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Fig. 1: Examples of open-edit. The editing instruction (top), source image (left),
and manipulated image (right) are shown for each example. Our approach edits
open-vocabulary color, texture, and semantic attributes of open-domain images.

Abstract. We propose a novel algorithm, named Open-Edit, which is
the first attempt on open-domain image manipulation with open-vocabulary
instructions. It is a challenging task considering the large variation of
image domains and the lack of training supervision. Our approach takes
advantage of the unified visual-semantic embedding space pretrained on
a general image-caption dataset, and manipulates the embedded visual
features by applying text-guided vector arithmetic on the image feature
maps. A structure-preserving image decoder then generates the manipu-
lated images from the manipulated feature maps. We further propose an
on-the-fly sample-specific optimization approach with cycle-consistency
constraints to regularize the manipulated images and force them to pre-
serve details of the source images. Our approach shows promising results
in manipulating open-vocabulary color, texture, and high-level attributes
for various scenarios of open-domain images.3

1 Introduction

Automatic image editing, aiming at manipulating images based on the user
instructions, is a challenging problem with extensive applications. It helps users
to edit photographs and create art works with higher efficiency.

? This work was done during Xihui Liu’s internship at Adobe.
3 Code is released at https://github.com/xh-liu/Open-Edit.
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Several directions have been explored towards image editing with generative
models. Image-to-image translation [19, 49, 12] translates an image from a source
domain to a target domain. But it is restricted to the predefined domains, and
cannot be generalized to manipulating images with arbitrary instructions. GAN
Dissection [5] and GANPaint [4] are able to add or remove certain objects by
manipulating related units in the latent space. However, they are limited to
editing a small number of pre-defined objects and stuff that can be identified by
semantic segmentation and can be disentangled in the latent space.

Most relevant to our problem setting is language-based image editing [51, 13,
31, 16, 28]. Some previous work [14, 11, 8] annotates the manipulation instruc-
tions and ground-truth manipulated images for limited images and scenarios.
But it is infeasible to obtain such annotations for large-scale datasets. To avoid
using ground-truth manipulated images, other work [51, 13, 31, 16, 28] only use
images and caption annotations as training data. Given an image A and a mis-
matched caption B, the model is required to edit A to match B. The manipulated
images are encouraged to be realistic and to match the manipulation instruc-
tions, without requiring ground-truth manipulated images as training supervi-
sion. However, it is assumed that any randomly sampled caption is a feasible
manipulation instruction for the image. For example, given an image of a red
flower, we can use “a yellow flower” as the manipulation instruction. But it is
meaningless to use “a blue bird” as the manipulation instruction for the image
of a red flower. So this approach is restricted to datasets from a specific domain
(e.g ., flowers or birds in previous work [30]) with human-annotated fine-grained
descriptions for each image, and cannot generalize to open-domain images.

In this work, we aim to manipulate open-domain images by open-vocabulary
instructions with minimal supervision, which is a challenging task and has not
been explored in previous work. We propose Open-Edit, which manipulates the
visual feature maps of source images based on the open-vocabulary instructions,
and generates the manipulated images from the manipulated visual feature maps.
It takes advantages of the universal visual-semantic embedding pretrained on a
large-scale image-caption dataset, Conceptual Captions [35]. The visual-semantic
embedding model encodes any open-domain images and open-vocabulary in-
structions into a joint embedding space. Features within the joint embedding
space can be used for localizing instruction-related regions of the input images
and for manipulating the related visual features. The manipulations are per-
formed by vector arithmetic operations between the visual feature maps and the
textual features, e.g ., visual embedding of green apple = visual embedding of
red apple - textual embedding of “red apple” + textual embedding of “green
apple”. Then a structure-preserving image decoder generates the manipulated
images based on the manipulated visual feature maps. The image generator is
trained with image reconstruction supervision and does not require any paired
manipulation instruction for training. So our approach naturally handles open-
vocabulary open-domain image manipulations with minimal supervision.

