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Abstract. Existing approaches for unsupervised metric learning focus
on exploring self-supervision information within the input image itself.
We observe that, when analyzing images, human eyes often compare
images against each other instead of examining images individually. In
addition, they often pay attention to certain keypoints, image regions,
or objects which are discriminative between image classes but highly
consistent within classes. Even if the image is being transformed, the
attention pattern will be consistent. Motivated by this observation, we
develop a new approach to unsupervised deep metric learning where the
network is learned based on self-supervision information across images
instead of within one single image. To characterize the consistent pat-
tern of human attention during image comparisons, we introduce the
idea of transformed attention consistency. It assumes that visually sim-
ilar images, even undergoing different image transforms, should share
the same consistent visual attention map. This consistency leads to a
pairwise self-supervision loss, allowing us to learn a Siamese deep neu-
ral network to encode and compare images against their transformed or
matched pairs. To further enhance the inter-class discriminative power
of the feature generated by this network, we adapt the concept of triplet
loss from supervised metric learning to our unsupervised case and intro-
duce the contrastive clustering loss. Our extensive experimental results
on benchmark datasets demonstrate that our proposed method outper-
forms current state-of-the-art methods for unsupervised metric learning
by a large margin.

Keywords: Unsupervised Metric Learning, Attention Map, Consistency
Loss, Contrastive Loss.

1 Introduction

Deep metric learning aims to learn discriminative features that can aggregate
visually similar images into compact clusters in the high-dimensional feature
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space while separating images of different classes from each other. It has many
important applications, including image retrieval [38, 14, 11], face recognition
[37], visual tracking [33] and person re-identification [43, 15]. In supervised deep
metric learning, we assume that the labels for training data are available. In
this paper, we consider unsupervised deep metric learning where the image la-
bels are not available. Learning directly and automatically from images in an
unsupervised manner without human supervision represents a very important
yet challenging task in computer vision and machine learning.

Clustering is one of the earliest methods developed for unsupervised learning.
Recently, motivated by the remarkable success of deep learning, researchers have
started to develop unsupervised learning methods using deep neural networks
[2]. Auto-encoder trains an encoder deep neural network to output feature rep-
resentations with sufficient information to reconstruct input images by a paired
decoder [44]. As we know, during deep neural network training, the network
model is updated and learned in an iterative and progressive manner so that
the network output can match the target. In other works, deep neural networks
need human supervision to provide ground-truth labels. However, in unsuper-
vised learning, there are no labels available. To address this issue, researchers
have exploited the unique characteristics of images and videos to create various
self-supervised labels, objective functions, or loss functions, which essentially
convert the unsupervised learning into a supervised one so that the deep neural
networks can be successfully trained. For example, in DeepCluster [2], clustering
is used to generate pseudo labels for images. Various supervised learning meth-
ods have been developed to train networks to predict the relative position of two
randomly sampled patches [6], solve Jigsaw image puzzles [26], predict pixel val-
ues of missing image patches [5], classify image rotations of four discrete angles
[10], reconstruct image transforms [44], etc. Once successfully trained by these
pretext tasks, the baseline network should be able to generate discriminative
features for subsequent tasks, such as image retrieval, classification, matching,
etc [13].

Fig. 1. Consistency of visual attention across images under transforms.
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In this work, we propose to explore a new approach to unsupervised deep
metric learning. We observe that existing methods for unsupervised metric learn-
ing focus on learning a network to analyze the input image itself. As we know,
when examining and classifying images, human eyes compare images back and
forth in order to identify discriminative features [9]. In other words, compari-
son plays an important role in human visual learning. When comparing images,
they often pay attention to certain keypoints, image regions, or objects which are
discriminative between image classes but highly consistent across image within
classes. Even when the image is being transformed, the attention areas will be
consistent. To further illustrate this, we provide three examples in Fig. 1. In (a),
human eyes can easily tell the top image A of the first column and the bottom
image B are the same bird since they have the same visual characteristics. The
attention will be on the feather texture and head shape. In the pixel domain, A
and B are up to a spatial transform, specifically, cropping plus resizing. When
the human eyes moves from image A to its transformed version B, the attention
will be also transformed so that it can be still focused on the head and feather.
If we represent this attention using the attention map in deep neural networks,
the attention map M(A) for image A and the attention map M(B) for image
B should also follow the same transform, as shown in the second column of Fig.
1(a). We can also see this consistency of attention across image under different
transforms in other examples in Figs. 1(b) and (c).

