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Abstract. Explainable face recognition (XFR) is the problem of ex-
plaining the matches returned by a facial matcher, in order to provide
insight into why a probe was matched with one identity over another.
In this paper, we provide the first comprehensive benchmark and base-
line evaluation for XFR. We define a new evaluation protocol called the
“inpainting game”, which is a curated set of 3648 triplets (probe, mate,
nonmate) of 95 subjects, which differ by synthetically inpainting a cho-
sen facial characteristic like the nose, eyebrows or mouth creating an
inpainted nonmate. An XFR algorithm is tasked with generating a net-
work attention map which best explains which regions in a probe image
match with a mated image, and not with an inpainted nonmate for each
triplet. This provides ground truth for quantifying what image regions
contribute to face matching. Finally, we provide a comprehensive bench-
mark on this dataset comparing five state-of-the-art XFR algorithms
on three facial matchers. This benchmark includes two new algorithms
called subtree EBP and Density-based Input Sampling for Explanation
(DISE) which outperform the state-of-the-art XFR by a wide margin.

1 Introduction

Explainable AI [29] is the problem of interpreting, understanding and visualizing
machine learning models. Deep convolutional network trained at large scales are
traditionally considered blackbox systems, where designers have an understand-
ing of the dataset and loss functions for training, but limited understanding of
the learned model. Furthermore, predictions generated by the system are often
not explainable as to why the system generated this output for that input. An
explainable AI system would enable interpretation of what the ML model has
learned [26][2], enable transparency to understand and identify biases or failure
modes in the system [3][15][13][25] and provide user friendly visualizations to
build user trust in critical applications [31][33][42].

Explainable face recognition (XFR) is the problem of explaining why a face
matching system matches faces. Human adjudicators have a long history in ex-
plaining face recognition in the field of forensic face matching. Professional facial
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Probe Non-mate (Inpainted)Mate #1 Mate #2 (Truth)

The Inpainting Game:
Quantitative Performance Metrics

(good, bad, truth)

XFR Saliency Map Saliency Evaluation

Explainable FR (XFR):  What image region of probe is 
most similar to the mate and least similar to the non-mate?

Fig. 1. Explainable Face Recognition (XFR). Given a image triplet of (probe, mate 1,
nonmate), an explainable face recognition algorithm is tasked with estimating which
pixels belong in a region that is discriminative for the mate - i.e. a region is more
similar to the mate than the non-mate. These estimations are given as a saliency map.
The nonmate has been synthesized by inpainting a given region (e.g. eyebrows) that
changes the identity according to the given network. This provides ground truth for a
quantitative evaluation of XFR algorithms using the “inpainting game” protocol.

analysts follow the FISWG standards [11] which leverage comparing facial mor-
phology, measuring facial landmarks and matching scars, marks and blemishes.
These features are used to match a controlled mugshot of a proposed candidate
to an uncontrolled probe, such as a security camera image. However, these ap-
proaches require a candidate list for human adjudication, and a candidate list
in a modern workflow is returned from a facial matching system [24]. Why did
the face matching system return that candidate list for this probe? What facial
features did the face matching system use, and are they the same as the FISWG
standards? Is the face matcher biased or noisy? The goal of XFR is to explore
such questions, and answer why a system matched a pair of faces. A successful
explainable system would increase confidence in a face matching system for pro-
fessional examiners, enable intepretation of the internal face representations by
machine learning researchers and generate trust by the user community.

What is an “explanation” in face recognition? Explainable AI has explored
various forms of explanation for machine learning systems in the form of: ac-
tivation maximization [32], synthesizing optimal images [21], network attention
[39][23][12], network dissection [2] or synthesizing linguistic explanations [16].
However, a key challenge in explainable AI is the lack of ground truth to compare
and quantify explainable results across networks. XFR is especially challenging
because the difference between near-mates or doppelgangers is subtle, the expla-
nations are non-obvious, and differences are rarely well localized in a compact
facial feature [6].

