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Abstract. Defocus blur detection (DBD) is a classical low level vision
task. It has recently attracted attention focusing on designing complex
convolutional neural networks (CNN) which make full use of both low
level features and high level semantic information. The heavy networks
used in these methods lead to low processing speed, resulting difficulty
in applying to real-time applications. In this work, we propose novel
perspectives on the DBD problem and design convenient approach to
build a real-time cost-effective DBD model. First, we observe that the
semantic information does not always relate to and sometimes mislead
the blur detection. We start from the essential characteristics of the
DBD problem and propose a data augmentation method accordingly to
inhibit the semantic information and enforce the model to learn image
blur related features rather than the semantic features. A novel self-
supervision training objective is proposed to enhance the model training
consistency and stability. Second, by rethinking the relationship between
defocus blur detection and salience detection, we identify two previously
ignored but common scenarios, based on which we design a hard mining
strategy to enhance the DBD model.By using the proposed techniques,
our model that uses a slightly modified U-Net as backbone, improves
the processing speed by more than 3 times and performs competitively
against state of the art methods. Ablation study is also conducted to
verify the effectiveness of each part of our proposed methods.
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1 Introduction

Deep learning techniques have promoted explosive growth of many computer vi-
sion tasks including but not restricted to image classification [17], object location
and detection [14], semantic segmentation [1], salience detection [5]. However,
the performance of above algorithms are related to the quality of images and
blur images with lots of noise can lead to a sharp decline in accuracy. Thus blur
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Fig. 1. Examples of blurry images from [16] (zoom in for details). The left half shows
the motion blur with a mask (black area denotes blur). This paper focuses on the right
half case: defocus blur detection. As highlighted around the red bounding box, yellow
leaves show similar semantics, while both in-focus and defocused regions appear.

detection is an fundamental yet challenging topic in computer vision area. It de-
tects the degraded area with loss of image details, which is the basic and critical
pre-process step for deblurring. As shown in Fig. 1, image blur can be generally
classified into two types: motion blur and out of focus blur (or defocus blur) [16].
Object moving definitely accounts for motion blur. The defocus blur is caused
by the limited depth of fields of camera lens. Objects located in too remote or
too close distance are out of focus and blurry. The defocus blur is ubiquitous
for pictures captured by digital cameras, especially by cell phone cameras. In
this paper, we pay attention to the detection of defocus blur areas. Our work
is motivated by two important insights which have been ignored and probably
misused by previous works. 1) the semantic information does not always relate
to and sometimes mislead the blur detection. 2) the salience detection, which is
a related topic with DBD, can be used to help the mining of hard occasions in
DBD. Based on these two important insights, we designed clever and convenient
approaches to solve the DBD problem.

Defocus blur detection methods can generally be divided into two categories:
traditional algorithms based on handcrafted features [10–12,15,16,18,20,22,26,
27, 30, 31] and deep learning algorithms based on CNN [6, 21, 25, 28, 29]. The
former ones usually apply statistics of gradient or high frequency information
to differentiate blur, considering that blur areas are usually smoother than clear
areas. They can work for simple cases effectively and endure lousy results for
complex scenes. The phenomena are related to the following reasons.

At first, although smoothing or filtering images can unavoidably lead to image
blur, we could not judge the clarity just by gradients. Some objects such as sky
and ground are always with low gradients all the time, no matter they are focused
or not. Besides, some areas with complex texture and high frequency could be
out of focus. There are lots of leaves marked in a red rectangle in the second row
of Fig. 1. These leaves have similar textures and gradient information, however
parts of leaves are out of focused and parts are not. Thus it is unreasonable and
not the case for practical application to distinguish focus area just using gradient
distributions or frequency information.

Secondly, CNN based methods are more flexible to combine multi-scale of
information and multi-level of features together to detect blurry. Multi branches
and shortcut fuel information flow and information fusion in deep networks. CNN
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can fuse the results of different filters and extract discriminative features. These
characteristics of CNN lead to more powerful feature extracting than traditional
algorithms based on handcrafted features.

