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Abstract. This paper proposes new ways of sample mixing by think-
ing of the process as generation of barycenter in a metric space for data
augmentation. First, we present an optimal-transport-based mixup tech-
nique to generate Wasserstein barycenter which works well on images
with clean background and is empirically shown complementary to ex-
isting mixup methods. Then we generalize mixup to an AutoMix tech-
nique by using a learnable network to fit barycenter in a cooperative way
between the classifier (a.k.a. discriminator) and generator networks. Ex-
perimental results on both multi-class and multi-label prediction tasks
show the efficacy of our approach, which is also verified in the presence
of unseen categories (open set) and noise.
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1 Introduction and Related Work

Deep networks have achieved unprecedented performance in various tasks, such
as image classification [18], speech recognition [13], natural language process-
ing [30], etc. The researches on improving network performance mainly focus on
backbone design [26,31], regularization [28] and data augmentation [36], etc.

Orthogonal to improvement on network backbone side, data augmentation [25,
36, 42] has been widely used for improving (neural network) model training. If
a model is trained with a tiny dataset, over-fitting problem tends to occur. The
model overly fits to the training data domain and results in poor generalization
performance on data out of that domain. As a consequence, a large number of
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methods of data augmentation have been proposed to solve over-fitting. For im-
ages, typical operations include rotation, scaling and cropping, as well as adding
noise and performing affine and other geometrical transformation. However, such
augmentation methods inherently involve human knowledge to define the vicin-
ity or neighborhood around each sample in the training dataset [8], and other
potential techniques have not been fully explored.

There is emerging trend on data augmentation using the so-called mixup
strategy [42]. It basically involves interpolating raw samples into a synthetic one
with a new label, resulting in an augmented dataset. SamplePairing [15] ran-
domly samples two images and mixes them with ratio λ = 0.5. The first image’s
label is used to train the network. Mixup [42] uses a randomly selected mixing
ratio λ from β distribution to weigh the two images and their corresponding
labels respectively. The Between-Class (BC) model [32] randomly selects two
images from two distinctive classes and mixes them by a method in [33].

There are other methods do the mixing in Latent space (a.k.a. feature space).
The MixFeat [38] and Manifold Mixup [35] seeks to interpolate the feature maps
extracted by a convolutional network. While AdaMixUp [11] aims to determine
the sample’s ratio for interpolation via network learning. However, the interpo-
lation of the methods mentioned above is still a predefined one, e.g., bilinear
interpolation. The ACAI [7] uses an auto-encoder to learn mixed encoding of
two images and a discriminator network to predict the mixing ratio from the
decoded output of mixed encoding. These two parts are trained adversarially.
Different from ACAI, the AMR [5] uses the discriminator to predict whether the
mix is real or fake and a channel-wise binary mask m ∈ {0, 1} sampled from
Bernoulli distribution to randomly activate the feature maps.

In the following, we discuss some basic background related to our approach.
Barycenter Learning. Recently image mixing methods [11,15,32,33,35,38,

42] are emerging, which simply mix two images or two feature maps to achieve the
purpose of data augmentation. In this paper, we view such methods as instances
of barycenter learning. While such a perspective in fact has not been adopted in
literature to our knowledge. We can find data points’ mean value, i.e., barycenter
via unsupervised learning as studied in optimal transport [1,2]. As a variational
problem, a weighted barycenter x̂ can be defined for some points {xi}ni=1 in a
metric space (X, d(·, ·)) with weights {λi}ni=1:

min
x

n∑
i=1

λid(xi, x)p, (1)

here d(·, ·) is a distance function or more generally divergence, p is a constant,
λi > 0 and

∑n
i=1 λi = 1. Different metric space according to d(·, ·) can lead

to different results of barycenter. For instance, by setting p = 2, X = Rn and
d(x, y) = ‖x− y‖2 in Euclidean space, we get its solution directly with x̂ =∑n
i=1 λixi. Recent data augmentation methods by mixing two images (i.e., n = 2,

x̂ = λx1 + (1− λ)x2) can be viewed as finding barycenters in this way.
Wasserstein Barycenter. Optimal transport [1,2] has gained its popularity

in learning and graphics. Regarding pixels as samples and viewing the images
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Table 1. Comparison of mixup methods for classification. Note that the mixing space
refers to the space in which the relevant distance is calculated during the mixing phase.
Therefore, Manifold Mixup and MixFeat are still bilinear interpolation methods that
mix feature maps in Euclidean space. Our OptTransMix is based on optimal transport
theory which works in Wasserstein space, and AutoMix directly adopts a network to
learn the barycenter as interpolation for input samples in Latent space. Both of them
are different from the recent mixup methods.