In this paper, we provide the first comprehensive benchmark for explainable
face recognition (XFR). Fig. 1 shows the structure of this problem. An XFR
system is given a triplet of (probe, mate, nonmate) images. The XFR system
is tasked with generating a saliency map that best captures the regions of the
probe image that increase similarity to the mate and decrease similarity to the
nonmate. This provides an explanation for why the matcher provides a high ver-
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ification score for the pair (probe, mate) and a low verification score for (probe,
nonmate). This explanation can be quantitatively evaluated by synthesizing non-
mates that differ from the mate only in specific regions (e.g. nose, eyes, mouth),
such that if the saliency algorithm selects these regions, then it performs well on
this metric. This paper makes the following contributions:

1. XFR baseline. We provide a baseline for XFR based on five algorithms
for network attention evaluated on three publicly available convolutional
networks trained for face recognition: LightCNN [35], VGGFace2 [5] and
ResNet-101. These baselines include two new algorithms for network atten-
tion called subtree EBP (Sec. 3.1) and DISE (Sec. 3.2).

2. Inpainting game protocol and dataset. We provide a standardized eval-
uation protocol (Sec. 4.1) and dataset (Sec. 4.2) for fine grained discrimina-
tive visualization of faces. This provides a quantitative metric for objectively
comparing XFR systems.

3. XFR evaluation. We provide the first comprehensive evaluation of XFR
using the baseline algorithms on the inpainting game protocol to provide a
benchmark for future research (Sec. 5.1). Furthermore, in the supplemental
material, we show a qualitative evaluation on novel (non inpainted) images
to draw conclusions about the utility of the methods for explanation on real
images.

2 Related Work

The related work most relevant for our proposed approach to XFR can be broadly
categorized into two areas: network attention models for convolutional networks
and interpretable face recognition.

Network attention is the problem of generating an image based saliency map
which visualizes the input regions that best explains a class activation output of a
network. Gradient-based methods [31][33][42] attempt to compute the the deriva-
tive of the class signal with respect to the input image, while other approaches [4]
modify network architectures to capture these signals or localize attribution [17].
Excitation backprop [39], contrastive EBP [39] or truncated contrastive EBP [6]
formulate the saliency map as marginal probabilities in a probabilistic absorb-
ing Markov chain. Layerwise relevance propagation [18][28][1] provides network
attention through a set of layerwise propagation rules theoretically justified by
deep Taylor decomposition. Latent attention networks learn an auxiliary net-
work to map input to attention, rather than exploring the network directly [14].
Inversion methods [19] seek to recover natural images that have the same fea-
ture representation as a given image. However, the same insights have not yet
been applied to fine grained categorization for face recognition. Finally, black
box methods have explored network attention for systems that do not have an
exposed convolutional network [8][23][12][4]. The approaches to XFR explored
in this paper are most closely related to EBP [39], RISE [23], and methods for
network attention for pairwise similarity [34].
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Recently, there has been emerging research on the interpretation of face recog-
nition systems[37][38][6][36][27][9][41]. Visual psychophysics [27] have provided a
set of tools for the controlled manipulation of input stimuli and metrics for the
output responses evoked in a face matching system. This approach was inspired
by Cambridge Face Memory Test [10], which involves progressively perturbing
face images using a chosen transformation function (e.g. adding noise) to in-
vestigate controlled degradation of matching performance [27]. This approach
enables detailed studies of the failure modes of a face matcher or exploring how
facial attributes are expressed in a network [9][41]. In contrast, our approach
generates controlled degradations using inpainting, to provide localized ground
truth for evaluation of network attention models. In [37], the authors propose
a novel loss function to encourage part separability during network dissection
of parts in a convolutional network for face matching. This approach is primar-
ily concerned with training new networks to maximize interpretability, rather
than studying existing networks. In [38], the authors study pairwise matching
of faces, to visualize features that lead towards classification decisions. This is
similar in spirit to our proposed approach, however we provide a performance
metric for evaluating a saliency approach as well as extending visualizations to
mated and nonmated triplets. Finally, in [36], the authors visualize the features
of shape and texture that underlie subject identity decisions. This approach uses
3D modeling to generate a controlled dataset, rather than inpainting. However,
given the authors conclusions that texture has a much larger effect of matching
than morphology, having a ground truth dataset that includes texture variation
would be an appropriate metric for explainable face recognition.

3 Explainable Face Recognition (XFR)

XFR is the problem of explaining why a face matcher matches faces. Fig. 1 shows
the structure of this problem. Given a triplet of (probe, mate, nonmate), the XFR
algorithm is tasked with generating a saliency map that explains the regions of
the probe image that maximize the similarity to the mate and minimize the
similarity to the nonmate. This provides an explanation for why the matcher
returns this image for the mated identity.