The authors in [28] propose a multi-stream bottom-top-bottom fully con-
volutional network (BTBnet) to detect defocus blur. They design a recurrent
reconstruction strategy which fuses low level cues and high level information
to improve the performance. Although the BTBnet achieves impressive results,
their large computation cost hinders their wide applications. In [25], a dilated
fully convolutional neural network is applied to widen the network without in-
creasing the parameters. A deep defocus blur detector cross ensemble network
(CEnet) is proposed in [29]. Two groups of defocus blur detectors are alterna-
tively optimized to enhance diversity in CEnet. While in [21], a deep neural
network is devised which recurrently fuses and refines multi-scale deep features
(DeFusionnet) for defocus blur detection.

Most of the existing works try to improve the accuracy of the DBD models
by designing deeper or wider networks, while other works tried to decrease the
computational cost and increase the processing speed of those models. These
approaches emphasize too much on the structure of the network and employ the
semantic information to detect the defocus blur region. However, we have an
insight that the semantic information in the images does not always relate to
the blur region. We can observe from Fig. 1 that the regions of similar semantic
(yellow leaves) can be either blur or clear. This results in unsatisfactory perfor-
mance of those approaches. In this paper, we rethink the DBD problem, explore
its characteristics and its relationship with related topics. To enforce the neu-
ral network to learn the defocus blur related features, rather than the semantic
features, we propose a novel data augmentation method by taking advantage of
the transition-invariant property of the defocus blur region. A self-supervision
objective is proposed to enhance the robustness of the model. In addition, we
have another insight that the salient detection can help the mining of the hard
occasions in the DBD. It is difficult to detect the in-focus region in the non-
salient region, and to detect the defocus region in the salient region, especially
when a single object contains both the in-focus part and defocus part. Based
on this insight, we proposed a novel hard mining policy to train the neural net-
work. With the proposed method, a simple U-Net [13] with slight modification
performed competitively and even better than most of the state of the arts. In
addition, our method achieves notable improvement on the processing speed.

Conclusively, the contributions of this paper are as follows.

– We put forward two basic observations, which have been relatively ignored
in previous research. First, the semantic information does not always relate
to, and sometimes even can mislead the DBD. Existing deep learning based
methods are mostly devoted to designing wider and/or deeper networks to
learn the semantic features. While little study has been made to consider the
inherent mechanism of the DBD problem. Second, we take a closer look at
the connection between the salience detection and DBD, and find that the
salient information can help to locate the hard occasions in DBD.
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– Based on the first observation, we propose a novel data augmentation tech-
nique to inhibit the semantic information and enforce the neural network
to learn the blur related features rather than semantic features. A self-
supervision objective is devised to enhance the consistency of training. To
our best knowledge, this is the first work to incorporate the blur related
constraints into the objective for deep learning.

– Based on the second observation, we design a hard mining approach to cope
with two hard occasions, which are previously overlooked while practically
common: 1) defocus and salient region; 2) in-focus but non-salient region.
These two scenarios are more difficult to identify from other scenarios. We
propose a hard mining strategy for these two cases. Our resulting method
can handle these two cases effectively without sacrificing the performance on
other scenarios. It is empirically shown that the hard mining policy can im-
prove the performance notably, especially on the regions of depth boundary.

– With the proposed objective, even by using a simple network, i.e. a slightly
modified U-Net, we can achieve competitive and even superior performances,
with improved processing speed by more than 3 times. Experimental results
show that the proposed method performs competitively. We also conducted
an ablation study to verify the effectiveness of self-supervision objective and
our hard mining technique.

2 Related Works

In general, defocus blur detectors can be divided into two categories: traditional
methods using hand-designed features and deep learning methods.

2.1 Traditional Methods

The blurry images are relatively smoother in some scenes. Inspired from that,
some researchers made full use of gradient information or frequency information
to detect blur. The works [2,19] detect the DBD using the radio of strong gradi-
ent components in an image patch. The authors in [11] design special kernels to
measure image sharpness. In [18], singular value distribution and gradient distri-
bution work together for blur detection. Multi-scale high frequency information
and sorted transform of coefficients of gradient magnitudes are fused to detect
blur in [3]. Fourier domain features are applied to detect image sharpness and
a public blur detection dataset has been built in [16]. The authors in [20] ob-
tain coarse-to-fine blurred region using spectral and spatial information. In [23],
image patch ranks are fully used to estimate blur map.