method mixing way mixing phase mixing space sample ratio label ratio

OptTransMix (ours) optimal transport raw image Wasserstein fixed ratio fixed ratio (1:0/0:1)
AutoMix (ours) deep neural networks feature map Latent random ratio same as sample’s

AMR [5] combine by mask feature map Euclidean random ratio same as sample’s
ACAI [7] bilinear interpolation feature map Euclidean generated by NN same as sample’s

AdaMixup [11] bilinear interpolation raw image Euclidean generated by NN same as sample’s
SamplePairing [15] bilinear interpolation raw image Euclidean half-half (1:1) fixed ratio (1:0)
Between-Class [32] bilinear interpolation raw image Euclidean random ratio same as sample’s

Manifold Mixup [35] bilinear interpolation feature map Euclidean random ratio same as sample’s
MixFeat [38] bilinear interpolation feature map Euclidean random ratio fixed ratio (1:0/0:1)

Mixup [42] bilinear interpolation raw image Euclidean random ratio same as sample’s

as histograms (i.e., probability measure), we can get the Wasserstein distance
between images. So by replacing Euclidean space with Wasserstein space and
setting d(x, y) = W (x, y), p = 1, n = 2, we can find Wasserstein barycenters
x̂ = arg minx [λW (x1, x) + (1− λ)W (x2, x)], in which the Wasserstein distance
between two images W (x, y) can be calculated iteratively in some way. One
technique for calculating barycenter in Wasserstein space can be found in [9].

KLD∗ Barycenter. As a way of data augmentation, all these methods do
have some effect on improving robustness and accuracy, compared with Empiri-
cal Risk Minimization (ERM). However, the way of mixing is limited and requires
human interference on the specific design of mixup mechanism. On the basis of
Euclidean barycenter and Wasserstein barycenter, we choose to use a neural
network to automatically fit barycenters in latent space, instead of manual cal-
culation. Recall that the goal of data augmentation is to improve the classifier’s
accuracy and in fact we can view the cross-entropy loss in classification as a diver-
gence. Specifically, it equals to KL-divergence between the mixed (as generated
by mixup techniques e.g. [32]) and true labels. Hence we propose a barycenter
generator network to fit the KLD∗ barycenter and a discriminator network (or
called classifier) to control the quality of the generator network. We train both
of the networks cooperatively such that we can get them better simultaneously.
Note that different from the generator and discriminator in GANs [3, 10, 20],
their relation is not adversarial but cooperative to make both better. Similar
to the Euclidean (Wasserstein) distance in Euclidean (Wasserstein) space, we
define a KLD∗ divergence to calculate KLD∗ barycenter in Sec. 2.3.

Contributions. Table 1 shows the comparison of different methods, w.r.t.
the way of mixing, the mixing phase (mix with raw images or feature maps),
the different mixing space and mixing ratios for sample and label. AutoMix is
the only one using the network to find the barycenter in Latent space, and more
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Fig. 1. Different barycenters
on MNIST and CIFAR-10.

Table 2. The main observation of this paper: viewing
mixup methods from the distance induced space perspec-
tive. The proposed method AutoMix enjoys the capabil-
ity of learning a barycenter from training data tailored
to a specific prediction task. In contrast, the Euclidean-
distance-based models and Wasserstein-distance-based
methods are all learning-free.

Space Distance and equations Methods

Euclidean Euclidean distance, Eq. 3 AdaMixup [11] etc.
Wasserstein Wasserstein distance, Eq 5 OptTransMix (ours)

Latent KLD∗ divergence, Eq. 7 AutoMix (ours)

broadly speaking, sample mixup by end-to-end network learning. We use Fig. 1
and Table 2 to better summarize the position and results of our approaches:
OptTransMix, AutoMix. The main highlights of our work are:

i) We apply the barycenter theory to view data augmentation and find that
many previous studies on image mixing can be viewed as finding Euclidean
barycenters to make the discriminator better.

ii) Under this perspective, we propose OptTransMix, whereby Wasserstein
distance is used to find the barycenters in contrast to linear interpolation in
Euclidean space, as implemented by the optimal-transport-based transformation
technique [27]. Though the tool is originally for graphics, while we show it is
complementary to bilinear interpolation for mixup-based data augmentation,
especially given images with relatively clean backgrounds.