Moreover, to better preserve details and regularize the manipulated images,
we introduce sample-specific optimization to optimize the image decoder with
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the specific input image and manipulation instruction. Since we cannot apply
direct supervisions on the manipulated images, we adopt reconstruction and
cycle-consistency constraints to optimize the small perturbations added to the
intermediate decoder layers. The reconstruction constraint forces the image de-
coder to reconstruct the source images from their visual feature maps; The cycle-
consistency constraint performs a cycle manipulation (e.g ., red apple → green
apple → red apple) and forces the final image to be similar to the original ones.

Our proposed framework, Open-Edit, is the first attempt for open-domain
image manipulation with open-vocabulary instructions, with several unique ad-
vantages: (1) Unlike previous approaches that require single-domain images and
fine-grained human-annotated descriptions, we only use noisy image-captions
pairs harvested from the web for training. Results in Fig. 1 demonstrates that
our model is able to manipulate open-vocabulary colors, textures, and semantic
attributes of open-domain images. (2) By controlling the coefficients of the vector
arithmetic operation, we can smoothly control the manipulation strength and
achieve visual appearances with interpolated attributes. (3) The sample-specific
optimization with cycle-consistency constraints further regularizes the manip-
ulated images and preserves details of the source images. Our results achieve
better visual quality than previous language-based image editing approaches.

2 Related Work

Image Manipulation with Generative Models. Zhu et al . [48] to defines col-
oring, sketching, and warping brush as editing operations and used constrained
optimization to update images. Similarly, Andrew et al . [6] proposes Introspec-
tive Adversarial Network (IAN) which optimizes the latent space to generate
manipulated images according to the input images and user brush inputs. GAN-
Paint [4] manipulates the latent space of the input image guided by GAN Dis-
section [5], which relies on a segmentation model to identify latent units related
to specific objects. This approach therefore is mainly suitable for adding or re-
moving specific types of objects from images. Another line of work focuses on
face or fashion attribute manipulation with predefined attributes and labeled
images on face or fashion datasets [33, 37, 43, 36, 1, 10, 39]. In contrast, our ap-
proach aims to handle open-vocabulary image manipulation on arbitrary colors,
textures, and high-level attributes without attribute annotations for training.
Language-based Image Editing. The interaction between language and vi-
sion has been studied for various applications [40, 25, 7, 26, 42]. Language-based
image editing enables user-friendly control for image editing by free-form sen-
tences or phrases as the manipulation instructions. [14, 11, 8] collects paired data
(i.e. original images, manipulation queries, and images after manipulation) for
training. However, collecting such data is time-consuming and infeasible for most
editing scenarios. Other works [51, 13, 31, 16, 28, 45] only require image-caption
pairs for training, but those methods are restricted to specific image domains
with fine-grained descriptions such as flowers or birds. Our work extends the
problem setting to open-domain images. Moreover, our approach does not rely



4 X. Liu et al.

on fine-grained accurate captions. Instead, we use Conceptual Captions dataset,
where the images and captions are harvested from the web. Concurrent work [23]
conducts language-based image editing on COCO dataset. But it takes a trade-
off between reconstructing and editing, restricting the model from achieving both
high-quality images and effective editing at the same time.
Image-to-image Translation. Supervised image-to-image translation [19, 9,
41, 32, 27] translates images between different domains with paired training data.
[38, 24, 34, 44, 49, 21] focus on unsupervised translation with unpaired training
data. Consequent works focus on multi-domain [12] or multi-modal [50, 2, 18,
22]. However, one have to define domains and collect domain-specific images for
image-to-image translation, which is not able to tackle arbitrary manipulation
instructions. On the contrary, our approach performs open-vocabulary image
manipulation without defining domains and collecting domain-specific images.

3 Method

Our goal of open-vocabulary open-domain image manipulation is to edit an
arbitrary image based on an open-vocabulary manipulation instruction. The
manipulation instructions should indicate the source objects or attributes to be
edited as well as the target objects or attributes to be added. For example, the
manipulation instruction could be “red apple → green apple”.