Why triplets? Previous work has shown that pairwise similarity between
faces is heavily dominated by the periocular region and nose [6], as confirmed
by the qualitative visualization study performed in the supplementary material
The periocular region and nose is almost always used for facial classification, but
this level of XFR is not very helpful in explaining finer levels of discrimination.
Our goal is to highlight those regions for a probe that are more similar to a
presumptive mate and simultaneously less similar to a nonmate. This triplet
of (probe, mate, nonmate) provides a deeper explanation beyond facial class
activation maps for the relative importance of facial regions.

In this section, we describe five approaches for network attention in XFR.
These approaches are all whitebox methods, which assume access to the under-
lying convolutional network used for facial matching. The objective of XFR is
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Fig. 2. Subtree EBP. Given a triplet of (probe, mate, nonmate) subtree EBP explores
the activations of individual nodes in a convolutional network that minimizes a triplet
loss, which maximizes similarity to the mate and minimizes similarity to the nonmate.
The excitory regions for each node are visualized independently, sorted by loss and
combined into a saliency map that best explains how to discriminate the probe.

to generate a non-negative saliency map, that captures the underlying image
regions of the probe that are most similar to the mate and least similar to the
nonmate. The XFR algorithm can use any property of the convolutional net-
work to generate this saliency map. For our benchmark evalution, we selected
three state-of-the-art approaches for network attention (excitation backprop,
contrastive excitation backprop and truncated contrastive excitation backprop)
following the survey and evaluation results in [6]. In this section, we introduce
two new methods to improve upon these published approaches: subtree EBP
(Sec. 3.1) and DISE (Sec. 3.2).

Excitation Backprop (EBP). Excitation backprop (EBP) [39] models net-
work attention as a probabilistic winner-take-all (WTA) process. EBP calculates
the probability of traversing to a given node in the convolutional network, with
the probabilities being defined by the positive weights and non-negative activa-
tions. The output of EBP is a saliency map that localizes regions in the image
that are excitory for a given class.

In our approach, we replace the cross-entropy loss for EBP with a triplet loss
[30]. The original formulation of EBP considers a cross-entropy loss to optimize
softmax classification of a set of clases in the training set. In this new formulation,
given three embeddings for a mate (m), nonmate (n) and probe (p), the triplet
loss function is a max-margin hinge loss

L(p, n,m) = max(0, ||p−m||2 − ||p− n||2 + α). (1)

This uses the squared Euclidean distance between embeddings to capture sim-
ilarity, such that the loss is minimized when the distance from the probe and
mate is small (similarity is high) and the distance form the probe to the nonmate
is large (similarity is low), with margin term α. This loss function extends EBP
to cases where a new subject is observed at test time that was not present in
the training set, as is commonly the case with face matching systems.
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Contrastive EBP (cEBP). Contrastive EBP was introduced [39] to handle
fine-grained network attention for closely related classes. This approach discards
activations common to a pair of classes, to provide network attention specific to
one class and not another. In our approach, contrastive EBP [39] is combined
with a triplet loss (eq 1).

Truncated Contrastive EBP (tcEBP). Truncated contrastive EBP was in-
troduced [6] as an extension of cEBP that considers the contrastive EBP atten-
tion map only within the kth percentile of the EBP saliency map. This addresses
an observed instability of cEBP [6] resulting noisy attention maps for faces.

3.1 Subtree EBP

In this section, we introduce Subtree EBP, a novel method for whitebox XFR.
This approach uses the triplet loss function (eq 1), with the following extension.
Given a triplet (probe, mate, nonmate) images, we compute the gradient of the
triplet loss function ( ∂L

∂xi
) with respect to every node xi in the network. This

approach uses the standard triplet-based learning, where the mate and nonmate
embeddings are assumed constant and the gradient is computed relative to the
probe image. Next, we sort the gradients at every node xj in decreasing order,
and select the top-k nodes with the largest positive gradients. These are the top-
k nodes in the network that most affect the triplet loss, to increase the similarity
to the mate and simultaneously decrease the similarity to the nonmate. Finally,
we construct k EBP saliency maps Si starting from each of the selected interior
nodes, then the Si are combined in a weighted convex combination with weights
wi = ∂L

∂xi
and

S =
1∑
j wj

∑
i

∂L

∂xi
Si (2)

where the weights are given by the loss gradient (wi), normalized to sum to one.
This forms the final subtree EBP saliency map S.

