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1 Table of Contents

– In Section 2 we list details of the implementation and model, as well as some
parameters in training;

– In Section 3 we give the formulation of the perspective camera model;
– In Section 4 we evaluate the camera calibration performance of our model

against [2];
– In Section 5 we introduce the data preparation details, examples and statistics

of all datasets;
– In Section 6 we list extra results for all datasets, as well as corner cases and

failure cases on COCO-Scale. Additionally, we include samples to support
our conclusion in the main paper, that (1) by introducing more objects from
multiple categories strengthens the results (Table 4 of the main paper), and
(2) our model which explicitly accounts for keypoints and upright ratio better
deals with person in sitting pose (Table 6 of the main paper).

2 Network Architecture and Training Details

In this section, we provide additional details on the neural network and its
training process.

Our network is adapted from the e2e keypoint rcnn R 50 FPN 1x caffe2

meta-architecture of maskrcnn-benchmark [5]. We use their proposed architecture
for our backbone, FPN, ROI bounding box head, and keypoint head. In addition
to those network heads, we add an object height head, and a camera calibration
head (including a separate camera height head). Throughout this section, we
denote a convolution layer as Conv(C, K, S) and fully-connected layer as FC(C)
where C is the number of output channels, K is the kernel size, and S is the
stride.
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The camera calibration head is adapted from the feature extractor of FPN2MLP
and FCPredictor. The output of this head consists of 256 bins, on which a
Softmax operation is applied to obtain the estimation.

The object height estimation head shares the same feature extractor with
the keypoint head. This object height estimation head consists of three layers:
Conv(3, 256, 2), FC(1024) and FC(256). We use the ReLU activation function
for all layers except the output layer, which produces logits.

The network is trained in two stages. In the first stage, the backbone and
camera calibration head, keypoint head and bounding box head are trained
jointly on the Calib dataset (for camera parameters) as well as COCO-Scale (for
keypoints and bounding boxes). To train this stage, we employ the following
combination of losses:

Lfirst = +α3Lcalib + α4Ldet + α5Lkps , (1)

where α3 = 1 and α4 = α5 = 10. We use SGD as optimizer with a learning rate
of 1e-5, and a batch size of 16. The training takes 40k iterations to converge.

In the second stage, the previous modules are further trained solely on
COCO-Scale with the bounding box fitting vt and the object prior yhj . To train
the second stage, we add this bounding box fitting loss to the first stage loss,
resulting in the following training loss:

Lsecond = α1

M∑
j=1

Lvtj + α2

M∑
j=0

Lhobjj
+ α3Lcalib + α4Ldet + α5Lkps, (2)

where α1 = 1 , α2 = 0.05, α3 = 1 and α4 = α5 = 10. The training is performed
with the Adam optimizer using an initial learning rate of 1e-5. The batch size
is 16 with 4 examples from Calib and 12 from COCO-Scale. The training takes
120k iterations to converge.

2.1 Other Parameters

All classification outputs of the network uses the Softmax operation on 256 output
bins following [2]. Those bins represent different ranges of values according to
their task. The range for camera height hcam is [0.5, 5] for the initial prediction,
and [-0.3, 0.3] for refinement layers. For the camera parameters, the range is [-0.6,
0.6] for pitch θ, and [0.2389, 1.6] rad for field of view hθ. For people height hobj,
the bins are [1., 1.9], [-0.3, 0.15], [-0.10, 0.10], and for cars are [1.40, 1.70], [-0.10,
0.10], [-0.05, 0.05], for the initial prediction and refinement layers, respectively.

For data pre-processing, we use identical pipeline as in the e2e keypoint rcnn R

50 FPN 1x caffe2 meta-architecture of maskrcnn-benchmark [5].

3 Camera Model Details

This section describes the image formation model used in our method.
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Assuming a pinhole camera model, a point x = [x, y, z]T ∈ R3 in camera
coordinates and its reprojected pixel coordinates in the image frame p = [u, v]T ∈
R2, the camera projection function can be written as

uv
w

 =

f 0 uc
0 f vc
0 0 1

1 0 0 0
0 cos θ − sin θ −hcam

0 sin θ cos θ 0



x
y
z
1

 , (3)

where [uc, vc] ∈ R2 is the optical center which we assume are known, and the
output [u, v, w] on the left-hand side is in homogeneous coordinates.