iii) One step further, the cross-entropy loss for image classifier can be viewed
as KL divergence between label distribution based on the classifier given two im-
ages as input. By this divergence, we devise an AutoMix technique to generate
barycenter images with a deep network. It is more general compared with pa-
rameters’ learning-free mixing methods. Specifically, we have tried to implement
such a barycenter generator network with pixel-level processing model U-Net [22]
based on SE [14] attention mechanism.

iv) Experimental results on multi-class and multi-label prediction show our
method’s effectiveness. It also performs robustly against noise, and on the openset
problem whereby unseen categories emerge. The source code will be released.

In this paper, we mainly discuss two-image-based barycenter generation for
efficiency, while it is straightforward to generalize to multiple images with a
larger batch-size. We leave for future work for its necessity and advantage.
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2 Proposed Barycenter Learning Method

We first present the main idea of our method, followed by two embodiments
named OptTransMix and AutoMix, which is based on fixed Wasserstein distance
and learnable network induced space based on training data, respectively.

2.1 Main Idea and Approach Overview

The barycenter learning, especially Wasserstein barycenter learning has been
studied in recent years with its common definition in Eq. 1. For data augmenta-
tion, we use the barycenter x̂ calculated in Eq. 1 as the augmented training set.
So we can get the objective for training:

min
D

Exi∼p(x)

n∑
i=1

λiKL
(
yi||D(x̂)

)
, (2)

where x̂ = arg minx
∑n
i=1 λid(xi, x)p if given n samples as x1, x2, ..., xn as re-

ferred in Eq. 1, D(·) is the target label distribution output by discriminator
D, p(x) is the distribution of real images, yi is the real-label distribution, i.e.,
one-hot encoding, and E[·] denotes the expectation. The above object is actually
equal to weighted cross-entropy loss. For p = 2 and n = 2, the barycenter x̂ in
Euclidean space (i.e., with Euclidean distance) is simplified as:

x̂ = arg min
x
λ||x1 − x||22 + (1− λ)||x2 − x||22, (3)

and the solution is x̂ = λx1 + (1 − λ)x2, which is exactly the linear mixup
methods [15, 32, 42]. For simplicity, barycenter learning is done with different
distances d(·, ·) and the number of images n = 2 in Eq. 1.

Our main approach is based on barycenter learning which relates to optimal
transport. We first propose our baseline method called OptTransMix in Sec. 2.2.
We extend the optimal transport based barycenter computing to a neural net-
work and propose our main approach AutoMix in Sec. 2.3, which enables learning
of barycenter instead of fixed computing.

2.2 OptTransMix: Barycenter Computing by Wasserstein Distance

Although previous studies have partly explained the effectiveness of mixup-like
models and achieve good results, while to some extent these methods are ba-
sically linear models (either mixing with raw images or feature maps) which is
restrictive and equivalent to finding barycenters in Euclidean space. Here we
provide a non-linear alternative that leverages the fast optimal-transport-based
barycenter computation technique as developed in [27]. The Wasserstein distance
in optimal transport can evaluate two probability measures, as given by [1]:

W (a1, a2) = min
π∈U(a1,a2)

E(x,y)∼π||x− y||, (4)
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Fig. 2. Results by OptTransMix under smoothing parameter value (y-axis) and ratios
(x-axis). We choose the sample whose mixing ratio [0.1, 0.3] or [0.7, 0.9] for training.

where a1 and a2 are two probability measures, U(a1, a2) is the set of all joint
distributions π whose marginals are a1 and a2. By viewing a1 and a2 as two
images, x and y are their pixels, we can calculate the distance between images.

With Wasserstein distance used for Wasserstein barycenter, one can find im-
age barycenters in Wasserstein space as new inputs instead of linear barycenters
in Euclidean space for training a classifier (namely discriminator). By setting
p = 1 in Eq. 1, we can get the Wasserstein barycenter:

min
a

n∑
i=1

λiWσ(a, ai), (5)

where ai is the discrete probability measure (i.e., input images), a is the Wasser-
stein barycenter. For high-resolution input images, we use entropic approxima-
tion of barycenters [9] to make it a smooth convex minimization problem which
can be calculated by gradient descent. To put it in a same setting with existing
mixup methods, we specify n = 2 as a nonlinear mixup method.