There are several challenges for open-vocabulary open-domain image manip-
ulation: (1) It is difficult to obtain a plausible manipulation instruction for each
training image. And it is infeasible to collect large-scale ground-truth manipu-
lated images for fully supervised training. (2) The open-domain images are of
high variations, compared with previous work which only consider single-domain
images like flowers or birds. (3) The manipulated images may fail to preserve all
details of the source images. Previous work on language-guided image editing
uses other images’ captions as the manipulation instruction for an image to train
the model. However, it assumes that all images are from the same domain, while
cannot handle open-domain images, e.g ., a caption for a flower image cannot be
used as the manipulation instruction for a bird image.

To achieve open-vocabulary open-domain image manipulation, we propose a
simple but effective pipeline, named Open-Edit, as shown in Fig. 2. It exploits
the visual-semantic joint embedding space to manipulate visual features by tex-
tual features, and then decodes the images from the manipulated feature maps.
It is composed of visual-semantic embedding, text-guided visual feature manip-
ulation, structure-preserving image decoding, and sample-specific optimization.

There are two stages for training. In the first stage, we pretrain the visual-
semantic embedding (VSE) model on a large-scale image-caption dataset to em-
bed any images and texts into latent codes in the visual-semantic embedding
space (Fig. 2(a)). Once trained, the VSE model is fixed to provide image and
text embeddings. In the second stage, the structure-preserving image decoder is
trained to reconstruct the images from the visual feature maps encoded by the
VSE model, as shown in Fig. 2(b). The whole training process only requires the
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(b) Train structure-preserving image generator
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(d) Sample-specific optimization (Fix image encoder, text encoder and image decoder, optimize sample-specific perturbations)
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Reconstruct input image
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Fig. 2: The pipeline of our Open-Edit framework. (a) and (b) show the training process.
(c) and (d) illustrate the testing process. To simplify the demonstration, edge extractor
and text encoder are omitted in (d).

images and noisy captions harvested from the web, and does not need any human
annotated manipulation instructions or ground-truth manipulated images.

During inference (Fig. 2(c)), the visual-semantic embedding model encodes
the input images and manipulation instructions into visual feature maps and
textual features in the joint embedding space. Then text-guided visual feature
manipulation is performed to ground the manipulation instructions on the visual
feature maps and manipulate the corresponding regions of the visual feature
maps with the provided textual features. Next, the structure-preserving image
decoder generates the manipulated images from the manipulated feature maps.

Furthermore, in order to regularize the manipulated images and preserve
details of the source images, we introduce small sample-specific perturbations
added to the intermediate layers of the image decoder, and propose a sample-
specific optimization approach to optimize the perturbations based on the input
image and instruction, shown in Fig. 2(d). For a specific image and manipulation
instruction, we put constraint on both the reconstructed images and the images
generated by a pair of cycle manipulations (e.g ., red apple→ green apple→ red
apple). In this way, we adapt the image generator to the specific input image
and instruction and achieve higher quality image manipulations.

3.1 A Revisit of Visual-Semantic Embedding

To handle open-vocabulary instructions and open-domain images, we use a
large-scale image-caption dataset to learn a universal visual-semantic embed-
ding space. Convolutional neural networks (CNN) and long short-term memory
networks (LSTM) are used as encoders to transform images and captions into
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Original Image Grounding of “honey” Grounding of “milk” Original Image Extracted Edge Map

Fig. 3: Left: an example of grounding results by visual-semantic embedding. Right: an
example of edge map extracted by off-the-shelf edge detector.

visual and textual feature vectors. A triplet ranking loss with hardest negatives,
as shown below, is applied to train the visual and textual encoders [15].

