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Due to limited space in the main paper, we present additional details about
the proposed method and experiments in the supplementary.

1 Encoder and Decoder Architecture

Here, we provide details of the encoder and decoder architecture for all the ex-
periments.

Encoder: In the main paper, we conducted experiments with 4 different net-
works for the encoder: For semi-supervised experiments, we used Res50, Res101
and VGG16. For learning from synthetic data we used Res101-SFCN [4] .Fol-
lowing are the details:

(i) Res50: First 3 layers of Res50 are used as the encoder.
(ii) Res101: First 3 layers of Res101 are used as the encoder.
(iii) VGG16: First 10 layers of VGG16 are used as the encoder.
(iv) Res101-SFCN: We use the network exactly as described in [4]. In this net-
work, the layers until final dilated conv layer are considered as a part of the
encoder.

For all the above networks, the features of the final encoder layer are for-
warded through a 1 × 1 conv layer to reduce the dimensionality to 64 channels.
The output of this 1×1 conv is the feature embedding in the latent space which
is used in GP modeling. Since the train crop size is 256 × 256, the intermediate
feature maps in the latent space is of dimension 64 × 32 × 32.

Decoder: We use the same decoder in all the semi-supervised learning experi-
ments. The decoder consists of 2 conv-relu layers. The first one is a 3 × 3 conv
layer, that takes in 64 channels and outputs 64 channels. The final layer is a a
1 × 1 layer that takes in 64 channels and outputs 1 channel which is the den-
sity map. The final conv layer is followed by an bilinear-upsampling layer that
upsamples the output density to the resolution of the input image.

In case of learning from the synthetic data, since we use the same network
as in [4], all the layers after the dilated conv layers are used as decoder.
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2 Dataset Details

In this section, we provide details of the different datasets used for evaluating
the proposed method in the main paper.

ShanghaiTech [6]:This dataset contains 1198 annotated images with a total of
330,165 people. This dataset consists of two parts: Part A with 482 images and
Part B with 716 images. Both parts are further divided into training and test
datasets with training set of Part A containing 300 images and that of Part B
containing 400 images. Rest of the images are used as test set.

UCF-QNRF [2]: UCF-QNRF is a large crowd counting dataset with 1535
high-resolution images and 1.25 million head annotations. There are 1201 train-
ing images and 334 test images. It contains extremely congested scenes where
the maximum count of an image can reach 12865.

WorldExpo [5]: The WorldExpo’10 dataset was introduced by Zhang et al..
[5] and it contains 3,980 annotated frames from 1,132 video sequences captured
by 108 surveillance cameras. The frames are divided into training and test sets.
The training set contains 3,380 frames and the test set contains 600 frames from
five different scenes with 120 frames per scene. They also provided Region of
Interest (ROI) map for each of the five scenes.

UCSD [1]: The UCSD dataset crowd counting dataset consists of 2000 frames
from a single scene. These scenes contain relatively sparse crowds with the num-
ber of people ranging from 11 to 46 per frame. A region of interest (ROI) is pro-
vided for the scene in the dataset. Of the 2000 frames, frames 601 through 1400
are used for training while the remaining frames are held out for testing.

GCC [4]:GTA V Crowd Counting Dataset (GCC) is a large-scale synthetic
dataset based on an electronic game, which consists of 15,212 crowd images.
GCC provides three evaluation strategies (random splitting, cross-camera,and
cross-location evaluation).

3 Hyper-parameter λun

In this section, we study the effect of λun on the overall performance. λun weighs
the unsupervised loss function in the Eq. 12 of main paper. For this study, we
use the ShanghaiTech A dataset, due to its wide variety of scenes and diversity
in the count. We conducted this experiment for the 5% data setting where 5% of
the data was used as labeled data and rest was used as unlabeled data. We used
Res50 encoder. Note that we perform the evaluation on the held-out validation
set (and not on the test set). The results for different values of λun are shown
in Table 1.
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Table 1. Effect of λun on ShanghaiTech Part-A val set.

λun MAE MSE

0.0 102 175
0.2 100 162
0.4 89 149
0.6 85 140
0.8 88 147
1.0 92 156

We observed that the performance peaks when the value of λun is 0.6. λun =
0 corresponds to only labeled data. This is the baseline performance. As we
increase λun, we observe that the error improves. However, for λun > 0.6, we see
a small drop. This is because the network would not have learned to optimal level
at the initial stages of training. Due to this the pseud-GT will be erroneous, and
hence, using high weight for unsupervised at initial stages prohibits the network
from reaching optimal performance.

Based on this experiment, we use λun = 0.6 for all the experiments.

4 Additional Architecture Ablation

In this section, we conducted additional architecture ablation experiments using
two recent crowd counting techniques: CSRNet [3] and Res101-SFCN [4]. WE
use the 5% data-setting, where we use 5% of the data as labeled and rest as
unlabeled. We evaluated both these methods on ShanghaiTech-A (SH-A) and
UCF-QNRF datasets.For CSRNet, we use the layers upto the last dilated conv
as the encoder. For the decoder, we use 2 conv layers as described earlier.

The results of this experiment are shown in Table 2. In addition to MAE/MSE,
we report Average Gain (AG)3. We observed consistent gains in both the cases
when we used the proposed GP-based method to leverage unlabeled data.

Table 2. Semi-supervised experiments with recent crowd counting methods. We used
5% of the training data as labeled set, and the rest as unlabeled samples. AG: Average
Gain %3.

Net DL%
SH-A UCF-QNRF

No-GP(DL-only) GP(DL +DU ) AG
%

No-GP (DL-only) GP (DL +DU ) AG
%MAE MSE MAE MSE MAE MSE MAE MSE

Res101-SFCN
100 74 114 - - - 113 196 - - -
5 128 199 109 160 17 193 323 172 282 12

CSRNet
100 71 112 - - - 123 195 - -
5 120 200 111 159 14 187 310 171 293 7.0

3 AG = Gmae+Gmse
2

, Gmae =
mae(DU+DL)−mae(DL)

mae(DL)
, Gmse =

mse(DU+DL)−mse(DL)

mse(DL)
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5 Multiple Trials

In this section, we report the standard-deviations for the experiments with our
proposed method corresponding to Table 1 and Table 4 in the main paper. See
Table 3 and Table 4. Note that the standard deviations are computed using 5
trials.

Table 3. Results in SSL settings. Reducing labeled data to 5% results in performance
drop by a big margin as compared to 100% data. Res50 was used as the encoder network
for all the methods. RL: Ranking-Loss. GP: Gaussian-Process. AG: Average Gain %3.

Method DL DU
SH-A SH-B UCF-QNRF WExpo UCSD

MAE MSE AG MAE MSE AG MAE MSE AG MAE AG MAE MSE AG

Ours 5% 95% 102 ± 0.8 172 ± 2.1 16 15.7 ± 0.9 27.9 (± 1.1) 22 160 ± 2.4 275 ± 3.1 10 12.8 ± 0.5 10 2.0 ± 0.05 2.4 ± 0.09 12

Table 4. Results for synthetic-to-real transfer settings. We train the network on
synthetic crowd counting dataset (GCC), and leverage the training set of real-world
datasets without any labels. We used the same network and training/evaluation pro-
tocol as in [4].

Method
SH-A SH-B UCF-QNRF UCF-CC-50 WExpo

MAE MSE MAE MSE MAE MSE MAE MSE MAE

Ours 121 ± 0.6 181 ± 1.6 12.8± 0.3 19.2± 0.9 210± 2.7 351± 4.1 355 ± 4.4 505± 5.9 20.4 ± 0.9
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