We call such a geometrical image mixing up method OptTransMix. It consid-
ers the global layout of the image content and aims to warp an intermediate one
between the two inputs, in a sense of more realistic interpolation in appearance.
For synthetic image’s label for OptTransMix, we resort to a simple strategy that
if the ratio between two input images is under 0.5, then the label is set to the first
image’s label, otherwise we use the second’s label. The samples in the middle
(i.e., ratio around 0.5) are not generated for training due to vagueness.

The results generated by OptTransMix are shown in Fig. 2 from MNIST and
FASHION-MNIST. Given a set of weights λ = {λ}ki=1 ∈ Rk+, we can compute
any synthetic one between the two images by re-weighting. Moreover, the regu-
larization strength scalar value σ in the formula, i.e., the smoothing parameter,
controls the smoothness of optimal-transport-based interpolation.
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Fig. 3. Our barycenter-based network architecture. Unlike GAN’s adversarial training
which is time consuming, the two networks in AutoMix reinforce each other and are
trained simultaneously thus being much more efficient.

In short, OptTransMix aims to obtain the intermediate states, as a new way
of data augmentation. Compared with mixup-like methods’ synthetic images
(refer to their papers), the ones generated by OptTransMix are more visually
meaningful for human and the experimental results also prove the advantages
for computer image recognition. However, we find this method has limitations in
that it is only applicable to images with clean backgrounds, i.e., the images need
to highlight the foreground and ignore the background such that the shape of the
image content can be meaningfully interpolated. The failure case of OptTransMix
on CIFAR-10 can be seen in the middle of Fig. 1. In fact, the technique is
originally applied for graphics with little background noise [27]. Meanwhile, we
also note the recent advance on generative adversarial networks (GAN) [10] and
Wasserstein GAN [3] related to OT techniques have pushed forward the realistic
interpolation of image for specific objects e.g., face [16].

2.3 AutoMix: Barycenter Learning with Learnable Deep Networks

The pipeline of AutoMix is shown in Fig. 3, which is mainly composed of a
barycenter generator network and a discriminator network. We input two raw
images and the related mixing ratio to get the weighted barycenter, and then
feed it into the discriminator to output logits. We use the reconstruction loss of
generation process and the cooperative loss of classification process to optimize
both of the networks simultaneously. Here we define KLD∗ divergence and KLD∗

barycenter analogous to the measure rules in Euclidean and Wasserstein space.
Barycenter Generator Network. We start with the barycenter generator

network according to Fig. 3 to introduce our AutoMix technique. Specifically, we
adopt U-Net [22] as the baseline generative model. This network is known to be
state-of-the-art architecture for image segmentation, which we believe is suitable
for our pixel-level transformation task. Fig. 4 illustrates the improved U-Net ar-
chitecture for our barycenter generation task. SE(Squeeze-and-Excitation) [14]
module is embedded as an attention mechanism before each downsampling layer
in the feature extraction phase based on the original U-Net structure. SE mod-
ule is divided into three stages, that is, the global pooling layer to generate the
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Fig. 4. The improved U-Net with SE modules. Weighted feature maps at various scales
of each image are activated by λ and then concatenated with up-sampled feature maps
to fuse multi-scale information for the final generation of high-quality barycenters.

embedding of channel-wise feature responses, the fully connected layers to pro-
duce a collection of per-channel modulation weights and finally the channel-wise
multiplication operation to obtain the weighted feature maps.

We input two raw images and extract their weighted feature maps at multiple
scales after passing through the SE modules as shown by the blue dotted arrows
in the figure. For feature maps of each scale, the

⊕
denotes the channel-wise

concatenation of two activated feature maps according to the mixing ratio λ. The
operation can be summarized as

[
f (l)(x1)× λ

]⊕[
f (l)(x2)× (1− λ)

]
, where xi

denotes the input image, f (l)(xi) represents the output of SE module at lth scale
in U-Net and l ∈ [1, 5]. So we attribute the outstanding performance of AutoMix
to our U-Net’s excellent feature extraction and feature screening capabilities.
With an attention-like module in U-Net, AutoMix can better retain feature maps
of two images and mix them appropriately rather than mixup’s fixed mixing way.

Although we are not the first to integrate the attention mechanism into U-
Net [21,41], it is worth noting that we may be the first to apply the integration
of U-Net and SE module to the field of image generation and achieve good
performance according to the experimental results. Besides, our model can accept
more than two inputs to generate barycenters of multiple images after expanding.