This lead to our idea of transformed attention consistency. Based on this
idea, we develop a new approach to unsupervised deep metric learning based
on image comparison. Specifically, using this consistency, we can define a pair-
wise self-supervision loss, allowing us to learn a Siamese deep neural network to
encode and compare images against their transformed or matched pairs. To fur-
ther enhance the inter-class discriminative power of the feature generated by this
network, we adapt the concept of triplet loss from supervised metric learning to
our unsupervised case and introduce the contrastive clustering loss. Our exten-
sive experimental results on benchmark datasets demonstrate that our proposed
method outperforms current state-of-the-art methods by a large margin.

2 Related Work and Major Contributions

This work is related to deep metric learning, self-supervised representation learn-
ing, unsupervised metric learning, and attention mechanisms.

(1) Deep metric learning. The main objective of deep metric learning is
to learn a non-linear transformation of an input image by deep neural networks.
In a common practice [35, 42], the backbone in deep metric learning can be pre-
trained on 1000 classes ImageNet [29] classification, and is then jointly trained
on the metric learning task with an additional linear embedding layer. Many re-
cent deep metric learning methods are built on pair-based [4, 12, 27] and triplet
relationships [22, 30, 40]. Triplet loss [30] defines a positive pair and a negative
pair based on the same anchor point. It encourages the embedding distance of
positive pair to be smaller than the distance of negative pair by a given mar-
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gin. Multi-similarity loss [35] considers multiple similarities and provides a more
powerful approach for mining and weighting informative pairs by considering
multiple similarities. The ability of mining informative pairs in existing methods
is limited by the size of mini-batch. Cross-batch memory (XBM) [36] provides
a memory bank for the feature embeddings of past iterations. In this way, the
informative pairs can be identified across the dataset instead of a mini-batch.

(2) Self-supervised representation learning. Self-supervised representa-
tion learning directly derives information from unlabeled data itself by formulat-
ing predictive tasks to learn informative feature representations. DeepCluster [2]
uses k-means clustering to assign pseudo-labels to the features generated by the
deep neural network and introduces a discriminative loss to train the network.
Gidaris et al. [10] explore the geometric transformation and propose to predict
the angle (0◦, 90◦, 180◦, and 270◦) of image rotation as a four-way classification.
Zhang et al. [44] propose to predict the randomly sampled transformation from
the encoded features by Auto-encoding transformation (AET). The encoder is
forced to extract the features with visual structure information, which are in-
formative enough for the decoder to decode the transformation. Self-supervision
has been widely used to initialize and pre-train backbone on unlabeled data, and
is then fine-tuned on a labeled training data for evaluating different tasks.

(3) Unsupervised metric learning. Unsupervised metric learning is a
relatively new research topic. It is a more challenging task since the training
classes have no labels and it does not overlap with the testing classes. Iscen et al.
[17] propose an unsupervised method to mine hard positive and negative samples
based on manifold-aware sampling. The feature embedding can be trained with
standard contrastive and triplet loss. Ye et al. [42] propose to utilize the instance-
wise relationship instead of class information in the learning process. It optimizes
the instance feature embedding directly based on the positive augmentation
invariant and negative separated properties.

(4) Attention mechanism. The goal of the attention mechanism is to
capture the most informative feature in the image. It explores important parts of
features and suppress unnecessary parts [1, 23, 18]. Convolutional block attention
module (CBAM) [39] is an effective attention method with channel and spatial
attention module which can be integrated into existing convolutional neural
network architectures. Fu et al. [8] propose to produce the attention proposals
and train the attention module and embedding module in an iterative two-stage
manner. Chen et al. [3] propose the hybrid-attention system by random walk
graph propagation for object attention and the adversary constraint for channel
attention.