L(v, t) = max
t̂

[m+ 〈v, t̂〉 − 〈v, t〉]+ + max
v̂

[m+ 〈v̂, t〉 − 〈v, t〉]+ (1)

where v and t denote the visual and textual feature vectors of a positive image-
caption pair. v̂ and t̂ are the negative image and caption features in the mini-
batch. [x]+ = max(0, x), and m is the constant margin for the ranking loss.
〈v, t〉 denotes the dot product to measure the similarity between the visual and
textual features. With the trained VSE model, the visual feature maps before
average pooling V ∈ R1024×7×7 is also embedded into the VSE space.

3.2 Text-guided Visual Feature Manipulation

The universal visual-semantic embedding space enables us to manipulate the vi-
sual feature maps with the text instructions by vector arithmetic operations, sim-
ilar to that of word embeddings (e.g ., “king” - “man” + “woman” = “queen”) [29].
When manipulating certain objects or attributes, we would like to only modify
specific regions while keeping other regions unchanged. So instead of editing the
global visual feature vector, we conduct vector arithmetic operations between
the visual feature maps V ∈ R1024×7×7 and textual feature vectors.

We first identify which regions in the feature map to manipulate, i.e., ground
the manipulation instructions on the spatial feature map. The VSE model pro-
vides us a soft grounding for textual queries by a weighted summation of the
image feature maps, similar to class activation maps (CAM) [47]. We use the
textual feature vector t ∈ R1024×1 as weights to compute the weighted summa-
tion of the image feature maps g = t>V. This scheme gives us a soft grounding
map g ∈ R7×7, which is able to roughly localize corresponding regions in the
visual feature maps related to the textual instruction. Examples of the text-
guided soft grounding results are shown in Fig. 3 (left). We adopt the grounding
map as location-adaptive coefficients to control the manipulation strength at
different locations. We further adopt a coefficient α to control the global manip-
ulation strength, which enables continuous transitions between source images
and the manipulated ones. The visual feature vector at spatial location (i, j)
(where i, j ∈ {0, 1, ...6}) in the visual feature map V ∈ R1024×7×7, is denoted
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as vi,j ∈ R1024. We define the following types of manipulations by vector arith-
metics weighted by the soft grounding map and the coefficient α.

Changing Attributes. Changing object attributes or global attributes is one of
the most common manipulations. The textual feature embeddings of the source
and target concepts are denoted as t1 and t2. respectively. For example, if we
want to change a “red apple” into a “green apple”, t1 would be the textual
embedding of phrase “red apple” and t2 would be the embedding of phrase
“green apple”. The manipulation of image feature vector vi,j at location (i, j)
is,

vi,j
m = vi,j − α〈vi,j , t1〉t1 + α〈vi,j , t1〉t2, (2)

where i, j ∈ {0, 1, ...6}, and vi,j
m is the manipulated visual feature vector at

location (i, j) of the 7 × 7 feature map. We remove the source features t1 and
add the target features t2 to each visual feature vector vi,j . 〈vi,j , t1〉 is the value
of the soft grounding map at location (i, j), calculated as the dot product of the
image feature vector and the source textual features. We can also interpret the
dot product as the projection of the visual embedding vi,j onto the direction of
the textual embedding t1. It serves as a location-adaptive manipulation strength
to control which regions in the image should be edited. α is a hyper-parameter
that controls the image-level manipulation strength. By smoothly increasing α,
we can achieve smooth transitions from source to target attributes.

Removing Concepts. In certain scenarios, objects, stuff or attributes need to
be removed, e.g ., remove the beard from a face. Denote the semantic embedding
of the concept we would like to remove as t. The removing operation is

vi,j
m = vi,j − α〈vi,j , t〉t. (3)

Relative Attributes. Our framework also handles relative attribute manipu-
lation, such as making a red apple less red or tuning the image to be brighter.
Denote the semantic embedding of the relative attribute as t. The strength of the
relative attribute is controlled by the hyper-parameter α. By smoothly adjusting
α, we can gradually strengthen or weaken the relative attribute as

vi,j
m = vi,j ± α〈vi,j , t〉t. (4)

3.3 Structure-Preserving Image Decoding

After deriving the manipulated feature map Vm ∈ R1024×7×7, an image decoder
takes Vm as input and generates the manipulated images.