Although hand designed features have made contributions to detect blur
regions, they often fail in complex scenes. Compared with traditional algorithms,
CNN methods can fuse multi-scale multi-level information to different blurred
and clear image regions and outperform most of hand designed methods.
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2.2 Deep Network based Methods

In [12], hand designed features and deep learning features are used together
to estimate blur region. However, these deep learning features are extracted in
local patches and time consuming. Subsequently, more carefully-designed CNN
structures are proposed for DBD. The authors in [28] propose a multi-stream
bottom-top-bottom fully convolutional networks to estimate the probability of
each pixel being out-of-focus and blurry. It is a fusion and recurrent reconstruc-
tion network which is deep and wide. It integrates both low-level and high-level
information to handle blur images. [25] apply a dilated fully convolutional neu-
ral network which increases the field-of-view without increasing parameters. The
cross-ensemble network is designed to obtain multiple defocus blur detectors with
less computation cost [29]. In [21], a novel network which fuses deep features and
suppressed background clutter is also devised.

3 Proposed Method

3.1 Approach Overview

It is sometimes assumed that CNN can make full use of semantic information
and this information benefit detection performance [21, 28]. While this assump-
tion may not always hold. Image regions with similar semantic information can
be easily broken into in-focused and out-of-focus parts, which is a common oc-
currence for images captured by macro lens. As shown in the right half in Fig. 1,
there is a clear boundary between the focused paper glass and defocus leaves.
In this respect, semantic information is beneficial to distinguish sharp object
from the blur. However the leaves in red rectangle are blurry due to out of fo-
cus and other leaves are clear. All of them are considered as leaves and can not
be distinguished according to semantic information. It means that there is no
necessary relation between the semantic information and the defocus detection.
The semantic information sometimes disturb the judgment of defocus or not.
We should pay attention to the image clarity itself. In addition, we identify two
hard occasions for the DBD problem: 1) detection of the defocus blur region at
the salient region, 2) detection of the in-focus region at the non-salient region.
Based on the two insights, we propose 1) a novel data augmentation method to
inhibit the semantic information, and a self-supervision objective to enhance the
model consistency. The proposed strategy not only expands the training but also
reduces the affect of semantic information. 2) a hard mining strategy by taking
advantage of the relation between the salience detection and DBD.

We expound our algorithm in the following three parts. First, we explain the
data augmentation strategy and the self-supervision loss. Then the hard mining
strategy is introduced by analyzing the relation of blur detection and the salience
detection. Finally, we present our network which is a slightly modified U-Net.
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Fig. 2. Self-supervision learning scheme. For input image I, we obtain the swapped
input I ′ by swapping the pixel values of two patches. The predicted mask of swapped
input image O′ should be same with O′′ which is the swapped mask of original image.

3.2 Data Augmentation and Self-supervision Loss

As our goal is to detect the blur region, rather than the blur objects, it is more
important to learn the image clarity features than the semantic features. For a
patch in a given image, whether it is blur or not is irrelevant to its location in
the image, neither relevant to what object it belongs to. A clear patch remains
to be clear wherever we move it in an image. Similarly, a blur patch is still blur
even we paste it to a clear region.

Take Fig. 2 as an example, it gets the focus on the flower, and all the back-
ground areas are out of focus and blurry. If we move the position of flower, it
would lead to some artifacts and sharpness on the boundary. However, this ac-
tion did not cause the flower to be blurry or the backgrounds to be clear. If
we moved parts of flower, it would break the integrity of flower and inhibit the
semantic information. However, this action still would not change the clarity of
the flower parts.