Based on this perspective camera projection model, we may derive vt and vb
according to Eqn. 2 and Eqn. 3 of the main paper.

4 Camera Calibration Evaluation on Calib Dataset

We evaluate camera calibration results of our model against Hold-Geoffroy et al.
[2] on the validation split of the Calib dataset. While it is not our central goal,
we achieve strong camera calibration results compared to [2] under the same
assumptions of pre-corrected images or minimal lens distortion, as included in
Table 1.

Table 1: Camera calibration error on Calib, shown in mean ± std. Best results in bold

pitch θ(◦) roll ψ(◦) field of view hθ(◦)

Hold-Geoffroy et al. [2] 2.11±3.10 1.19±1.89 4.39±3.67
SN-L3 1.83±2.64 1.02±1.46 3.61±3.21

SN-L3-kps-can 1.82±2.62 1.05±1.94 3.63±3.22

5 Dataset Details

5.1 COCO-Scale Dataset

Data Pruning We use some filtering rules to prune COCO [4] into our COCO-
Scale. See Fig. 1 for an example of those filtering rules. We use the provided
“stuff” annotations as non-object areas. On Fig. 1 (right), we show 14 detected
people from Mask R-CNN. For detection, we apply 4 rules:

1. the bounding box width-to-height ratio should be within [2.0, 8.0] for people,
and [1/3.5, 1/1.5] for cars;
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Fig. 1: (Left) Stuff annotation and human keypoints annotation from COCO. (Right)
Examples of our filtering rules. People highlighed in red are discarded due to their
abnormal width-to-height ratio, usually caused by incomplete observation. People
highlighted in blue are flagged by another filtering rule (amodal observation, non-
standing pose, supporting surface). The green bounding box means the person passed
all our filtering rules. For each bounding box, we display in the upper-left corner the
object index, its width-to-height ratio, R:Y/N (for ratio), C:Y/N (for amodal, i.e. the
head and ankles are both visible), Sur:Y/N (lying on a valid surface), Sec:Y/N (no
major occlusion). On the bottom-left corner of each bounding box, we display the
surface (stuff) property of the two bottom corners.

2. the supporting surface should be one of the following: ‘water’, ‘ground’ (ex-
ception: ‘platform’), ‘solid’, ‘vegetation’: (exception: ‘flower’, ‘tree’), ‘floor’,
‘plant/grass’, ‘plant/flower’, ‘structural/net’. For cars in the multi-category
setting, they are ‘ground’(exception: ‘platform’), ‘solid’, ‘vegetation’ (excep-
tion: ‘flower’, ‘tree’), ‘floor’, ‘plant/grass’, ‘plant/flower’, ‘wall/wall-concrete’,
‘building/building-other’. The supporting surface is obtained by looking at
both bottom corners of the person or object bounding box. At least one of
them should be in the previous categories;

3. for people, we look for amodal observations, where both the head and ankles
must be visible—since our model assumes full object visibility and that each
bounding box be lying on the ground, similar to [3];

4. for people, the occlusion should be minimal. The person or object of interest
should occupy the largest region in the bounding box, otherwise is it discarded.

Data Examples More data examples from COCO-Scale can be found in Fig.
3. Despite our best efforts, some annotations breaking our assumptions pass
our data filtering. For example, in the second column, second row, the person
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Fig. 2: Demo of two real-world samples where virtual object insertion is performed
with our method.

standing on top of the platform has a valid supporting surface (‘floor-stone’),
despite not lying on the dominant ground plane.

5.2 KITTI Dataset

Sample data from the KITTI dataset can be found in Fig. 6. In Fig. 4, we provide
histograms of both estimated and ground truth heights, showing the distribution
of our estimations matches the ground truth.

5.3 IMDB-23K Dataset

Results on the IMDB-23K dataset are shown in Fig. 11. In Fig. 5, we show the
distribution of estimated and ground truth people height.

6 More Results

6.1 Failure Cases

Failure cases of our method can be found in Fig. 9. Image 1, 2, 5, 6 demonstrate
cases of large camera roll which our camera model cannot deal with. Image
1, 3, 5 shows failure due to extreme camera height which exceeds our camera
height classification range. Image 1, 2, 4, 5, 6 show wrong horizon estimation. In
particular image 6 shows image distortion which violates our perspective camera
model, and image 4 includes outlier objects that do not situate on the ground.
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Fig. 3: Examples of COCO-Scale-person. Each bounding box is a valid person acquired
from our pruning.