KLD∗ divergence. Similar to Euclidean and Wasserstein barycenters based
on their respective distances, the divergence in Latent space for barycenter learn-
ing needs to be defined and we call it KLD∗ divergence. In fact, the correspond-
ing barycenter can be derived from the cross-entropy, i.e., KL-divergence for
the classifier. For an image x, let D(x) denotes the prediction probability with
a discriminator D, which is exactly the distribution of x in Latent space. If x
comes from the original data domain, we set D(x) = y, otherwise D(x). Here we
define an optimal discriminator D∗ to combine these two cases, and based on
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this observation, we then define the KLD∗ divergence given two images x1, x2:

D∗(x) =

{
y, if x is a raw image

D(x), if x = G(x1, x2, λ)
,KLD∗(x1||x2)

def
= KL

(
D∗(x1)||D∗(x2)

)
.

(6)
KLD∗ Barycenter. Different from Euclidean barycenter and Wasserstein

barycenter, the barycenter based on KLD∗ divergence can not be calculated di-
rectly by iterations but gradient descent as it is based on deep-net discriminator.
So we use barycenter generator network G, specifically a U-Net [22] architecture
to generate the barycenter given two images x1, x2 and their ratio λ, as expressed
by x̂ = G(x1, x2, λ). So we can get the KLD∗ barycenter by optimizing

min
G

λKLD∗ (x1||x̂) + (1− λ)KLD∗(x2||x̂) . (7)

Cooperative loss. The generated barycenter x̂ is input into discriminator
D for training as the augmented sample. Akin to Euclidean (Wasserstein) dis-
tance for Euclidean (Wasserstein) barycenter, KLD∗ divergence is used for KLD∗

barycenter, which is also the loss for discriminator (recall it is image classifier).
Hence our optimization for barycenter generator network and discriminator net-
work refers to minimizing the KL divergence between real label distribution and
Latent distribution output by D:

LG,D(x1, x2) = λKL
(
y1||D(x̂)

)
+ (1− λ)KL

(
y2||D(x̂)

)
, (8)

where D(x̂) is the target distribution in view of discriminator D with barycenter
x̂, and λ ∼ U(0, 1) is the mixing ratio. Different from GANs [3,10], here the loss
for G and D is cooperative. When D reaches optimum, the optimization goal
changes from Eq. 8 to Eq. 7. While given optimized G, we just need to optimize
Eq. 2, to get discriminator D → D∗ and the generated barycenter closer to the
theoretical optimum.

Reconstruction loss. In line with CGAN [20], in order to prevent the
generated image from being too far from the original ones, L1 regularization is
imposed by a reconstruction loss to train the barycenter generator network:

LG(x1, x2) = λ||x1 − x̂||1 + (1− λ)||x2 − x̂||1, (9)

where x1 and x2 are two input images, and x̂ = G(x1, x2, λ) is the barycenter
generated by G. The reason for using L1 instead of L2 is that L1 produces images
with relatively higher definition.

Final loss. Unlike GAN’s adversarial training process, the two networks in
AutoMix reinforce each other and are trained jointly with a factor α controlling
the weight of two loss terms (not the difference to min max in GAN):

min
D

min
G

Ex1,x2∼p(x)LG,D(x1, x2) + αLG(x1, x2). (10)

where p(x) is the distribution of real images. We find the performance by setting
different α from 0.5 to 2 with a step 0.1 is very small. We finally set α = 1.5. The
barycenters generated by OptTransMix and AutoMix are compared in Fig. 1.
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Table 3. Sampling and training protocols. We use 10-fold cross-validation for MIML
because of its small size and we train for 10 trials for other datasets. We train models
on both sampling and full set of some of the datasets and test models on their official
testing set respectively to explore how these methods perform on small scale datasets.
CIFAR-100 and Tiny-ImageNet are only trained with full dataset.

label dataset #cls. sampling sub/full training set testing set training strategy

single

MNIST [19] 10 50 per class 500 / 60,000 official 10,000

10 trials

F-MNIST [37] 10 50 per class 500 / 60,000 official 10,000
CIFAR-10 [17] 10 500 per class 5,000 / 50,000 official 10,000

CIFAR-100 [17] 100 500 per class - / 50,000 official 10,000
GTSRB [29] 43 50 per class 2,150 / 39,209 official 12,630