Since we do not have paired data for training and it is difficult to generate
plausible manipulation instructions for each image, we train the image decoder
with only the reconstruction supervisions, as shown in Fig. 2(b). Specifically, we
fix the VSE model to transform an image I into the feature maps V in the joint
embedding space, and train a generative adversarial network to reconstruct the
input image from V. The generator is trained with the hinge-based adversarial
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loss, discriminator feature matching loss, and perceptual loss.

LG =− E[D(G(V))] + λV GGE[

N∑
k=1

1

nk
||Fk(G(V))− Fk(I)||1]

+ λFME[

N∑
k=1

1

mk
||Dk(G(V))−Dk(I)||1],

LD = −E[min(0,−1 +D(I))]− E[min(0,−1−D(G(V)))], (5)

where LD and the first term of LG are the hinge-based adversarial loss. The
second term of LG is the perceptual loss, calculated as the VGG feature distance
between the reconstructed image and the input image. The third term of LG is
the discriminator feature matching loss, which matches the intermediate features
of the discriminator between the reconstructed image and the input image. nk
and mk are the number of elements in the k-th layer of the VGG network and
discriminator, respectively. λV GG and λFM are the loss weights. Although not
being trained on manipulated feature maps, the image decoder learns a general
image prior. So during inference, the decoder is able to generate manipulated
images when given the manipulated feature maps as input.

Furthermore, we incorporate edge constraints into the image decoder to pre-
serve the structure information when editing image appearances. We adopt an
off-the-shelf CNN edge detector [17] to extract edges from the input images. The
extracted edges, as shown in Fig. 3 (right), are fed into intermediate layers of
the image decoder by spatially-adaptive normalization [32]. Specifically, we use
the edge maps to predict the spatially-adaptive scale and bias parameters of
batch-normalization layers. We denote the edge map as E . Denote the feature
map value of the n-th image in the mini-batch at channel c and location (h,w) as
fn,c,h,w. Denote the mean and standard deviation of the feature maps at channel
c as µc and σc, respectively. The spatially-adaptive normalization is

γc,h,w(E)
fn,c,h,w − µc

σc
+ βc,h,w(E), (6)

where γ and β are two-layer convolutions to predict spatially-adaptive scale and
bias for BN layers. With the edge constraints, the decoder is able to preserve the
structures and edges of the source images when editing the image appearances.

3.4 Sample-Specific Optimization with Cycle-Consistency
Constraints

The vector arithmetic manipulation operations may not be precise enough, be-
cause some attributes might be entangled and the visual-semantic embedding
space may not be strictly linear. Moreover, the image decoder trained with only
reconstruction supervision is not perfect and might not be able to reconstruct
all details of the source image. To mitigate those problems, we adopt a sample-
specific optimization approach to adapt the decoder to the specific input image
and manipulation instruction.
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For each image and manipulation instruction (e.g ., “red apple” → “green
apple”), we apply a pair of cycle manipulations to exchange the attributes forth
and back (e.g ., “red apple”→ “green apple”→ “red apple”). The corresponding
source and manipulated images are denoted as I → Im → Ic. We incorporate a
cycle-consistency loss to optimize the decoder to adapt to the specific image and
manipulation instruction. In this way, we can regularize the manipulated image
and complete the details missed during encoding and generating. We also adopt
a reconstruction loss to force the optimized decoder to reconstruct the source
image without manipulating the latent visual features. The reconstruction loss
Lrec and cycle-consistency loss Lcyc are the summation of L1 loss and perceptual
loss, computed between the source image I and the reconstructed Ir or the cycle
manipulated image Ic,

Lcyc = ||Ic − I||1 + λ

N∑
k=1

1

nk
||Fk(Ic)− Fk(I)||1, (7)

Lrec = ||Ir − I||1 + λ

N∑
k=1

1

nk
||Fk(Ir)− Fk(I)||1, (8)

where λ is the loss weight for perceptual loss and Fk is the k-th layer of the
VGG network with nk features.