Fig. 2 shows an example of the subtree EBP method. This montage shows
the top 27 nodes with the largest triplet loss gradient for the shown triplet. Each
node results in a saliency map corresponding to the excitory subtree rooted at
this node. The weight of the saliency map is proportional to the gradient sorted
rowwise, so that the nodes in the bottom right affect the loss more than the
nodes in the upper left. Each of these saliency maps are combined into a convex
combination (eq. 2) forming the final network attention map. In this example,
the nonmate was synthesized to differ with the mate only in the nose region, and
our method is able to correctly localize this region. The supplementary material
shows a more detailed example of this selection process starting from the largest
excitation node at each layer of a ResNet-101 network. This result shows that
nodes selected close to the image will be well localized, nodes in the middle
of the network correspond to parts and nodes selected close to the embedding
correspond to the whole nose and eyes of the face.
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Fig. 3. Density-based Input Sampling for Explanation (DISE). Our approach is an
extention of RISE [23] for XFR. This approach occludes small regions in the probe
image with grey (i.e. masked pixels), sampled according to a prior density derived from
excitation backprop, and computes a numerical gradient for the triplet loss for (probe,
mate, nonmate) given these masked probes. Masks with a large numerical gradient are
more heavily weighted in the accumulated saliency map.

3.2 Density-based Input Sampling for Explanation (DISE)

Density-based Input Sampling for Explanation (DISE) is a second novel ap-
proach for whitebox XFR introduced in this paper. DISE is an extension of
Randomized Input Sampling for Explanation (RISE) [23] using a prior density
to aid in sampling. Previous work [23][12] has constructed a saliency map associ-
ated with a particular class by randomly perturbing the input image by masking
selected pixels, evaluating it using a blackbox system, and accumulating those
perturbations based on how confident the system is that the modified input im-
age corresponds to the target class. However, these approaches generate masks
to occlude the input image uniformly at random. This sampling process is in-
efficient, and can be improved by introducing a prior distribution to guide the
sampling. In this section, we describe the extension to RISE [23] where the prior
density for input sampling is derived from a whitebox EBP with triplet loss.

Fig. 3 shows an overview of this approach. Our approach extends RISE [23]
for XFR as follows:

1. Using a non-uniform prior for generating the random binary masks
2. Restricting the masks to use a sparse, fixed number of mask elements
3. Defining a numerical gradient of the triplet loss to weight each mask

Non-Uniform Prior. Prior research on discriminative features for facial recog-
nition showed that the most important regions of the face were generally located
in and around the eyes and nose (Sec. 3). Fig. 3 shows an example of this saliency
map computed for a probe image of Taylor Swift using the VGG-16 [22] network
as the whitebox face matcher. Using this saliency map as our prior probabil-
ity for generating random masks allows us to sample the space of most salient
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masks that will affect the loss more efficiently than assuming a uniform prob-
ability across the entire image. Further limiting this prior to the upper 50th
percentile of the mean EBP effectively eliminates the possibility of masking out
unimportant background elements.

Sparse Masks. Next, we restrict the number of masked elements to be sparse.
RISE considered random binary masks covering the entire input image. In con-
trast, we use a sparse mask to highlight the affect of a small localized region
of the face on the loss. We used two mask elements per mask, upsampled by a
factor of 12 (to avoid pixel level adversarial effects). We found that filling the
masks with a blurred version of the image performed quantitatively better on
the inpainting game than using grey masks.

Numerical gradient. Finally, given the probe image which has been masked
with the sparse mask sampled from the non-uniform prior, we can compute a
numerical gradient of the triplet loss. Let p be an embedding of the probe, m the
mated image embedding, n the nonmated image embedding, and p̂ the masked
probe embedding. Then, the numerical gradient of the triplet loss (eq 1) can be
approximated as:

∂Ldise

∂p
≈ max(0, L(p,m, n)− L(p̂,m, n)) (3)

The numerical gradient is an approximation to the true loss gradient computed
by perturbing the input by occluding the probe with a pixel mask, and computing
the corresponding change in the triplet loss. In other words, when the probe
masks out a region that increases for the similarity between the probe and mate
and decreases for the probe and nonmate, the numerical gradient should be large.
This allows for a loss weighted accumulation of these masks into a saliency map.
The final saliency is accumulated following (eq. 2), where saliency maps Si are
the pairwise binary masks, with non-negative gradient weights (eq. 3).