Formally speaking, for an input image I, we randomly choose two patches
with the same size and swapped the pixel value of one patches for the other. Then
we got the swapped image I ′, as shown in Fig. 2. G and G′ are corresponding
ground truth of the image I and the swapped image I ′, respectively. O and O′

represent the predicted masks for the image I and the swapped image I ′.
Most existing DBD works train models to minimize the distance between the

groudtruth G and the predicted blurry mask O. The distance is computed as
the binary cross entropy (BCE) between G and O. This can be expressed as:

Lori =

h∑
i=1

w∑
j=1

−G(x, y) ∗ log(O(x, y)) (1)



Rethinking the DBD Problem and A Real-Time Deep DBD Model 7

where, h and w stand for the height and width of images respectively. While
(x, y) represents the coordinates of images.

In this paper, we enlarge the training set tremendously by swapping the
image patches. In this way, we should also train the model on the augmented
data to minimize the distance between the swapped ground truth G′ and the
swapped predicted mask O′. This is represented as Eq. (2).

Laug =

h∑
i=1

w∑
j=1

−G′(x, y) ∗ log(O′(x, y)) (2)

In addition, according to our analysis, the predicted mask O′ should be a
derivative of predicted mask O. For robustness, the transition of input images
should lead to the same transition of the output mask. This can be stated as:

O = Φθ(I); f(O) = Φθ(f(I)) (3)

where Φθ is a neural network of DBD parametered by θ. f(I) = I ′ and f(O) = O′′

are the patch transition operation. In our case, the swapped output O′′ and
the output of the swapped image O′ should be same for a robust DBD system.
Inspired by this, we introduced the self-supervision loss to enhance the robustness
of our model. The similarity of the output O′′ and the output O′ are calculated
by L1 loss.

Lself =
1

h ∗ w

h∑
i=1

w∑
j=1

|O′(x, y))−O′′(x, y)| (4)

The total loss for the proposed self-supervision method is the weighted sum
of the above losses.

Lts = Lori + Laug + λsLself (5)

where λs is the weight for the self-supervision term. As in our training settings,
the number of input original image I and the number of input augmented image
I ′ are always equal, we simply keep the weights of Lori and Laug to be 1. And we
only adjust the weight λs for Lself . The patch size used in this paper is 64× 64.

3.3 Hard Mining

It is hard to identify the blur of the boundary area, when the clear and the
blurred area mingle, especially when a single object contains both focused part
and defocus part. DBD algorithms do not have satisfactory performances in
above two cases [28] [29]. In this paper, we propose a hard mining algorithm to
improve the performances.

By analyzing the DBD related topics, we observe that the salient detection
is closely related to but inconsistent with the DBD problem. Salient detection
can help to locate the regions of the above difficult scenarios.

Specifically, salience detection is to identify the most visually distinctive re-
gions in images. Fig. 3 shows the difference between the focused area and salient
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Fig. 3. The relation between the focus detection and salience detection. From the first
column to the last column are: the input images (collected in [28]), the ground truth of
DBD (black area denotes blur), the salience detection result of [5] (black area denotes
non-salient), and the difference between the focused detection and salience detection
(yellow area denotes ’salient but out-of-focus’, and red area denotes ’in-focus but not
salient’, blue area denotes ’salient and in-focus’ and ’non-salient and out-of-focus’).

area. The first column shows the image with out-of-focus area collected by [28].
The second column is the in-focus area of this image. Both the cat and its back-
ground are in-focus. The third column contains the salience detection result of
one of state of the art [5]. The face of the cat and the paw of the bear is de-
tected as salient. The last column shows the difference of the focus area and the
salient area. This difference help us to locate the depth boundary and ignore the
semantic information.

According to the above analysis, we creatively proposed a region based hard
mining method for DBD. At first, we calculate the salient detection areas by the
algorithms in [5], which is a state of the art salient detection method. Secondly,
we compute the hard mining region H as 1) the out-of-focus and salient region
2) in-focus but not salient region. Formally, H = (S ∪ F ) − (S ∩ F ), where H
denotes the hard mining region, S and F denote the salient region and in-focus
region, respectively.

By giving different weights to the intersection and the union, we realize a
hard mining algorithm based on pixel position. In this way, the loss functions in
Eq. (1) and Eq. (2) should be changed into Eq. (6) and Eq. (7), respectively.