However, directly finetuning the decoder parameters for a specific image and
manipulation instruction would cause severe overfitting to the source image, and
the finetuned decoder would not be able to generate the high-quality manipu-
lated image. Alternatively, we fix the decoder parameters and only optimize a
series of additive perturbations of the decoder network, as shown in Fig. 2(d).
For each specific image and manipulation, the sample-specific perturbations are
initialized as zeros and added to the intermediate layers of the decoder. The
perturbation parameters are optimized with the manipulation cycle-consistency
loss and reconstruction loss on that specific image and manipulation instruction.
So when generating the manipulated images, the optimized perturbations can
complete the high-frequency details of the source images, and regularize the ma-
nipulated images. Specifically, the image decoder is divided into several decoder
blocks G1, G2, · · · , Gn (n = 4 in our implementation), and the perturbations are
added to the decoder between the n blocks,

G′(V) = Gn(Gn−1(· · · (G1(V) + P1) · · · ) + Pn−1), (9)

where P1, · · · ,Pn−1 are the introduced perturbations. We optimize the pertur-
bations by the summation of reconstructions loss, manipulation cycle-consistency
loss, and a regularization loss Lreg =

∑n−1
i=1 ||Pi||22.

Those optimization steps are conducted only during testing. We adapt the
perturbations to the input image and manipulation instruction by the introduced
optimization process. Therefore, the learned sample-specific perturbations mod-
els high-frequency details of the source images, and regularizes the manipulated
images. In this way, the generator with optimized perturbations is able to gen-
erate photo-realistic and detail-preserving manipulated images.
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4 Experiments

4.1 Datasets and Implementation Details

Our visual-semantic embedding model (including image encoder and text en-
coder) and image decoder are trained on Conceptual Captions dataset [35] with
3 million image-caption pairs harvested from the web. The images are from vari-
ous domains and of various styles, including portrait, objects, scenes, and others.
Instead of human-annotated fine-grained descriptions in other image captioning
datasets, the captions of Conceptual Captions dataset are harvested from the
Alt-text HTML attribute associated with web images. Although the images are of
high variations and the captions are noisy, results show that with large datasets,
the VSE model is able to learn an effective visual-semantic embedding space for
image manipulation. The image decoder trained with images from Conceptual
Captions dataset learns a general image prior for open-domain images.

The model structure and training process of the VSE model follow that of
VSE++ [15]. The image decoder takes 1024 × 7 × 7 feature maps as input,
and is composed of 7 ResNet Blocks with upsampling layers in between, which
generates 256× 256 images. The discriminator is a Multi-scale Patch-based dis-
criminator following [32]. The decoder is trained with GAN loss, perceptual loss,
and discriminator feature matching loss. The edge extractor is an off-the-shelf
bi-directional cascade network [17] trained on BSDS500 dataset [3].

4.2 Applications and Results

Our approach can achieve open-domain image manipulation with open-vocabulary
instructions, which has various applications. We demonstrate several examples in
Fig. 4, including changing color, texture, and global or local high-level attributes.

Results in the first row demonstrate that our model is able to change color
for objects and stuff while preserving other details of the image. Moreover, it
preserves the lighting conditions and relative color strengths very well when
changing colors. Our model is also able to change textures of the images with
language instructions, for example, editing object materials or changing sea to
grass, as shown in the second row. Results indicate that the VSE model learns
effective texture features in the joint embedding space, and that the genera-
tor is able to generate reasonable textures based on the manipulated features.
Besides low-level attributes, our model is also able to handle high-level seman-
tic attributes, such as removing lights, changing photos to paintings, sunny to
cloudy, and transferring seasons, in the third and fourth rows.
Quantitative evaluation. Since ground-truth manipulated images are not
available, we conduct evaluations by user study, L2 error, and LPIPS.