Compared to existing methods, the unique contributions of this paper can
be summarized as follows. (1) Unlike existing methods which focus on informa-
tion analysis of the input image only, we explore a new approach for unsupervised
deep metric learning based on image comparison and cross-image consistency.
(2) Motivated by the human visual experience, we introduce the new approach
of transformed attention consistency to effectively learn a deep neural network
which can focus on discriminative features. (3) We extend the existing triplet
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loss developed for supervised metric learning to unsupervised learning using k-
mean clustering to assign pseudo labels and memory bank to allow its access
to all training samples, instead of samples in the current mini-batch. (4) Our
experimental results demonstrate that our proposed approach has improved the
state-of-the-art performance by a large margin.

Fig. 2. Overview of the proposed approach for unsupervised deep metric learning with
transformed attention consistency and contrastive clustering loss.

3 Method

3.1 Overview

Suppose that we have a set of unlabeled images X = {x1, x2, ..., xN}. Our goal is
to learn a deep neural network to extract their features G(xn) ∈ Rd, where d is
the feature dimension. Fig. 2 shows the overall design of our proposed method for
unsupervised deep metric learning based on transformed attention consistency
and contrastive clustering loss (TAC-CCL). Given an input image xn, we apply
a transform T , which is randomly sampled from a set of image transforms T , to
xn, to obtain its transformed version x′n = T (xn). In our experiments, we mainly
consider spatial transforms, including cropping (sub-image), rotation, zooming,
and perspective transform. Each transform is controlled by a set of transform
parameters. For example, the cropping is controlled by its bounding box. The
perspective transform is controlled by its 6 parameters. Image pairs (xn, x

′
n) are

inputs to the Siamese deep neural network. These two identical networks will
be trained to extract features Fn and F ′n for these two images. As illustrated
in Fig. 2, each network is equipped with an attention network to learn the
attention map which will modulate the output feature map. The attention map
can enforce the network to focus on discriminative local features for the specific
learning tasks or datasets. Let Mn and M ′n be the attention maps for images
xn and x′n, respectively. According to the transformed attention consistency, we



6 Y. Li, S. Kan, and Z. He

shall have
M ′n = T (Mn). (1)

Based on this constraint, we introduce the transformed attention consistency loss
LTAC to train the feature embedding network G, which will be further explained
in Section 3.3. Besides this attention consistency, we also require that the output
features Fn and F

′

n should be similar to each other since the corresponding input
images xn and x

′

n are visually the same. To enforce this constraint, we introduce
the feature similarity loss LF = ||Fn − F

′

n||2 which is the L2-normal between
these two features. To ensure that image features from the same class aggregate
into compact clusters while image features from different classes are pushed
away from each other in the high-dimensional feature space, we introduce the
contrastive clustering loss LCC , which will be further explained in the Section
3.3.

3.2 Baseline System

In this work, we first design a baseline system. Recently, a method called multi-
similarity (MS) loss [35] has been developed for supervised deep metric learning.
In this work, we adapt this method from supervised metric learning to unsu-
pervised metric learning using k-means clustering to assign pseudo labels. Also,
the original MS method computes the similarity scores between image samples
in the current mini-batch. In this work, we extend this similarity analysis to the
whole training set using the approach of memory bank [36]. The features of all
training samples generated by the network are stored in the memory bank by the
enqueue method. When the memory bank is full, the features and corresponding
labels of the oldest mini-batch are removed by the dequeue method. Using this
approach, the current mini-batch has access to the whole training set. We can
then compute the similarity scores between all samples in the mini-batch and
all samples in the training set. Our experiments demonstrate that this enhanced
similarity matrix results in significantly improved performance in unsupervised
metric learning. In this work, we use this network as the baseline system, denoted
by TAC-CLL (baseline).

3.3 Loss Functions

To further improve the performance of the baseline system, we introduce the
ideas of transformed attention consistency and contrastive clustering loss, which
are explained in the following.