Lweighted =

h∑
i=1

w∑
j=1

−W (x, y) ∗G(x, y) ∗ log(O(x, y)) (6)

Lweightedaug =

h∑
i=1

w∑
j=1

−W ′(x, y) ∗G′(x, y) ∗ log(O′(x, y)) (7)

whereW (x, y) represents the weights based on intersection and difference.W ′(x, y)
means the swapped weights according to pixel value swap of input images.

In this way, the final loss function of proposed algorithm is defined as follows.

Ltotal = Lweighted + Lweightedaug + λsLself (8)
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Fig. 4. The backbone network used in this paper. This is a modified U-Net to facilitate
the flow of the horizontal and vertical gradient information.

3.4 Backbone Network

We briefly introduce the network used in this paper. As shown in Fig. 4, it is
inspired by the design of U-Net [13]. The “3 ∗ 3 ∗ t Conv” module consists of two
convolutional filers, two Relu [9] layers and two BN [7] layers and one pooling
layer. The convolution kernel size of this module is 3×3 and the number of filters
is t. The strides of all the “3∗3∗ t Conv” modules are 2 except for the one before
concatenation. Many traditional algorithms apply gradient information for DBD.
Inspired that, partial derivatives in both X and Y direction are encoded in our
network. Both encoded partial derivatives and the image are concatenated at the
end of the encoding part. “3 ∗ 3 ∗ 256” module reduces the number of redundant
filters and fuses features. After that, a dropout layer [4] is added and the dropout
rate is set to be 0.2.

The dotted arrows in Fig. 4 represent a shortcut from a encoder layer to a
decoder layer. “3∗3∗t Deconv” means that the kernel size for each deconvolution
layer [24] is 3× 3 and the number of filters is t. The stride of each deconvolution
is 2. Since our proposed algorithm is focused on loss design instead of network
design, we just apply this popular network for experiments.

4 Experiments

4.1 Experimental Setup

We use two public and popular defocus blur detection datasets for evaluation.
The CUHK dataset [16] consists of 1000 blurry images. Among these, 296

blur images are caused by object motion and 704 images are defocus blur images.
We divide the 704 images into training set and testing set, as many researchers
do [21,28,29]. There are 604 images randomly selected for training, and the rest
are applied to measure the performance in [28, 29]. [21] applied top 604 images
for training and the last 100 images for testing. To compare with state of the
arts, we share the same training set and testing set with [28,29].

The DUT dataset appears in [28]. It contains 1100 images with pixel-wise
annotations. 600 images belongs to the training set and 500 images belongs to
the testing set. It is relatively more challenging dataset.
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The proposed method are implemented by PyTorch, and are performed using
4 TitanXP GPUs. The Adam [8] is selected as optimizer. The momentum is set
to be 0.9 and weight decay is set to be 5e−4. The start learning rate is 2e−5 and
decreases to 2e−6 after 2000 epochs. The batch size is set to 64. It takes about
two days to train the network. The swapped patch size is set to be 16. All the
weights of hard mining regions are set to be double weights of other areas.

The training images are resized into 320 × 320 at first step. After that, we
apply horizon mirroring and rotating to augment data. Different from other
works [21,28], no extra data is used to pretrain our model.

Evaluation Metrics Three metrics are applied to evaluate the performance of
proposed method: F-measure, mean absolute error (MAE), F-measure curve by
all the thresholds and the Precision-Recall (PR) curve. The output need to be
binarized to calculated F-measure and MAE. F-measure is defined by:

Fβ =
(1 + β2) ∗ Precision ∗Recall
β2 ∗ Precision+Recall

(9)

where β2 = 0.3 is employed to emphasize the importance of precision, which
represents for the percentage of correctly detected pixels which are focused. The
correctly detected pixels is divided by the ground truth number of focused pixels
to get Recall. Bigger F-measure means better performance.

The metric MAE denote the average pixel-wise difference between the output
results and the ground truth. It is defined as the follow.