Real world cases of scale ambiguity In Fig. 2 we show two demo cases of
Lego figure macro shots where figures are detected and our method is performed
for scene parameters estimation and virtual object insertion. We demonstrate
that although domain gap exists between our training data and test images, we
are able to successfully detect reference objects and apply our method to those
images which satisfy our scene model. However the issue is, we are not able
to hand wave away the inherent scale ambiguity between real person and Lego
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Fig. 4: (Top) Histogram of estimated heights and ground truth heights of all ‘person’
objects in the KITTI dataset. (Bottom) Histogram of estimated heights and ground
truth heights of all ‘car’ objects in the KITTI dataset
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Fig. 5: Histogram of estimated heights and ground truth heights of all ‘person’ objects
in the IMDB-23K dataset

figures (similar to the demo in [1]) because our person height prior is based on
real person thus does work on mini-sized Lego figures.

6.2 Corner Cases

Corner cases can be found in Fig. 10. We show in row 1 & 2 cases where there
are people of abnormal height (e.g. kids or people sitting) or people that are close
to the camera (which violates the approximated camera model in PGM), in row
3 cases where there are extreme camera heights other than street-level camera
height, in row 4 & 5 cases where horizons are away from the image center or are
incorrectly estimated, in row 6 cases where there are outlier objects which are
not situated on the ground. We demonstrate that our proposed method performs
better than the baseline model in most of these cases.

6.3 More results on COCO-Scale

More results on COCO-Scale can be found in Fig. 7 and Fig. 8.
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Fig. 6: Examples of KITTI. Each bounding box is a valid object acquired from our
pruning (pedestrians in green and cars in magenta).

6.4 More results on IMDB-23K

More results on IMDB-23K are shown in Fig. 11. Comparison between our model
which estimates the keypoints and models the upright ratio (SN-L3-kps-can) and
our vanilla model (SN-L3) can be found in Fig. 12. The comparison shows, by
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Fig. 7: More results of scene parameters estimation and virtual object insertion on
COCO-Scale with model SN-L3-mulCat. The detected boxes are shown in green and
reprojected ones in blue. The horizon is shown as a dashed blue line. Camera parameters
are overlaid on the top. Chairs of 1m height are inserted alongside each person with
the estimated parameters.

incorporating keypoint prediction and upright ratio discount, that SN-L3-kps-can
is better able to deal with situations of person that is not standing upright,
extending Table 6 of the main paper. In Fig. 5 we give a histogram of the
estimated height as well as ground truth height of person and car.

6.5 More results on KITTI

More results on KITTI-mulCat of our best performing model (SN-L3-mulCat)
can be found in Fig. 14. We also give a histogram of the estimated height as well
as ground truth height of person and car in Fig. 4.



10 R. Zhu, X. Yang et al.

1

2

3

4

Fig. 8: More results of scene parameters estimation and virtual object insertion on
COCO-Scale with model SN-L3-mulCat (cont.)

Comparison by with multiple category as input in Fig. 14 we give a
comparison for model SN-L3-mulCat where only pedestrians are used as input
into the model, against both pedestrians and cars are input. We are able to
demonstrate, by using extra objects from the other category, we are able to get
better person height estimation (row 1, 3, 4, 6) or better camera heights (row 1,
2, 3, 4, 5) because they are better constrained when larger number of objects
from multiple categories are used.
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Fig. 9: Failure cases results of scene parameters estimation and virtual object insertion
on COCO-Scale with model COCO-Scale-mulCat.
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Fig. 10: Comparison on corner cases between SN-L3-mulCat (left in each pair), and
PGM (right in each pair) on COCO-Scale-mulCat.
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Fig. 11: More results of scene parameters estimation with SN-L3-kps-can on IMDB-
23K. Person in red bounding box is the annotated person. The estimated height and
ground truth height are labelled on the upper-left corner and over the bounding box
respectively.
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Fig. 12: Comparison between SN-L3-kps-can which incorporates keypoint estimation
and upright ratio estimation (left), and SN-L3 which does not (right).
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Fig. 13: Comparison between SN-L3-mulCat with person only input (left), and SN-L3-
mulCat with both person and car as input.
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Fig. 14: More results of Scene parameters estimation with SN-L3-mulCat on KITTI-
mulCat. Reprojected pedestrians are in blue, while cars are in magenta.
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