The user study is conducted to evaluate human perceptions of our approach.
For each experiment, we randomly pick 60 images and manually choose the ap-
propriate manipulation instructions for them. The images cover a wide variety
of styles and the instructions range from color and texture manipulation to high-
level attribute manipulation. 10 users are asked to score the 60 images for each
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wooden table      metal table wooden table       stone table

sunny            cloudyRemove “light” photo              painting sand           blue sea

summer           autumnautumn        winter winter             autumnautumn              winter

metal 
sculpture

stone 
sculpture green sea green grass

red flower        green flower red car            blue car yellow grass     green grassgreen sea        blue sea

Fig. 4: Applications and manipulation results of our method.

experiment by three criteria, (1) visual quality, (2) how well the manipulated
images preserve the details of the source image, and (3) how well the manipula-
tion results match the instruction. The scores range from 1 (worst) to 5 (best),
and we will analyze the results shown in Table. 1 in the following.

To evaluate the visual quality and content preservation, we calculate the L2
error and Perceptual similarity (LPIPS) [46] between the reconstructed images
and input images, as shown in Table 2 and analyzed in the following.

Comparison with previous work. Since this is the first work to explore
open-domain image manipulation with open-vocabulary instructions, our prob-
lem setting is much more challenging than previous approaches. Nonetheless, we
compare with two representative approaches, CycleGAN [49] and TAGAN [31].

CycleGAN is designed for image-to-image translation, but we have to de-
fine domains and collect domain-specific images for training. So it is not able
to tackle open-vocabulary instructions. To compare with CycleGAN, we train
three CycleGAN models for translating between blue and red objects, trans-
lating between red and green objects, and translating between beach and sea,
respectively. The images for training CycleGAN are retrieved from Conceptual
Captions with our visual-semantic embedding model. Qualitative comparison are
shown in Fig. 5, and user study are shown in Table 1. Results indicate that both
our approach and CycleGAN is able to preserve details of the input images very
well, but CycleGAN worse at transferring desired attributes in some scenarios.

State-of-the-art language-based image manipulation method TAGAN [31]
uses mismatched image-caption pairs as training samples for manipulation. It is
able to handle language instructions, but is limited to only one specific domain
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blue bird

green bird

Input TAGAN Ours

red bird

yellow bird

red flower

beach

sea

blue car

red car

Input CycleGAN Ours

red car

blue car

green flower

pink flower

yellow flower

green flower

red flower

Fig. 5: Comparison between with previous language-based image editing method
TAGAN [31] (left) and image-to-image translation method CycleGAN [49] (right).

such as flowers (Oxford-102) or birds (CUB). It also requires fine-grained human-
annotated descriptions of each image in the dataset. While our approach handles
open-domain images with noisy captions harvested from the web for training.
Since TAGAN only has the models for manipulating bird or flower images, we
compare our results with theirs on flower and bird image manipulation in Fig. 5.
We also compare user evaluation in Table 1. Quantitative evaluation of L2 error
and perceptual metric (LPIPS) between reconstructed images and original im-
ages are shown in Table 2. Our model is not trained on the Oxford-102 or CUB
datasets, but still performs better than the TAGAN models specifically trained
on those datasets. Moreover, the L2 reconstruction error also shows that our
model has the potential to preserve the detailed contents of the source images.

4.3 Component Analysis

The effectiveness of instruction grounding. Our text-guided visual fea-
ture manipulation module uses the soft instruction grounding maps as location-
adaptive manipulation coefficients to control the local manipulation strength
at different locations. The instruction grounding map is very important when
the manipulation instruction is related to local areas or objects in the image.
Fig. 6(a) demonstrates the effectiveness of adopting grounding for manipulation,
where we aim to change the green apple into a yellow apple and keep the red
apple unchanged. The grounding map is able to roughly locate the green apple,
and with the help of the soft grounding map, the model is able to change the
color of the green apple while keeping the red apple and the background un-
changed. On the contrary, the model without grounding changes not only the
green apple, but also the red apple and the background.
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Table 1: User study results on visual quality, how well the manipulated images preserve
details, and how well the manipulated images match the instruction. In the table,
“edge” represents edge constraints in the image decoder, and “opt” represents the
sample-specific optimization.