4 Experimental Protocol

Recent explainable AI research has focused on class activation maps [23][12][31]
[33][42][39][4], which visualize salient regions used for classification. For facial
recognition, prior work has shown this is almost always the eyes, nose, and
upper lip of the face [6]. In facial identification, a probe image is given to a face
matching system, which returns the top K identities from a gallery. A natural
question is why the matching system picked the top match instead of the second
top match (or remaining top K matches). One way to give an answer to this
question is to highlight the region(s) that match a given identity more than the
second identity or other identities. This saliency map should be larger for the
regions that contribute the most to the identity and not others. In this paper,
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Fig. 4. Inpainting game overview. The XFR algorithm is given triplets (probe, mate,
nonmate) labeled in the figure as (mated probe, mated references, inpainted non-
mates), and is tasked with estimating a discriminative saliency map that estimates
the likelihood that a pixel belongs to a region that is discriminative for the mate. A
threshold is applied to the saliency map to classify each pixel as being discriminatively
salient (inset, blue squares, left). A high performing XFR algorithm will correctly clas-
sify the discriminative pixels within the inpainted region (green, right) while avoiding
classifying the pixels that are identical between the mated references and the probes
as being discriminative (red, right). See sec. 4.1 for more details.

our goal is to highlight the regions that are responsible for matching a given
image to one identity versus a similar identity.

A key challenge for evaluating the performance of an XFR approach is gen-
erating ground truth. For XFR, ground truth not only depends on the selection
of probes, mates, and nonmates, but can also depend on a target network for
evaluation. We address this issue by synthesizing inpainted nonmates or doppel-
gangers, where a select region of the face is changed from the original identity.
Only the inpainted region differs between the two images and therefore only the
inpainted region can be used to discriminate between them. Furthermore, we
synthesize doppelgangers based on their ability to reduce the match score for
a target network. We call our overall strategy for quantitative evaluation the
inpainting game.
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4.1 The Inpainting Game

An overview of the inpainting game evaluation is given in Fig. 4. The inpaint-
ing game uses four (or more) images for each evaluation: a probe image, mate
image(s), an inpainted probe and inpainted nonmate(s). The inpainted probe or
probe doppelganger is subtly different from the probe in a fixed region of the face,
such as the eyes, nose or mouth. Similarly, the inpainted nonmate or mate dop-
pelganger is subtly different from the mate image, such that the doppelgangers
are a different identity. The inpainted probe and inpainted nonmate are con-
strained to be the same new identity. Sec. 4.2 discusses the construction of this
dataset.

The XFR algorithm is given triplets of probes, mates and nonmates, labeled
in Fig. 4 as (“mated probe”, “mated references” and “inpainted non-mates”).
For each triplet, the XFR algorithm is tasked with estimating the likelihood that
each pixel belongs to a region that is discriminative for matching the probe to
the mated identity over the nonmated/inpainted identity. These discriminative
pixel estimations form a saliency map. Each pixel is classified as being discrimi-
natively salient by applying a threshold, which forms a binary saliency map. For
each binary saliency map, pixels in the probe are replaced with the pixels from
an inpainted probe forming a blended probe. The inpainted probe is generat-
ing by inpainting the same facial region as the inpainted nonmates and is not
provided to the XFR algorithm, which is sequestered and used for evaluation
only. The saliency map is evaluated by how quickly it can flip the identity of
the blended probe from the mate to the non-mate, while maximizing saliency
(green) in ground truth (grey) while minimizing false alarms (red). See Sec. 4.3
for additional details, including the metrics for the inpainting game.

4.2 Inpainting Dataset for Facial Recognition

The inpainting dataset for face recognition is based on the images from the
IJB-C dataset [20]. The inpainting dataset contains 561 images of 95 subjects
selected from IJB-C, for an average of 5.9 images per subject. We defined eight
facial regions for evaluation: 1) cheeks and jaw, 2) mouth, 3) nose, 4) left eye,
5) right eye, 6) eyebrows, and 7) left face, 8) right face. Each image is inpainted
for each of the eight regions forming a total of 4488 inpainted doppelgangers.
From this set, we define 3648 triplets, such that each triplet is a combination of
(probe, mate and inpainted doppelganger nonmate). The XFR algorithms should
not be evaluated on triplets for networks that cannot distinguish the original
and inpainted identities. Hence, the only the triplets that contain discriminable
identities are included for the network the algorithm is being evaluated on.

