the importance of input towards
each channel of output, we now analyze the relative influence of input features
from different layers towards the same output feature, which determines their
relative importance in the final fusion result. We propose difference ratio Di,j ,
which is the quotient between Ii,j and Ij,j as

Di,j =
Ii,j
Ij,j

, (8)

to judge if the relative location information from certain layer i overwhelms
information from layer j. This can help us verify the quality of multilayer feature
fusion. For example, if Di,j is close to 1 for any (i ≤ j), it means that all fused
information is equally used, which makes the optimal fusion results.

This parameter reflects the contribution of relative location in different layers
on the final generated features. In Table 1, we test D0,j between the first SA layer
and others indexed by j in PointNet++ and average them in channels to get
an overall value. As illustrated, when the network goes deeper, the influence of
relative locations in the first layer not only increases on values but also enhances
rapidly their proportions. That is, the features from the last SA layer mainly
contain relative locations in the first SA layer, and ignore structure information
from the current new neighborhood. This phenomenon is not conducive to the
expansion of the receptive field and impedes the model from learning better
structural information.

Table 1 also reveals the potential reason that RS-CNN draws better per-
formance compared to original PointNet++. Because of the fusion layers, dif-
ference ratios are significantly reduced, which benefits the network in utilizing
multi-scale structure hints and boost the recognition performance.
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4 Channel Normalization

4.1 Approximate Difference Ratio Calculation

Even though current SOTA methods diminish difference ratios between previous
and current structure information on the generated features, the gap between
these two types of effect is still very large. In order to help the model exploit
multiple structure information from different layers better and take full advan-
tage of model capacity, it is a decent choice to rescale previous features i by Di,j

to enforce this value to be 1.

However, it is intractable to calculate Di,j during training or inference di-
rectly because of the difficulty in calculating W ?

i,j . Due to the application of
ReLU, differently activated neurons lead to varying computation flow, which
requires to obtain W ?

i,j for each of the flow. In a normal case, suppose there
are Nt target points and for each point there are Nn interior points for calcu-
lating relative locations, we need to calculate W ?

i,j for Nt ×Nn times, which is
extremely large computation cost. Therefore, our main concern is to find a way
to approximate the unique W ?

i,j for different points.

To this end, we propose a global approximation of W ?. We treat all neurons
to be activated. To simulate the activation of neuron nodes during inference,
we utilize the probability of a to-active neuron to re-weight the corresponding
weights. The probability is estimated as the ratio between the number of points
whose neuron n is activated and total points in the whole scene. This approxima-
tion shares similar intuition with Dropout [23] where the not-activated neuron
corresponds to the dropped neuron.

To be more specific, in order to approximate W ?
i,j , for a certain layer m of

the MLP network in the SA layer i, we multiply its weight matrix Wim with
probability vector Pim to simulate activation of neuron nodes during inference.
Considering a 3-layer MLP network in SA layer i, we approximate calculation
of W ?

i,i+1 by

Mi = (Pi3 � (Wi3 · (Pi2 � (Wi2 · (Pi1 �Wi1))))) ·X = W ?
i,i+1 ·X, (9)

in which · and � represent matrix- and element-wise multiplication.

Similarly, we estimate W ?
i−1,i and take it into Eq. (7) to calculate Ii−1,i and

Di−1,i with almost no extra effort.

4.2 Channel Normalization

After deriving Di,j , we detail our channel normalization as follows. The main
purpose of calculating Di,j is to balance the influence of structural information
from different fusion layers on the final 3D representation. Apparently, if for all
fusion layers (i ≥ 1), Di−1,i equals to 1, Di,j always reaches 1 for all i, j(i ≤ j).
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Fig. 5. Illustration of CN module in SA layer i.

Therefore, the best choice to align the influence is to calculate Fi as

Di−1,i =
Ii−1,i

Ii,i
=

∥∥∥W f
i ·W ?

i−1,i ·W l
i−1

∥∥∥∥∥W l
i

∥∥ ,

Fi = Mi(F
l
i +

F f
i

Di−1,i
),

(10)

in which we enforce Di−1,i to be 1.

We name this new operation as channel normalization (CN), which is visual-
ized in Fig. 5. There are two main advantages of our proposed CN compared to
former SOTA modules. First, compared to original SA layers in PointNet++, we
do not introduce extra parameters. Second, for any fusion layer i in the network,
our solution greatly reduces the gap between the values of all Di,j and 1, which
is illustrated in Table 1.

Put differently, in any SA layer, the effect of relative locations from the
current layer is the same as those from previous layers. Since relative locations
from all fusion layers in the network contribute the same in the final features,
they maintain structure information from every fusion layer, which benefits the
model in recognizing objects with a variety of scales.