T-IMAGENET [39] 200 500 per class - / 100,000 official 10,000

multi MIML [44] 5 train:test=1:1 1000 1000 10-fold CV

We also have tried alternating optimization strategy for two networks while
the convergence become slower with worse final performance. Besides the stan-
dard classification setting, we also explore the possibility of applying our Opt-
TransMix and AutoMix to other common tasks. The first one is multi-label
prediction [34, 43], the other is the so-called openset problem [6, 24] whereby
there exist new categories in the testing set which are unseen in the training set.
Especially for the second problem, this is still considered as an open problem
and a simple but effective treatment is to adopt a threshold-based strategy to
decide if the test sample shall be regarded as an unseen one that does not belong
to any of the existing categories in training set. Precisely, if the highest inference
score (or the top 2 or so) is under a given threshold, this sample will be classified
as an unseen sample. Note the threshold can be determined in more diverse and
adaptive ways e.g., depending on the specific label of samples. In this paper, for
simplicity and generality, we use a fixed threshold for all labels in experiments.

3 Experiment and Discussion

Experiments are conducted on a desktop with Nvidia GeForce GTX1080Ti GPU
and 32G memory. We verify our model on public datasets including MNIST [19],
FASHION-MNIST [37], the traffic sign benchmark GTSRB [29], CIFAR-10 [17],
CIFAR-100 [17] for image classification. The reason for using these datasets is
that they have a relatively small size such that the effects of different mixup
strategies can be more pronounced as a way of data augmentation. This is also
practically common in front of small data for network learning. Besides, for
larger dataset, we choose Tiny-ImageNet [39] instead of ImageNet [23] due to our
hardware limitation. To further evaluate the behavior of our methods on different
tasks, we also adopt the MIML [44] dataset for image multi-label prediction. Note
for our OptTransMix, it is only tested on classification benchmark MNIST and
FASHION-MNIST as we find it requires clean background. The dataset sampling
and training protocols are detailed in Table 3.
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Table 4. Top-1 error rate (mean ± standard deviation) on MNIST/FASHION-MNIST
by 10 trials. Underline denotes best results.

Method MNIST(full) MNIST(sub) F-MNIST(full) F-MNIST(sub)

Baseline 0.271± 0.012 10.83± 0.61 5.202± 0.087 20.95± 0.97
BC [32] 0.257± 0.032 5.93± 0.59 4.905± 0.071 16.69± 0.31

Mixup [42] 0.268± 0.015 6.17± 0.85 4.788± 0.066 17.38± 0.59
Manifold Mixup [35] 0.258± 0.021 4.98± 0.34 4.910± 0.079 17.47± 0.38

OptTransMix 0.260± 0.031 4.86± 0.48 5.021± 0.068 16.97± 0.65
OptTransMix+Mixup 0.265± 0.018 8.12± 0.48 4.869± 0.078 17.10± 0.76

OptTransMix+BC 0.257± 0.028 4.37± 0.44 4.872± 0.059 16.67± 0.53
AutoMix 0.256± 0.036 4.58± 0.57 4.769± 0.064 16.79± 0.75

For discriminator backbone, we use a simple 11-layer CNN (2conv + pool
+ 2conv + pool + 4conv + pool + 3fc) according to [32] and ResNet-18 [12].
The 11-layer CNN is used for MNIST and FASHION-MNIST, while ResNet-18
is used for the other datasets.

We compare the baseline (namely without mixing method) and three mixup
methods including Between-Class (BC) learning [32], Mixup [42] and Manifold
Mixup [35]. Regarding the details of training, we apply data pre-processing in-
cluding random cropping, horizontal flipping and normalization on the raw data.
We choose Stochastic Gradient Descent with momentum = 0.9 as our optimizer
and the learning rate is set to 0.1 at the beginning and decays as the training
process continues. For classification (single-label prediction), we adopt the log-
softmax cross-entropy as loss. For multi-label prediction, as it can be arguably
treated as a binary classification problem by selecting one label as positive and
the others negative [34], we use sigmoid activation function as the last layer
of discriminator network and the sigmoid cross-entropy as the loss function,
for simplicity. Note the effectiveness of such a one vs. rest binary classification
treatment has been also verified [4, 40].