The inpainted doppelgangers are generated as follows. In order to systemat-
ically mask the regions, we use the pix2face algorithm [7] to fit a 3d face mesh
onto each facial image. We then projected the facial region masks onto the im-
ages. We use pluralistic inpainting [40] to synthesize an image completion in that
masked region. Fig. 5 shown examples of these inpainted doppelgangers.
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Fig. 5. Example facial inpainted images. This montage shows the first four of eight
inpainting regions (cheeks, mouth, nose, eyebrows, left face, right face, left eye, right
eye), and synthesized inpainted doppelgangers images. The first seven columns show
seven subjects, with the same image repeated along the column. The middle column
shows a binary inpainting mask that defines the inpainting region. The last seven
columns show the inpainted doppelganger image using the mask region for that row,
such that the inpainted image differs from the original image only in the mask region.
Observe that the identity may change subtly while looking down a column.

A key challenge of constructing the inpainting dataset is to enforce that the
inpainted nonmate is in fact a different identity. Most of our inpainted images
are not sufficiently different in similarity from the original mated identity for a
specific network. A given triplet of (probe, mate, and inpainted nonmate) is only
included in the dataset if a given target network can distinguish the two identities
for the mate/mate doppelganger and the probe/probe doppelganger. They are
required to be able to distinguish these identities both using a nearest match
protocol and an verification protocol, such that the verification match threshold
for a target network is calibrated to a false alarm rate of 1e-4. Specifically, each
triplet has to fulfill the following criteria in order to be included in the dataset
for a given network:

1. The original probe must be: (i) more similar to the original/mated identity
than the corresponding inpainted/nonmated identity and (ii) correctly veri-
fied as the original/mated identity at the calibrated verification threshold.

2. The inpainted probe must be: (i) more similar to the corresponding inpainted
/ nonmated identity than the original identity and (ii) correctly verified
as the same identity as the inpainted/nonmated identity at the calibrated
verification threshold.

The inpainting dataset is filtered for each target network according to the
above criteria, resulting in a dataset specific to that target network. For ex-
ample, for the ResNet-101 based system, the final filtered dataset includes 84
identities and 543 triplets, filtered down from 95 identities and 3648 triplets.
Lower performing networks will generally have fewer triplets satisfying the se-
lection criteria than higher performing networks, because they will not be able
to discriminate as many of the subtle changes in the inpainted probes.
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Fig. 6. (left) Inpainting game analysis using VGGFace2 ResNet-50. (right) Inpainting
game analysis using Light-CNN. Refer to Table 1 for a summary of performance at
fixed operating points on these curves.

4.3 Evaluation Metrics

The XFR algorithms estimate the likelihood that each pixel belongs to a region
that is discriminative for matching the probe to the mated identity over the non-
mated/inpainted identity. These discriminative pixel estimations form a saliency
map, where the brightest pixels are estimated to be most likely to belong to the
discriminative region. Fig. 4 shows an example and saliency predictions at two
thresholds, where the saliency prediction is shown at different thresholds as a
binary mask.

In order to motivate our proposed metric, let’s first consider using a classic re-
ceiver operating characteristic (ROC) curve for evaluation of the inpainting game
rather than our proposed metric. A ROC curve can be generated by sweeping a
threshold for the pixel saliency estimations, and computing true accept rate and
false alarm rate by using the inpainted region as the positive / salient region
and the non-inpainted region as the negative / non-salient region (i.e. middle
column in Fig. 5). However, not all pixels within the inpainted region contribute
equally to the identity, and the saliency algorithm should not be either penalized
or credited with this selection.

To address this key challenge, we use mean nonmate classification rate instead
of true positive rate for saliency classification. We play a game where the pixels
classified as being salient by sweeping the saliency threshold are replaced with
the pixels from the “inpainted probe”, which is not provided to the saliency
algorithm. These “blended probes” can then be classified as original identity or
inpainted nonmate identity by the network being tested. High performing XFR
algorithms will correctly assign more saliency for the inpainted regions that
will change the identity of the blended probes without increasing the false alarm
rate of the pixel salience classification. This is the key idea behind our evaluation
metric. The false positive rate is calculated from salient pixel classification across
all triplets, using the ground truth masks for the blended probe. The mean
nonmate classification rate is weighted by the number of triplets within each
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Inpainting Game (Mean Nonmate Classification Rate)