MAE =
1

h ∗ w

h∑
i=1

w∑
j=1

|O(x, y)−G(x, y)| (10)

where, O stands for the binarized output and G stands for the ground truth.
Smaller MAE represented smaller difference between output and ground truth.

Both F-measure and MAE evaluate the performance of different methods by
binarized the outputs at the specific threshold. The F-measure curve and the
Precision-Recall curve provide more comprehensive displays of performances.
The output are binarized at each point in range of [0, 255] to display the F-
measure curve and Precision-Recall curve.

4.2 Comparison with Peer Methods

Compared with traditional methods, deep learning methods achieve better per-
formance for DBD [21, 28, 29]. In this way, we just compare our method with
these state-of-the-art algorithms. BTBnet is devised in [28]. BTBnet handles in-
put images with different scales and combines all these information to calculate
the possibility of blur. It is complex network and high time costing. After that,
the work [29] proposes a deep cross ensemble network (CEnet) which reduces the
time cost comparable with BTBnet. As the name implies, CEnet makes full use
of diversity of networks to produce accurate results. The authors in [21] present
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Fig. 5. F-measure of different algorithms. The left plot shows the results over the
CUHK dataset. The right plot shows the results over the DUT dataset. P and R stand
for precision and recall, respectively. F stands for the F-measure.

Fig. 6. F-measure by different thresholds of different algorithms. The left plot shows
the result over the CUHK dataset. The right plot shows the result over DUT dataset.

Table 1. Comparison of F-measure (the higher the better) and MAE (the lower the
better) of different approaches. Two networks (CENet, DeFusionNet) have not released
their models hence the exact sizes are unknown and not reported. Best in bold.

Dataset Metric
Models

BTBNet [28] CENet [29] DeFusionNet [21]
Salience

Detection [5]

BCE+
self-supervision
+hard mining

BCE +
self-supervision

BCE
BCE without

image gradient

CUHK
F-meature↑ 0.919 0.928 0.862 0.843 0.944 0.933 0.927 0.918

MAE↓ 0.060 0.057 0.111 0.125 0.053 0.060 0.066 0.078

DUT
F-meature↑ 0.780 0.792 0.815 0.791 0.828 0.811 0.793 0.754

MAE↓ 0.127 0.136 0.118 0.151 0.115 0.127 0.140 0.163

DUT &
CUHK

FPS↑ 0.04 15.63 17.86 22.20 58.82 58.82 58.82 112.35
Model Size 200M - - 238M 26.73M 26.73M 26.73M 7.79M

the DeFusionnet which recurrently fuses and refines multi-scale deep features to
detect out-of-focus regions. We just download their results from their project
website since they have not released their implementation. As mentioned above,
our testing dataset of CUHK dataset is the same with [28, 29] and different
from [21]. All the above approaches adopt complex networks and their models
are pretrained using ImageNet data [9].
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Fig. 7. Precision-Recall curves of different algorithms. The left and right plot shows
the result over the CUHK and DUT dataset, respectively.

F-measure and MAE are shown in Table 1 and Fig. 5. Our proposed model
(BCE+self supervision+hard mining) outperforms the second best method by
1.6% for F-measure and 2.5% for MAE over the DUT dataset. The testing data of
CUHK dataset for our algorithm, BTBnet and CEnet are the same. Our model
exceeds CEnet by 1.7% for F-measure and 7.0% for MAE, respectively. The
number of the training set and the testing set used by our model and DeFusionnet
are the same. However, the images in these set for our model and DeFusionnet
are different. Our model beats DeFusionNet by 9.5% for F-measure and 52.3%
for MAE. For reference, we also present the salience detection performance on
the DBD task, although the salience detection is a different task with the DBD.
The salience detection performance is poor on the DBD task over all the metrics.

The F-measure curve and the Precision-Recall curves are shown in and Fig. 6
and Fig. 7, respectively. Our model shows superior performance over most parts
of the F-measure curves. Besides, our model generates better results compared
with other models over most parts of the Precision-Recall curves.