Single-label classification. We first apply OptTransMix and AutoMix on
two simple image classification datasets: MNIST and FASHION-MNIST. In ad-
dition, since OptTransMix is orthogonal to Between-Class learning [32] and
Mixup [42], we also apply it to generate additional samples for these two meth-
ods. We averagely sample 50 images per class to form a training set with a total
of 500 images, which is relatively small and thus calls for data augmentation.
We also train with full data to figure out how these methods actually work.
For testing, we use the official 10,000-image testing set for both MNIST and
FASHION-MNIST. To eliminate the impact of random initialization, we train
each model for 10 trials. An 11-layer CNN is used as the backbone and is trained
for 100 epochs. The learning rate is divided by 10 at the epoch in {50, 75}. Top-1
accuracy is used as the evaluation metric for single-label classification tasks.

We show the results of 10 trials on MNIST and FASHION-MNIST in Table 4.
Improvement is made by using OptTransMix and AutoMix. Besides, using Opt-
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Table 5. Top-1 error rate (mean ± standard deviation), and mAP for MIML using
ResNet-18 trained by 200 epochs for 10 trials. Underline denotes best results.

Dataset baseline BC [32] Mixup [42] M-Mixup [35] AutoMix

CIFAR10 (full) 4.59± 0.09 4.03± 0.34 3.96± 0.10 3.99± 0.06 3.72± 0.10
CIFAR10 (sub) 18.79± 0.33 15.97± 0.18 15.76± 0.33 15.38± 0.22 15.17± 0.41

CIFAR100 (full) 22.39± 0.17 21.19± 0.24 21.05± 0.24 20.25± 0.17 20.04± 0.14
GTSRB (full) 0.44± 0.06 0.41± 0.04 0.54± 0.05 0.38± 0.11 0.41± 0.08
GTSRB (sub) 4.52± 0.69 2.38± 0.22 2.98± 0.27 2.38± 0.21 2.34± 0.18

T-ImageNet (full) 40.35± 0.25 38.71± 0.27 38.77± 0.19 37.75± 0.46 37.15± 0.26
MIML (full) 72.14± 1.08 72.92± 0.85 73.02± 0.80 74.56± 1.02 74.80± 0.92

TransMix to generate more diverse samples can further improve the performance
of Mixup and BC. Moreover, OptTransMix performs better on small datasets,
while AutoMix outperforms on relatively bigger ones.

We then apply AutoMix to some of the bigger and more difficult datasets.
Similarly, we still averagely sample training images, namely 500 images per class
for CIFAR-10 and 50 images per class for GTSRB, so the total amount of training
set is 5,000 images and 2,150 images respectively. Full data training is also con-
ducted. Since CIFAR-100 and Tiny-ImageNet only have 500 images per class, we
only train with full data on them. ResNet-18 is used to train 100 epochs for GT-
SRB and 200 epochs for CIFAR-10/100 and Tiny-ImageNet. The learning rate
is divided by 10 at the epoch in {50, 75}, {100, 150} and {100, 150} respectively.
We test the model on the official 10,000-image testing set for CIFAR-10/100 and
Tiny-ImageNet, and the official 12,630-image testing set for GTSRB.

The average of 10 trials are reported in Table 5, showing that AutoMix out-
performs baseline and other mixup-like methods on all datasets except GTSRB.

Multi-label classification. MIML [44] is a multi-instance multi-label dataset,
which has a total of 2,000 landscape images. Due to its small amount of data,
we divide it into a training set and a testing set with the ratio of 1:1. We use
10-fold cross-validation to evaluate whether our methods perform well on multi-
label image classification tasks compared with baseline and other image mixing
methods. ResNet-18 is used to train 100 epochs and the learning rate is divided
by 10 at the epoch in {50, 75}. Mean average precision (mAP) is used for multi-
label classification tasks, which is calculated in a similar way to mAP in object
detection. As shown in Table 5, AutoMix outperforms as well.

Openset problem. The openset problem can be defined as there exist un-
seen categories in testing set but not in training set. In this part, we train the
model by a subset of categories and test by whole categories. In testing phase,
‘threshold’ is used to compare with the confidence to control whether a sample
will be classified as a known or unknown category. We conduct results in two set-
tings here: a) normal openset setting (n seen categories + 1 ‘unknown’
category) and b) binary classification setting (1 ‘known’ category +
1 ‘unknown’ category). The results are reported in Fig. 5, illustrating the
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(a) MNIST (category: seen 5, unseen 5) (b) F-MNIST (category: seen 5, unseen 5)

(c) CIFAR-10 (category: seen 5, unseen 5) (d) GTSRB (category: seen 12, unseen 31)

Fig. 5. Top-1 accuracy as threshold grows on the openset problem. Left in each pair:
setting a). Right in each pair: setting b). See main test for details of the two settings.