The transformed attention consistency aims to enforce the feature embed-
ding network G to focus visually important features instead of other back-
ground noise. Let Mn(u, v) and M

′

n(u, v) be the attention maps for input im-
age pair xn and x

′

n, where (u, v) represents a point location in the attention
map. Under the transform T , this point is mapped to a new location denoted by
(Tu(u, v), Tv(u, v)). According to (1), if we transform the attention map Mn(u, v)
for the original image xn by T , it should match the attention map M ′n(u, v) for
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the transformed image x′n = T (xn). Based on this, the proposed transformed
attention consistency loss LTAC is defined as follows

LTAC =
∑
(u,v)

|Mn(u, v)−M ′n(Tu(u, v), Tv(u, v))|2, (2)

where u′ = Tu(u, v) and v′ = Tv(u, v) are the mapped location of (u, v) in image
x′n.

The constrastive clustering loss extends the triplet loss [30] developed in
supervised deep metric learning, where an anchor sample x is associated with a
positive sample x+ and a negative sample x−. The triplet loss aims to maximize
the ratio S(x, x+)/S(x, x−), where S(·, ·) represents the cosine similarity between
two features. It should be noted that this triplet loss requires the knowledge of
image labels, which however are not available in our unsupervised case. To extend
this triplet loss to unsupervised metric learning, we propose to cluster the image
features into K clusters. In the high-dimensional feature space, we wish these
clusters are compact and are well separated from each other by large margins. Let
{Ck}, 1 ≤ k ≤ K, be the cluster centers. Let C+(Fn) be the nearest center which
has the minimum distance to the input image feature Fn and the corresponding
distance is denoted by d+(Fn) = ||Fn − C+(Fn)||2. Let C−(Fn) be the cluster
center which has the second minimum distance to Fn and the corresponding
distance is denoted by d−(Fn) = ||Fn − C−(Fn)||2. If the contrastive ratio of
d+(Fn)/d+(Fn) is small, then this feature has more discriminative power. We
define the following contrastive clustering loss

LCC = EFn
{
||Fn − C+(Fn)||2
||Fn − C−(Fn)||2

}
, (3)

which is the average contrastive ratio of all input image features. During the
training process, the network G, as well as the feature for each input, is progres-
sively updated. For example, the clustering is performed and the cluster centers
are updated for every 20 epochs.

3.4 Transformed Attention Consistency with Cross-Images
Supervision

Note that, in our proposed approach, we transform or augment the input image
xn to create its pair x

′

n. These two are from the same image source. We also no-
tice that most of existing self-supervision methods, such as predicting locations
of image patches and classifying the rotation of an image [10], and reconstructing
the transform of the image [44], all focus on self-supervision information within
the image itself. The reason behind this is that image patches from the same
image will automatically have the same class label. This provides an important
self-supervision constraint to train the network. However, this one-image ap-
proach will limit the learning capability of the network since the network is not
able to compare multiple images. As we know, when human eyes are examining
images to determine which features are discriminative, they need to compare
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multiple images to determine which set of features are consistent across images
and which set of features are background noise [9]. Therefore, in unsupervised
learning, it is highly desirable to utilize the information across images.

Fig. 3. Sub-image matching for cross-image supervision.

Figs. 3(a)-(c) show image samples from the Cars and SOP benchmark datasets.
We can see that images from the same class exhibit strong similarity between
images, especially in the object regions. The question is how to utilize these
unlabeled images to create reliable self-supervision information for unsupervised
learning? In this work, we propose to perform keypoint or sub-image matching
across images. Specifically, as illustrated in Fig. 3(d) and (e), for a given im-
age sample In, in the pre-processing stage, we perform affine-SIFT [24] keypoint
matching between In and other images in the dataset and find the top matches
with confidence scores about a very high threshold. We then crop out the sub-
images containing high-confidence keypoints as xn and x′n which are related by
a transform T . This high-confidence constraint aims to ensure that xn and x′n
are having the same object class or semantic label. In this way, for each image in
the k-means cluster, we can find multiple high-confidence matched sub-images.
For example, on the CUB dataset, for top-2 matching in each cluster, the label
accuracy is 77.0%, which is much higher than the true positive pair rate obtained
by k-means clustering (39.1%). This will significantly augment the training set,
establish cross-image self-supervision, and provide significantly enhanced visual
diversity for the network to learn more robust and discriminative features. In
this work, we combine this cross-image supervision with the transformed atten-
tion consistency. Let {(ui, vi)} and {(u′i, v′i)}, 1 ≤ i ≤ N , be the set of matched
keypoints in xn and x′n. We wish that, within the small neighborhoods of these
matched keypoints, the attention maps Mn and M ′n are consistent. To define a
small neighborhood around a keypoint (ui, vi), we use the following 2-D Gaussian
kernel,