All Nose Eyes Eyebrows

System Saliency FAR=1E-2 FAR=5E-2 FAR=1E-2 FAR=5E-2 FAR=1E-2 FAR=5E-2 FAR=1E-2 FAR=5E-2

ResNet-101

DISE 0.438 0.816 0.691 0.932 0.627 0.931 0.723 0.981
Subtree EBP 0.274 0.792 0.740 0.973 0.503 0.931 0.065 0.942
Mean EBP 0.143 0.626 0.208 0.904 0.565 0.931 0.010 0.781

Contrastive EBP 0.132 0.454 0.178 0.589 0.310 0.517 0.040 0.543
Truncated cEBP 0.167 0.582 0.247 0.699 0.276 0.573 0.066 0.642

VGGFace2
ResNet-50

DISE 0.443 0.761 0.730 0.902 0.609 0.957 0.891 0.976
Subtree EBP 0.285 0.735 0.705 0.984 0.418 0.878 0.332 0.928
Mean EBP 0.092 0.499 0.148 0.705 0.388 0.831 0.108 0.821

Contrastive EBP 0.195 0.520 0.343 0.705 0.484 0.652 0.323 0.850
Truncated cEBP 0.205 0.536 0.361 0.754 0.539 0.696 0.329 0.868

LightCNN
NiN+

MFM-28

DISE 0.202 0.587 0.729 0.961 0.409 0.847 0.641 0.927
Subtree EBP 0.250 0.643 0.699 0.914 0.294 0.778 0.489 0.921
Mean EBP 0.027 0.307 0.048 0.477 0.085 0.600 0.026 0.558

Contrastive EBP 0.121 0.526 0.286 0.821 0.211 0.533 0.287 0.842
Truncated cEBP 0.135 0.557 0.294 0.820 0.209 0.576 0.298 0.892

Table 1. Inpainting game evaluation results. This table summarizes the performance
at two operating points of false alarm rate (1E-2, 5E-2) for the performance curves in
Fig. 6 (ResNet-50 and LightCNN) and in the supplementary material. Mean nonmate
classification rate is the proportion of triplets where the identity of the blended image
was correctly “flipped” to the doppelganger. Results show that our new methods (DISE,
Subtree EBP) outperform the state of the art by a wide margin on three matchers.
Detailed subprotocol results and curves are provided in the supplemental material.

facial region for a filtered dataset, to avoid bias for subprotocols with more
examples. Example of the output curves for this metric is shown in Fig. 6.

5 Experimental Results

5.1 Inpainting Game Quantitative Evaluation

We ran the inpainting game evaluation protocol on the inpainting dataset using
three target networks: LightCNN [35], VGGFace2 ResNet-50 [5] and a custom
trained ResNet-101. We considered the five XFR algorithms described in Sec. 3
forming the benchmark for XFR evaluation.

The evaluation results are summarized in Table 1 and plotted in Fig. 6 and
in the supplementary material. The summary table shows for each combination
of network and XFR algorithm, at two false alarm rates (1E-2, 5E-2) for the
full protocol and three subprotocols: eyes, nose and eyebrows only. Additional
results in the supplementary material show the results for the individual facial
region subprotocols.

Overall, results show that for deeper networks (ResNet-101, ResNet-50),
the top performing XFR algorithm is DISE. However, for shallower networks
(LightCNN) then top performing algorithm is Subtree EBP. Both of these new
approaches outperform the state of the art (EBP, cEBP, tcEBP) by a wide mar-
gin. We believe that DISE outperforms Subtree EBP since subtree EBP cannot
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localize image regions any better than the underlying network represents faces.
For example, consider the eyebrows subprotocol result in the supplementary ma-
terial, which shows that subtree EBP cannot represent eyebrows independently
from the eyes. DISE can mask image regions independently from the underlying
target network and correctly localize eyebrow effects.

6 Conclusions

In this paper, we introduced the first comprehensive benchmark for XFR We
motivated the need for XFR and describe a new quantitative method for com-
paring XFR algorithms using the inpainting game. The results show that the
DISE and subtree EBP methods provide a significant performance improvement
over the state of the art, which provides a new baseline for visualizing discrim-
inative features for face recognition. This evaluation protocol provides a means
to compare different approaches to network saliency, and we believe this form
of quantitative evaluation will help encourage research in this emerging area of
explainable AI for face recognition. All software and datasets for reproducible
research are available for download at http://stresearch.github.io/xfr.
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