It may be ideal to set Di−1,i close to 1. But in this case, not all structure
information from different fusion layers is equal. Actually, fusion layers are bound
for different structure information regarding scales. For shallow layers, since the
spherical ranges are too small to cover the entire object, the relative location
information is less important compared to that in later layers. Similarly, for
information in the deep fusion layers, because of the opposite reason, there is
much noisy information, possibly misguiding the model in the recognition task.
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Methods Input Point Numbers Accuracy (%)

PointNet [19] xyz 1024 89.2
Spec-GCN [27] xyz 1024 91.5
PointCNN [10] xyz 1024 91.7
DGCNN [28] xyz 1024 92.2

PointConv [29] xyz, norm 1024 92.5
RS-CNN [14] (SSG) xyz 1024 92.2
RS-CNN [14] (MSG) xyz 1024 92.9

PN2 [20] xyz 1024 90.7
PN2 + CN (SSG) xyz 1024 92.9
PN2 + CN (MSG) xyz 1024 93.3

Table 2. Classification accuracy compared with SOTA methods on the ModelNet40
dataset. “PN2”, “MSG”, and “SSG” represent PointNet++ baseline, multi-scale group-
ing and single-scale grouping respectively. “norm” means using the normal vectors from
the mesh models as input.

So the utility of structure information from a certain fusion layer depends on
the scale of objects.

To resolve this problem, we extend CN by adding two learnable condition
parameters α1 and α2. α1 is to measure the importance of relative locations
in previous layers, while α2 is about the value of the current layer. Intuitively,
if relative locations in the current fusion layer is more valuable in recognition
compared to those in previous layers, α2 gets larger than α1 to highlight the
influence of information from current layer. We express this relation as

Fi = Mi(α2F
l
i + α1

F f
i

Di−1,i
), (11)

where Fi is the result after channel normalization in the i-th fusion layer.

5 Experiments

We conduct extensive experiments on a series of core 3D recognition tasks to
verify the effectiveness of our CN and prove that reducing Di,j , where (i ≤ j),
is helpful for learning structure information at different scales. These experi-
ments consist of classification on ModelNet40 [30] dataset, part segmentation on
ShapeNet [30] and detection on KITTI [4] dataset. If not specified otherwise, all
fusion layers in our model are the combination of SA layers and CN.

5.1 Classification on ModelNet40

We evaluate the classification accuracy of our model on the ModelNet40 dataset.
This dataset contains 12,311 CAD models with 9,843 training shapes and 2,468
testing shapes in 40 different classes. For fair comparison, we follow the configu-
ration in former papers by sampling 1,024 points uniformly for each model and
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Methods Types Numbers Class mIoU (%) Instance mIoU (%)

Kd-Net [6] points 4k 77.4 82.3
PointNet [19] points 2k 80.4 83.7

SPLATNet [24] - - 82.0 84.6
KCNet [21] points 2k 82.2 84.7

PointConv [29] points, normal 2k 82.8 85.7
RS-CNN [14] points 2k 84.0 86.2

PN2 [20] points, normal 2k 81.9 85.1
CN points 2k 83.9 85.8
CN2 points 2k 84.3 86.2

Table 3. Comparison among different 3D segmentation methods. “CN” is modified
based on original PointNet++ baseline and “CN2” adds two more long-range connec-
tions as [14].

by normalizing them to a unit ball. During training, we apply random trans-
lation and scaling on the point cloud, and keep the same training schedule as
PointNet++. We do not apply any voting operation in the testing phase and
compare our model with SOTA 3D recognition frameworks in Table 2.

It shows that our CN module outperforms the PointNet++ baseline by a
large margin and achieves the new SOTA results on recognition by raw point
cloud data. We also provide a light-weight single scale grouping (SSG) model,
in which there is only one spherical range for a single fusion layer. It also draws
great improvement compared to PointNet++ baseline and outperforms RS-CNN
(SSG) by 0.7%. These results clearly demonstrate the power of our CN module.

5.2 Segmentation on ShapeNet

We also experiment with 3D segmentation on the ShapeNet part segmentation
dataset [30]. We take PointNet++ as our baseline and add the CN module to
each SA layer. The comparison between CN models and other 3D recognition
methods are listed in Table 3. We use two CN baseline models here. In the
“CN” model, we directly apply CN to each SA layer in the original PointNet++
model. In “CN2”, two more long-range skip connections are added to the “CN”
model as that of [14] – it is for structure information loss during upsampling.
The experiments show that our CN module promotes the PointNet++ baseline
by 2% in terms of class mIoU without any extra parameters.