φ(u− ui, v − vi) = e
− (u−ui)

2

2σ2u
− (v−vi)

2

2σ2v . (4)
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Let

Γ (u, v) =

M∑
i=1

φ(u− ui, v − vi), Γ ′(u, v) =

M∑
i=1

φ(u− u′i, v − v′i), (5)

which define two masks to indicate the neighborhood areas around these matched
keypoints in these two attention maps. The extended transformed attention con-
sistency becomes

LTAC =
∑
(u,v)

|Mn(u, v) · Γ (u, v)−M ′n(u, v) · Γ ′(u, v)|2, (6)

which compares the difference between these two attention maps around these
matched keypoints. Compared to the label propagation method developed for
semi-supervised learning [45, 46], our cross-image supervision method is unique
in the following aspects: (1) it discovers sub-images of the same label (with very
high probability) from unlabeled images. (2) It establishes the transform between
these two sub-images and combines with the transformed attention consistency
to achieve efficient unsupervised deep metric learning.

4 Experimental Results

In this section, we conduct extensive experiments on benchmark datasets in
image retrieval settings to evaluate the proposed TAC-CCL method for unsu-
pervised deep metric learning.

4.1 Datasets

We follow existing papers on unsupervised deep metric learning [42] to evaluate
our proposed methods on the following three benchmark datasets. (1) CUB-
200-2011 (CUB) [34] is composed of 11,788 images of birds from 200 classes.
The first 100 classes (5864 images) are used for training, with the rest 100 classes
(5924 images) for testing. (2) Cars-196 (Cars) [21] contains 16,185 images of
196 classes of car models. We use the first 98 classes with 8054 images for train-
ing, and remaining 98 classes (8131 images) for testing. (3) Stanford Online
Products (SOP) [27] has 22,634 classes (120,053 images) of online products.
We use the first 11,318 products (59,551 images) for training and the remaining
11,316 products (60,502 images) for testing. The training classes are separated
from the test classes. We use the standard image retrieval performance metric
(Recall@K ), for performance evaluations and comparisons.

4.2 Implementation Details

We implement our proposed method by PyTorch and follow the standard exper-
imental settings in existing papers [27, 35, 42] for performance comparison. We
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use the same GoogLeNet [32] pre-trained on ImageNet as the backbone network
[25, 27, 31] and a CBAM [39] attention module is placed after the inception 5b
layer. A fully connected layer is then added on the top of the network as the
embedding layer. The default dimension of embedding is set as 512. For the
clustering, we set the number of clusters K to be 100 for the CUB and Cars
datasets, and K = 10000 for the SOP dataset. For each batch, we follow the
data sampling strategy in multi-similarity loss [35] to sample 5 images per class.
For data augmentation, images in the training set are randomly cropped at size
227 × 227 with random horizontal flipping, while the images in testing set is
center cropped. Adam optimizer [20] is used in all experiments and the weigh
decay is set as 5e−4.

Table 1. Recall@K (%) performance on CUB and Cars datasets in comparison with
other methods.

Methods Backbone
CUB Cars

R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

Supervised Methods

ABIER [28] GoogLeNet 57.5 68.7 78.3 86.2 82.0 89.0 93.2 96.1
ABE [19] GoogLeNet 60.6 71.5 79.8 87.4 85.2 90.5 94.0 96.1
Multi-Similarity [35] BN-Inception 65.7 77.0 86.3 91.2 84.1 90.4 94.0 96.5

Unsupervised Methods

Examplar [7] GoogLeNet 38.2 50.3 62.8 75.0 36.5 48.1 59.2 71.0
NCE [41] GoogLeNet 39.2 51.4 63.7 75.8 37.5 48.7 59.8 71.5
DeepCluster [2] GoogLeNet 42.9 54.1 65.6 76.2 32.6 43.8 57.0 69.5
MOM [17] GoogLeNet 45.3 57.8 68.6 78.4 35.5 48.2 60.6 72.4
Instance [42] GoogLeNet 46.2 59.0 70.1 80.2 41.3 52.3 63.6 74.9