Fig. 8 and Fig. 9 show some comparison examples of different algorithms.
Images in Fig. 8 come from the testing set of the DUT dataset and images in
Fig. 9 come from the testing set of the CUHK dataset. We can see that the hard
mining method help us to identify the boundary of the focus and defocus regions
despite whether they belonging to a same object or not. All the algorithms can
detect the main parts of focused area. While the competitors can not get accurate
boundary in areas where the focus and defocus changed in high frequency. What’s
worse, the competitors usually fail to detect the focused part of one object which
consists of the focused area and defocus area at the same time.

In the testing phase, each input image is resized into 320 × 320 pixels to
obtain the final defocus blur map. We and [21] both use a single Nvidia GTX
Titan Xp GPU for inference, while [28] and [29] use a GTX1080Ti GPU. These
two GPUs have similar processing power. As shown in Table 1, our model is
highly efficient with the speed of 58.82 FPS (frames per second), which is 3.29
times faster than the second fastest method named Defusionnet.
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Fig. 8. Examples on DUT (by column): input images, hard mining regions, outputs of
BTBnet, CEnet, DeFusionnet, and proposed methods, respectively, and ground truth.

Fig. 9. Examples on CUHK (left to right): input images, hard mining regions, outputs
of BTBnet, outputs of CEnet, outputs of DeFusionnet (the bottom two are not public
available), outputs of proposed methods, and ground truth.

4.3 Ablation Analysis

We conduct ablation study to test the effectiveness of the proposed self-supervision
objective and the hard mining method. The completed proposed method is de-
noted as ’BCE+self-supervision+hard mining’. While ‘BCE+self-supervision’
denotes the comparison method which we remove the hard mining part from
the whole proposed method. ‘BCE’ means that we only use the common BCE
objective to train our backbone network. ‘BCE without image gradient’ denotes
that the image input gradient information is removed from the backbone net-
work, and only the U-net trained by the common BCE objective is used.
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Table 2. Parameter sensitivity test for the self-supervision term weight λs.

Dataset Metric
λs

0.0 0.1 0.2 0.3 0.4 0.5

CUHK
F-meature↑ 0.927 0.932 0.933 0.929 0.932 0.928

MAE↓ 0.066 0.063 0.060 0.060 0.065 0.065

DUT
F-measure↑ 0.793 0.807 0.811 0.807 0.799 0.805

MAE↓ 0.140 0.131 0.127 0.124 0.132 0.131

From Table 1 and Figs. 6, 7, we can observe that the completed proposed
method ‘BCE+self-supervision+hard mining’ significantly outperforms the com-
pared method ‘BCE+self-supervision’ in all the measurement, while ‘BCE+self-
supervision’ steadily achieves better results than the ‘BCE’. These results verify
that both the proposed self-supervision objective and the hard mining method
are effective for defocus blur detection. In addition, we also show that the if the
image gradient is not used, the performance drops obviously, though the model
size is much smaller and the process speed is much higher.

4.4 Parameter Sensitive Test

In the above experiments, the weight coefficient λs in Eq 5 is set to 0.2. To
test the sensitive of the value for λs, we test the model ‘BCE+self supervision’
performance when λs is with a set of different values. The testing results are
shown in Table 2. We can observe that the performance varies a little as the
value of λs changes. When λs = 0.0, this model boils down to BCE model, and
when λs = 0.2, it is equal to the model BCE + self supervision in Table 1.

5 Conclusion

Different from most existing works focusing on designing complex network, in
this paper we propose a light model to cope with the DBD problem. We reanalyze
the DBD problem and identify that the semantic information may harm the
blur detection. Starting from the DBD problem itself, we propose a novel data
augmentation method to inhibit the semantic information and enforce the neural
network to learn the blur related features rather than the semantic features. A
novel self-supervision objective is used to enhance the training. In addition, by
analyzing the relation between the salience detection and defocus blur detection,
we identify two hard occasions for DBD models, and based on the difference of
salience detection and focus detection, we design a hard mining method and
give different weights to various parts in image. With the proposed objective
function, a simple and slightly modified U-Net can achieve competitive and even
better results than competitors whose network are complex, carefully designed
and also pretrained on the ImageNet dataset. In addition, our method achieves
more than 3 times improvement on processing speed.
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