5.3 Detection on KITTI dataset

The KITTI [4] dataset contains 7,481 training point clouds and 7,518 testing
point clouds in three different categories of Car, Pedestrian and Cyclist. In each
class, there are three difficulty levels of “Easy”, “Moderate” and “Hard”, for
distinguishing among objects with regard to depth to camera and occlusion.
Our baseline model is 3DSSD [32], which is the SOTA single-stage 3D object
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Methods Sens.
APBEV (%) AP3D(%)

Easy Mod Hard Easy Mod Hard

ContFuse [11] R + L 94.07 85.35 75.88 83.68 68.78 61.67

SECOND [31]

L

91.81 86.37 81.04 84.65 75.96 68.71
PointPillars [8] 90.07 86.56 82.81 82.58 74.31 68.99

TANet [15] 91.58 86.54 81.19 84.39 75.94 68.82
HRI-VoxelFPN [7] 92.75 87.21 79.82 85.64 76.70 69.44

OHS [1] 93.59 87.95 83.21 88.12 78.34 73.49

3DSSD [32]
L

92.66 89.02 85.86 88.36 79.57 74.55
3DSSD [32] + CN 94.51 90.50 85.86 90.55 79.89 76.31

Table 4. Results on KITTI test set in class “Car”. State-of-the-art single-stage object
detector results are drawn from official benchmark. “Sens.” means sensors used by the
method. “L” and “R” represent using LiDAR and RGB images respectively.

detector presented in Table 4. It uses PointNet++ with multiple SA layers as
the backbone.

For fair comparison, our model is trained under the same configuration as
3DSSD, including time schedule, data augmentation, input point cloud size etc.
As shown in Table 4, our CN module significantly improves the detection accu-
racy of 3DSSD, especially on easy cases, which mainly contain cars close to the
camera. For these cars with a shorter range, the LiDAR camera captures their
surface points well and brings good-quality information in multiple structure
levels of wheel, door, and car, for example.

The original SA layers in PointNet++ only focus on the relative locations
in shallower level, which mainly include small hints like wheel or door. Larger
structure information such as the whole car, is more likely to be ignored. This
procedure does not make full use of the high-quality information given by the
LiDAR camera and hampers the model from further improvement. With our
CN module, the network exploits both local tiny structure and global objects.
It greatly benefits the model in boosting detection performance.

We also compare the performance of 3DSSD with PointNet++, RS-CNN and
CN. Their 3D mAPs are 82.37%, 82.88% and 85.01% respectively among KITTI
moderate val set on class “Car”. As listed, our CN model draws much better
performance compared to its RS-CNN counterpart. We analyze its reason as
below. As illustrated in Table 1, in these fusion layers, D0,j consistently increases
with regard to j. It means the deeper the fusion layer is, the less effective its
relative locations are. Since D0,j in RS-CNN increases rapidly, they have their
limitation in gathering structure information from deep layers. In contrast, our
CN rescales previous features by Di−1,i, making the model much more capable
to gather information of deep neural networks and bringing better performance
compared to other fusion layers.
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layer1 layer2 layer3 layer4

Spherical Range (m) 0.8 1.6 3.2 6.4

α1 0.148 0.721 1.392 1.295

α2 0.686 0.868 0.293 0.143
Table 5. Condition parameters in different fusion layers. “Spherical Range” means the
scale of structure information for this layer, which is usually expressed by the radius
of the ball.

5.4 Effect of Condition Parameters

This ablation study is conducted on the KITTI dataset since the detection task
can well reflect the model’s ability in extracting multi-scale structure informa-
tion. All AP results in this subsection are calculated in class “Car”.

In our channel normalization, after rescaling previous features by Di−1,i, we
use two extra learnable condition parameters α1 and α2 to enable the model to
gather structure information in a certain fusion layer. The consequence is the
following. If previous structure information plays an important role in recogni-
tion, α1 becomes large. Otherwise, if the current relative location works better,
α2 is greater.

We train a 4-layer 3DSSD with our CN module, and list the learned condition
parameters in Table 5. In the first layer, since there is no structure information
in previous features, α2 is greater than α1 to capture more relative location
information in the current layer. In layer 2, since the mean size of a car in
the KITTI dataset is (l = 3.9m,h = 1.6m,w = 1.6m). With radius 1.6m, the
layer covers the whole object. Therefore, α2 is still greater than α1 to capture
features for the whole object. Differently, in layers 3 and 4, spherical ranges are
much larger than those of cars, making α1 much greater than α2 to avoid these
unnecessary features. We also compare the mAP performance between pure CN
and CN with condition parameters. Their performances are 84.60% and 85.01%
respectively which demonstrates the effectiveness of the condition parameters
and manifests that always balancing is not optimal.

6 Conclusion

In this paper, we have analyzed the bottleneck of explicit fusion layers in SOTA
hierarchical 3D recognition networks regarding extracting multilayer structure
information. We provided “difference ratio” to measure the contribution of rel-
ative locations among different fusion layers on the final generated features. By
comparing difference ratios among different SOTA methods, we find that when
this factor is closer to 1, the learned features can maintain more structure in-
formation from different levels and extract more powerful 3D representations.
Based on this observation, we developed a new technique “channel normaliza-
tion”, which enables the recognition models to fully exploit multilayer structure
information and further boosts their performance without extra parameters.
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