TAC-CCL (baseline) GoogLeNet 53.9 66.2 76.9 85.8 43.0 53.8 65.3 76.0
TAC-CCL GoogLeNet 57.5 68.8 78.8 87.2 46.1 56.9 67.5 76.7

Gain +11.3 +9.8 +8.7 +7.0 +4.8 +4.6 +3.9 +1.8

4.3 Performance Comparisons with State-of-the-Art Methods

We compare the performance of our proposed methods with the state-of-the-
art unsupervised methods on image retrieval tasks. The mining on manifolds
(MOM) [17] and the invariant and spreading instance feature method (denoted
by Instance) [42] are current state-of-the-art methods for unsupervised metric
learning. They both use the GoogLeNet [32] as the backbone encoder. In the In-
stance paper [42], the authors have also implemented three other state-of-the-art
methods originally developed for feature learning and adapted them to unsuper-
vised metric learning tasks: Examplar [7], NCE (Noise-Contrastive Estimation)
[41], and DeepCluster [2]. We include the results of these methods for compar-
isons. We have also included the performance of recent supervised deep metric
learning methods for comparison so that we can see the performance difference



Unsupervised Deep Metric Learning with TAC and CCL 11

between unsupervised metric learning and supervised one. These methods in-
clude: ABIER [28], and ABE [19], and MS (Multi-Similarity) [35]. Both ABIER
and ABE methods are using the GoogLeNet as the backbone encoder. The MS
method is using the BN-Inception network [16] as the backbone encoder.

The results for the CUB, Cars, and SOP datasets are summarized in Tables
1 and 2, respectively. We can see that our proposed TAC-CCL method achieves
new state-of-the-art performance in unsupervised metric learning on both fine-
grained CUB and Cars datasets and the large-scale SOP dataset. On the CUB
dataset, our TAC-CCL improves the Recall@1 by 11.3% and is even competitive
to some supervised metric learning methods, e.g., ABIER [28]. On the Cars
dataset, our TAC-CCL outperforms the current state-of-the-art Instance method
[42] by 4.8%. On SOP, our method achieves 63.9% and outperforms existing
methods by a large margin of 15%. For other Recall@K rates with large values
of k, the amount of improvement is also very significant. Note that our baseline
system achieves a large improvement over existing methods. The proposed TAC-
CCL approach further improves upon this baseline system by another 1.4-3.6%.

Fig. 4 shows examples of retrieval results from the CUB, Cars, and SOP
datasets. In each row, the first image highlighted with a blue box is the query
image. The rest images are the top 15 retrieval results. Images highlighted with
red boxes are from different classes. It should be noted that some classes have
very small number of samples. We can see that our TAC-CCL can learn discrim-
initive features to achieve satisfying retrieval results, even for these challenging
tasks. For example, at the first row of the SOP dataset, our model is able to
learn the glass decoration feature under the lampshade, which is a unique feature
of the query images. In addition, the negative retrieved results are also visually
closer to the query images.

Table 2. Recall@K (%) performance on SOP dataset in comparison with other meth-
ods.

Methods Backbone
SOP

R@1 R@10 R@100

Supervised Methods

ABIER [28] GoogLeNet 74.2 86.9 94.0
ABE [19] GoogLeNet 76.3 88.4 94.8
Multi-Similarity [35] BN-Inception 78.2 90.5 96.0

Unsupervised Methods

Examplar [7] GoogLeNet 45.0 60.3 75.2
NCE [41] GoogLeNet 46.6 62.3 76.8
DeepCluster [2] GoogLeNet 34.6 52.6 66.8
MOM [17] GoogLeNet 43.3 57.2 73.2
Instance [42] GoogLeNet 48.9 64.0 78.0

TAC-CCL (baseline) GoogLeNet 62.5 76.5 87.2
TAC-CCL GoogLeNet 63.9 77.6 87.8

Gain +15.0 +13.6 +9.8
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(a) CUB

(b) Cars

(c) SOP

Fig. 4. Retrieval results of some example queries on CUB, Cars, and SOP datasets.
The query images and the negative retrieved images are highlighted with blue and red.