Fig. 6. Absolute accuracy (left) and rel-
ative accuracy drop (right) as noise in-
creases. The higher (lower) the better.

Table 6. Ablation study on AutoMix us-
ing ResNet-18 on CIFAR-10 by top-1 error
rate (mean ± standard deviation of 10 tri-
als). Underline denotes best results.

Comparison Setting CIFAR10 (full) CIFAR10 (sub)

(a) 5.38± 0.11 16.32± 0.43
label strategy for (b) 3.91± 0.17 15.44± 0.34
synthetic sample (c) 3.86± 0.11 15.35± 0.31

(d) 3.72± 0.10 15.17± 0.41

same 4.21± 0.18 16.10± 0.39
label conflict different 3.98± 0.15 15.67± 0.32

random 3.72± 0.10 15.17± 0.41

relationship between accuracy and threshold. The left figures in each subplot
correspond to setting a) and the right figures correspond to b). Intuitively, the
bigger the area under the curve is, the more robust the model is, which means
we can get high performance in a wide range of threshold values. By a closer
study, one can find our method not only achieves a higher peak of accuracy (with
optimal threshold value) but also can be less sensitive to threshold, which proves
the effectiveness of AutoMix in dealing with openset problems.

Performance against noise. We evaluate the robustness on CIFAR-10 by
ResNet-18, by adding random salt-and-pepper noise with level from 0 to 30. The
absolute and relative accuracy drop as the noise increases is shown in Fig. 6. Note
that the baseline model (blue) has the best robustness against noise, followed by
AutoMix (red), and Mixup (yellow) and BC (green) are the worst. The results
show that AutoMix can improve the classification accuracy while maintaining
the robustness against the adversarial samples with simple noise added.
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Ablation study on AutoMix. We are interested in how AutoMix behaves
with different mixed labels and different sample constraints fed to the network.
Hence an ablation analysis is conducted and the results are shown in Table 3.

We investigate the relationship between the performance and the label set-
tings. We attempt to treat it as a multi-class classification task, either taking
the first image’s label (a) or the half-half mix of two labels (b) as the
final label. According to the experimental results, treating it as a multi-label
classification task (c), i.e., simply add the two labels and constrain it between
0 and 1, is more effective. Furthermore, our proposed AutoMix using random
ratios for label weighting (d) achieves a more considerable result.

We also study how the categories of the two input images to be mixed affects
performance. We find that the performance degrades if the given images have the
same label. The best results come from two randomly selected samples, which
means AutoMix can learn both within-class and Between-Class features by the
barycenter generated in Latent space.

Discussion. The reason why OptTransMix excels on small datasets (Ta-
ble 4) may be that the optimal-transport-based Wasserstein barycenter can be
calculated with any amount of data. Compared to the U-Net in AutoMix, Opt-
TransMix does not need a large amount of data for training to achieve good
performance.

Regarding the computational complexity of the models, although the Wasser-
stein barycenter is computationally intensive (especially for high-dimensional
data), we can separate this generation process before the training stage. Thus to
some extent, the complexity has not increased for OptTransMix. For AutoMix,
the U-Net introduces ∼ 1.96 million additional parameters beyond the ∼ 11.27
million parameters required by ResNet18, corresponding to ∼ 17% increase.

4 Conclusion

This paper aims to learn the interpolation model for data augmentation which is
a general and fundamental building block for practical learning systems. Differ-
ing from most existing mixup methods that interpolate the raw images or their
feature maps in the Euclidean space by linear or bilinear interpolation, we first
explore a more advanced interpolation technique called OptTransMix, which
seeks the Wasserstein barycenter between two images, and show their useful-
ness on small datasets. Then we generalize the fixed Wasserstein-distance-based
model to the new approach called AutoMix, which stands out on large datasets.
It trains an attention-based barycenter generator network and a discriminator
network concurrently with the cooperative loss.

Experiments have shown the efficacy of both our proposed techniques on tra-
ditional classification, multi-label prediction, openset problems, and the robust-
ness test against noise. Limited by our hardware device, we leave the experiments
on large scale datasets for our future work.
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