CycleGAN[49] TAGAN[31] w/o edge, w/o opt w/ edge, w/o opt w/ edge, w/ opt
Visual quality 4.0 3.1 1.3 4.1 4.4
Preserve details 4.2 2.7 1.2 3.7 4.3

Match instruction 1.9 4.2 4.0 4.5 4.5

Table 2: L2 error and LPIPS between reconstructed and original images of TAGAN and
ablations of our approach. Lower L2 reconstruction error and LPIPS metric indicates
that the reconstructed images preserve details of the source images better.

TAGAN[31] w/o edge, w/o opt w/ edge, w/o opt w/ edge, w/ opt
L2 error on Oxford-102 test set 0.11 0.19 0.10 0.05
L2 on Conceptual Captions val N/A 0.20 0.12 0.07

LPIPS on Conceptual Captions val N/A 0.33 0.17 0.06

Edge Constraints. Our structure-aware image decoder exploits edge constraints
to preserve the structure information when generating the reconstructed and ma-
nipulated images. In Fig. 6(b), we show an example of image reconstruction and
manipulation with and without edges. The image decoder is able to reconstruct
and generate higher-quality images with clear structures and edges with edge
constraints. User study results in Table 1 and quantitative evaluation in Table 2
also indicate that the generated images are of better visual quality and preserve
details better with the structure-aware image decoder.

Adjusting coefficient α for smooth attribute transition. The hyper-
parameter α controls the global attribute manipulation strength, which can be
adjusted according to user requirements. By gradually increasing α, we obtain a
smooth transition from the source images to the manipulated images with dif-
ferent manipulation strengths. Fig. 6(c)(d) illustrates the smooth transition of
an image from dark to bright, and from red apple to green apple, respectively.

The effectiveness of sample-specific optimization and cycle-consistency
constraints. Fig. 6(e)4 demonstrates the effectiveness of sample-specific opti-
mization and cycle-consistency constraints. The reconstructed image and ma-
nipulated image without sample-specific optimization miss some details such as
the shape of the glasses. With the perturbation optimization by reconstruction
loss, our model is able to generate better-quality reconstructed and manipulated
images. Optimizing the perturbations with both reconstruction loss and ma-
nipulation cycle-consistency loss further improves the quality of the generated
images, e.g ., the glasses are more realistic and the person identity appearance is
better preserved. User study in Table 1 and quantitative evaluation in Table 2
indicate that the sample-specific optimization has the potential of enhancing
details of the generated images.

4 The decoder for Fig. 6(e) is trained on FFHQ [20] to learn the face image prior.
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(e) young     old

(d) red apple green apple (increase α)

Fig. 6: Component analysis of our approach. The examples from top to bottom show
analysis on grounding, edge constraints, adjusting coefficient, and the sample-specific
optimization and cycle-consistency constraints, respectively.

5 Conclusion and Discussions

We propose Open-Edit, the first framework for open-vocabulary open-domain
image manipulation with minimal training supervision. It takes advantage of the
pretrained visual-semantic embedding, and manipulates visual features by vector
arithmetic with textual embeddings in the joint embedding space. The sample-
specific optimization further regularizes the manipulated images and encourages
realistic and detail-preserving results. Impressive color, texture, and semantic
attribute manipulation are shown on various types of images.

We believe that this is a challenging and promising direction towards more
general and practical image editing, and that our attempt would inspire future
work to enhance editing qualities and extend the application scenario. In this
work we focus on editing appearance-related attributes without changing the
structure of images. Further work can be done on more challenging structure-
related editing and image editing with more complex sentence instructions.
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