4.4 Ablation Studies

In this section, we conduct ablation studies to perform in-depth analysis of our
proposed method and its different components.

(1) Impact of the number of clusters. The proposed contrastive cluster-
ing loss is based on clustering in the feature space. The number of clusters K is
a critical parameter for the proposed method since it determines the number of
pseudo labels. We conduct the following ablation study experiment on the CUB
data to study the impact of K. The first plot in Fig. 5(a) shows the Recall@1
results with different values of K: 50, 100, 200, 500, and 1000. The other three
plots show the results for Recall@2, 4, and 8. We can see that, on this dataset,
the best value of K is 100, which is the number of test classes in the CUB
dataset. The performance drops when K increases. This study suggests that the
best value of K is close to the truth number test classes of the dataset.

(2) Impact of different embedding sizes. In this ablation study, we
follow existing supervised metric learning methods [35, 28] to study the impact
of different embedding sizes, or the size of the embedded feature. For example,
the feature size ranges from 64, 128, 256, 512, to 1024. The first plot of Fig.
5(b) shows the Recall@1 results for different embedding size. The results for
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(a) Different number of clusters

(b) Different embedding sizes

Fig. 5. Recall@K (%) performance on CUB dataset in comparison with different num-
ber of clusters and different embedding size.

Recall@2, 4, 8 are shown in the other three plots. We can see that unsupervised
metric learning performance increases with the embedding size since it contains
more feature information with enhanced discriminative power.

Table 3. Recall@K (%) performance on SOP dataset using Resnet-18 network without
pre-trained parameters.

Methods
SOP

R@1 R@10 R@100

Random 18.4 29.4 46.0
Examplar [7] 31.5 46.7 64.2
NCE [41] 34.4 49.0 65.2
MOM [17] 16.3 27.6 44.5
Instance [42] 39.7 54.9 71.0

Ours 47.0 62.6 77.5

(3) Impact of the pre-trained model. We follow the recent state-of-the-
art unsupervised metric learning Instance method [42] and evaluate the per-
formance of our proposed method on the large-scale SOP dataset by using the
Resnet-18 network without pre-trained parameters. From Table 3, we can see
our proposed method outperforms Instance method [42] by more than 7%.
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(4) Performance contributions of different algorithm components.
Our proposed system has three major components: the baseline system for un-
supervised deep metric learning, transformed attention consistency (TAC), and
contrastive clustering loss (CCL). In this ablation study, we aim to identify the
contribution of each algorithm component on different datasets. Table 4 summa-
rizes the performance results on the CUB, Cars, and SOP datasets using three
different method configurations: (1) the baseline system, (2) baseline with CCL,
and (3) baseline with CCL + TAC. We can see that both the CCL and TAC
approaches significantly improve the performance.

In our Supplementary Material, we will provide additional method imple-
mentation details, experimental results, and ablation studies.

Table 4. The performance of different components from our TAC-CCL method on
CUB, Cars, and SOP datasets.

CUB Cars SOP
R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@10 R@100

Baseline 53.9 66.2 76.9 85.8 43.0 53.8 65.3 76.0 62.5 76.5 87.2
+CCL 55.7 67.8 77.5 86.2 44.7 55.6 65.9 75.7 63.0 76.8 87.2
+TAC 57.5 68.8 78.8 87.2 46.1 56.9 67.5 76.7 63.9 77.6 87.8

5 Conclusions

In this work, we have developed a new approach to unsupervised deep metric
learning based on image comparisons, transformed attention consistency, and
constrastive clustering loss. This transformed attention consistency leads to a
pairwise self-supervision loss, allowing us to learn a Siamese deep neural network
to encode and compare images against their transformed or matched pairs. To
further enhance the inter-class discriminative power of the feature generated by
this network, we have adapted the concept of triplet loss from supervised metric
learning to our unsupervised case and introduce the contrastive clustering loss.
Our extensive experimental results on benchmark datasets demonstrate that
our proposed method outperforms current state-of-the-art methods by a large
margin.
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