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1 Detail of Our Baseline System

In this work, we adapt the recent state-of-the-art multi-similarity (MS) loss [2]
from supervised metric learning to unsupervised metric learning using k-means
clustering to assign pseudo labels. To the best of our knowledge, multi-similarity
(MS) loss [2], published in CVPR 2019, is the first pair-based method which
considers three major similarities (self-similarity, negative relative similarity, and
positive relative similarity) to explore informative pairs and achieve the current
state of the art performance in supervised deep metric learning. This method
first defines the pairwise similarity Sij between two image samples in the current
batch during the network training process. Assume xi is an anchor sample, the
set Pi of positive pairs {xi, xp} are selected from the current batch according to

Si,p > max
yj 6=yi

Sij + ε. (1)

and the set Ni of negative pairs {xi, xn} are selected by,

Si,n > min
yj=yi

Sij − ε, (2)

The MS loss can be then formulated as,

LMS =
1

L

L∑
i=1

 1

α
log[1 +

∑
j∈Pi

e−α(Sij−λ)] +
1

β
log[1 +

∑
j∈Ni

eβ(Sij−λ)]

 . (3)

We follow the same experimental setting of MS loss [2] and use the same param-
eters ε, α, β, and λ.

The original MS algorithm was developed for supervised deep metric learning.
In this work, we adapt it to unsupervised deep metric learning as our baseline
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Table 1. The performance comparison between MS [2] loss with k-means clustering
and our baseline system on CUB dataset.

CUB
R@1 R@2 R@4 R@8

MS with k-means 52.6 64.9 76.4 85.4
+ Memory Bank (Our Baseline) 53.9 66.2 76.9 85.8

system to implement our proposed new approaches. We use the k-means cluster-
ing to assign pseudo labels. To further improve its performance, we extend this
similarity analysis in MS loss from the current batch to the whole training set
using the approach of memory bank [3]. The features of all training samples gen-
erated by the network are stored in the memory bank by the enqueue-dequeue
method. When the memory bank is full, the features and corresponding labels
of the oldest mini-batch are removed by the dequeue method. In this way, MS
loss can explore informative pairs based on the whole training set to achieve im-
proved performance. Using this approach, we can compute the similarity scores
between all samples in the mini-batch and all samples in the training set. Our
experimental results in Table 1 demonstrate that the memory bank improves
the performance of MS loss for unsupervised metric learning.

Fig. 1. Overview of the attention module. F is the input feature map, F
′

is the channel
attention refined feature map, and F

′′
is the spatial attention refined feature map.

2 Attention Module

In our TAC-CCL, we adapt the convolutional block attention module (CBAM)
[4] as our attention module, whose structure is shown in Fig. 1. It contains
two modules, channel attention and spatial attention, focusing on what and
where, respectively. Given an input feature F , the channel attention forwards the
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average-pooled and max-pooled features to a multi-layer perceptron (MLP) and
applies the element-wise summation to these two features. The spatial attention
module follows the channel attention module to explore the most informative
part of the feature map. The max-pooling and average-pooling layers are then
applied to the refined feature F

′
by the channel attention module. These two

features are then concatenated and processed by a convolution layer. F
′′

is the
output feature map of the attention module.

3 Ablation Studies on the Transformed Attention
Consistency

We conduct ablation studies on the attention module and cross-images trans-
formed attention consistency in our proposed transformed attention consistency
(TAC) module. From the results shown in Table 2, when we couple our base-
line system with the attention module, the Recall@1 rate is 54.8% on the CUB
dataset. The cross-image transformed attention consistency loss improves the
Recall@1 rate from 54.8% to 56.5%. We can see that the cross-image trans-
formed attention consistency has much more significant contributions than the
attention module only.

Table 2. Recall@K (%) performance analysis of transform attention consistency on
CUB dataset.

Methods CUB
R@1 R@2 R@4 R@8

Baseline 53.9 66.2 76.9 85.8
+ Attention Module 54.8 66.6 77.6 85.8
+ Transformed Attention Consistency (Cross-Images) 56.5 68.4 78.4 86.3

4 Pseudo Code of Our TAC-CCL Algorithm

The pseudo code is detailed in Algorithm 1.
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Algorithm 1 Summary of Procedures: Training Phase

1: Initialization: We use the feature vectors of the training dataset provided by the
network G with pre-trained GoogLeNet backbone and k-means clustering to assign
pseudo labels to the training dataset. The memory bank is denoted as B. The warm
up threshold is denoted as Iw and the cluster center update step is denoted as Su.

2: Input: Random sampling 5 images per class for each mini-batch X. The transfor-
mation function is denoted as T .

3: Output: The feature embedding
4: Calculate {Ck}, 1 ≤ k ≤ K . calculate the k-means clustering
5: for i iterations do
6: X

′
= T (X)

7: F,M ← G(X)

8: F
′
,M

′
← G(X

′
)

9: Update B . update memory bank
10: LTAC =

∑
(u,v) |M(u, v)−M ′(Tu(u, v), Tv(u, v))|2

11: if iterations > Iw then

12: LCC = EF
{
||F−C+(F )||2
||F−C−(F )||2

}
13: Loss = LMS + α ∗ LTAC + β ∗ LCC . update network G
14: else
15: Loss = LMS + α ∗ LTAC . update network G
16: end if
17: if iterations%Su == 0 then
18: update {Ck}, 1 ≤ k ≤ K
19: Reset B . reset memory bank
20: end if
21: end for

5 The t-SNE Visualization and Additional Retrieval
Examples

Our unsupervised deep metric learning algorithm aims to aggregate the samples
of the same classes into compact clusters in the high-dimensional feature space
while separating samples from different classes from each other. To demonstrate
this property, we use Barnes-Hut t-SNE [1] to visualize the images of the CUB,
Cars, and SOP datasets in the feature space with features extracted by the
baseline system with and without the TAC-CCL approach, as shown in Fig.
2. We can see that using the TAC-CCL, the obtained feature clusters are more
compact within each class and better separated from each other between classes.

We also provide additional retrieval results of more example queries on CUB,
Cars, and SOP datasets in Fig. 3, 4, and 5. We can see that the top a few number
of retrieval results are very accurate. It should be noted that some classes in these
datasets have very few samples.
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(a) Baseline without TAC-CLL on CUB (b) Baseline with TAC-CCL on CUB

(c) Baseline without TAC-CLL on Cars (d) Baseline with TAC-CCL on Cars

(e) Baseline without TAC-CLL on SOP (f) Baseline with TAC-CCL on SOP

Fig. 2. The Barnes-Hut t-SNE visualizations of the CUB, Cars, and SOP test datasets
with and without the TAC-CCL method.
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Fig. 3. Retrieval results of some example queries on CUB dataset. The query images
and the negative retrieved images are highlighted with blue and red.

Fig. 4. Retrieval results of some example queries on Cars dataset. The query images
and the negative retrieved images are highlighted with blue and red.
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Fig. 5. Retrieval results of some example queries on SOP dataset. The query images
and the negative retrieved images are highlighted with blue and red.
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