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Abstract. We present a conceptually simple but effective funnel acti-
vation for image recognition tasks, called Funnel activation (FReLU),
that extends ReLU and PReLU to a 2D activation by adding a neg-
ligible overhead of spatial condition. The forms of ReLU and PReLU
are y = max(x, 0) and y = max(x, px), respectively, while FReLU is in
the form of y = max(x,T(x)), where T(·) is the 2D spatial condition.
Moreover, the spatial condition achieves a pixel-wise modeling capac-
ity in a simple way, capturing complicated visual layouts with regular
convolutions. We conduct experiments on ImageNet, COCO detection,
and semantic segmentation tasks, showing great improvements and ro-
bustness of FReLU in the visual recognition tasks. Code is available at
https://github.com/megvii-model/FunnelAct.
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1 Introduction

Convolutional neural networks (CNNs) have achieved state-of-the-art perfor-
mance in many visual recognition tasks, such as image classification, object de-
tection, and semantic segmentation. As popularized in the CNN framework, one
major kind of layer is the convolution layer, another is the non-linear activation
layer.

First in the convolution layers, capturing the spatial dependency adaptively
is challenging, many advances in more complex and effective convolutions have
been proposed to grasp the local context adaptively in images [7,18]. The ad-
vances achieve great success especially on dense prediction tasks (e.g., semantic
segmentation, object detection). Driven by the advances in more complex convo-
lutions and their less efficient implementations, a question arises: Could regular
convolutions achieve similar accuracy, to grasp the challenging complex images?

Second, usually right after capturing spatial dependency in a convolution
layer linearly, then an activation layer acts as a scalar non-linear transformation.
Many insightful activations have been proposed [31,14,5,25], but improving the
performance on visual tasks is challenging, therefore currently the most widely
used activation is still the Rectified Linear Unit (ReLU) [32]. Driven by the
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Fig. 1. Effectiveness and generalization performance. We set the ReLU network as
the baseline, and show the relative improvement of accuracy on the three basic tasks
in computer vision: image classification (Top-1 accuracy), object detection (mAP),
and semantic segmentation (mean IU). We use the ResNet-50 [15] as the backbone
pre-trained on the ImageNet dataset, to evaluate the generalization performance on
COCO and CityScape datasets. FReLU is more effective, and transfer better on all of
the three tasks.

distinct roles of the convolution layers and activation layers, another question
arises: Could we design an activation specifically for visual tasks?

To answer both questions raised above, we show that the simple but effec-
tive visual activation, together with the regular convolutions, can also achieve
significant improvements on both dense and sparse predictions (e.g. image clas-
sification, see Fig. 1). To achieve the results, we identify spatially insensitiveness
in activations as the main obstacle impeding visual tasks from achieving sig-
nificant improvements and propose a new visual activation that eliminates this
barrier. In this work, we present a simple but effective visual activation that
extends ReLU and PReLU to a 2D visual activation.

Spatially insensitiveness is addressed in modern activations for visual tasks.
As popularized in the ReLU activation, non-linearity is performed using a max(·)
function, the condition is the hand-designed zero, thus in the scalar form: y =
max(x, 0). The ReLU activation consistently achieves top accuracy on many
challenging tasks. Through a sequence of advances [31,14,5,25], many variants of
ReLU modify the condition in various ways and relatively improve the accuracy.
However, further improvement is challenging for visual tasks.

Our method, called Funnel activation (FReLU), extends the spirit of
ReLU/PReLU by adding a spatial condition (see Fig. 2) which is simple to im-
plement and only adds a negligible computational overhead. Formally, the form
of our proposed method is y = max(x,T(x)), where T(x) represents the simple
and efficient spatial contextual feature extractor. By using the spatial condition
in activations, it simply extends ReLU and PReLU to a visual parametric ReLU
with a pixel-wise modeling capacity.
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Our proposed visual activation acts as an efficient but much more effective
alternative to previous activation approaches. To demonstrate the effectiveness
of the proposed visual activation, we replace the normal ReLU in classification
networks, and we use the pre-trained backbone to show its generality on the
other two basic vision tasks: object detection and semantic segmentation. The
results show that FReLU not only improves performance on a single task but
also transfers well to other visual tasks.

2 Related Work

Scalar activations Scalar activations are activations with single input and sin-
gle output, in the form of y = f(x). The Rectified Linear Unit (ReLU) [13,23,32]
is the most widely used scalar activation on various tasks [26,38], in the form of
y = max(x, 0). It is simple and effective for various tasks and datasets. To mod-
ify the negative part, many variants have been proposed, such as Leaky ReLU
[31], PReLU [14], ELU [5]. They keep the positive part identity and make the
negative part dependent on the sample adaptively.

Other scalar methods such as the sigmoid non-linearity has the form σ(x) =
1/(1+e−x), and the Tanh non-linearity has the form tanh(x) = 2σ(2x)−1. These
activations are not widely used in deep CNNs mainly because they saturate and
kill gradients, also involve expensive operations (exponentials, etc.).

Many advances followed [25,39,1,16,35,10,46], and recent searching technique
contributes to a new searched scalar activation called Swish [36] by combing a
comprehensive set of unary functions and binary functions. The form is y =
x ∗ Sigmoid(x), outperforms other scalar activations on some structures and
datasets, and many searched results show great potential.

Contextual conditional activations Besides the scalar activation which only
depends on the neuron itself, conditional activation is a many-to-one function,
which activates the neurons conditioned on contextual information. A represen-
tative method is Maxout [12], it extends the layer to a multi-branch and selects
the maximum. Most activations apply a non-linearity on the linear dot prod-
uct between the weights and the data, which is: f(wTx+ b). Maxout computes
the max(wT

1 x+ b1, w
T
2 x+ b2), and generalizes ReLU and Leaky ReLU into the

same framework. With dropout [17], the Maxout network shows improvement.
However, it increases the complexity too much, the numbers of parameters and
multiply-adds has doubled and redoubled.

Contextual gating methods [8,44] use contextual information to enhance the
efficacy, especially on RNN based methods, because the feature dimension is
relatively smaller. There are also on CNN based methods [34], since 2D feature
size has a large dimension, the method is used after a feature reduction.

The contextually conditioned activations are usually channel-wise methods.
However, in this paper, we find the spatial dependency is also important in the
non-linear activation functions. We use light-weight CNN technique depth-wise
separable convolution to help with the reduction of additional complexity.
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Spatial dependency modeling Learning better spatial dependency is chal-
lenging, Some approaches use different shapes of convolution kernels [41,42,40]
to aggregate the different ranges of spatial dependences. However, it requires a
multi-branch that decreases efficiency. Advances in convolution kernels such as
atrous convolution [18] and dilated convolution [47] also lead to better perfor-
mance by increasing the receptive field.

Another type of methods learn the spatial dependency adaptively, such as
STN [22], active convolution [24], deformable convolution [7]. These methods
adaptively use the spatial transformations to refine the short-range dependencies,
especially for dense vision tasks (e.g. object detection, semantic segmentation).
Our simple FReLU even outperforms them without complex convolutions.

Moreover, the non-local network provides the methods to capture long-range
dependencies to address this problem. GCNet [3] provides a spatial attention
mechanism to better use the spatial global context. Long-range modeling meth-
ods achieve better performance but still require additional blocks into the origin
network structure, which decreases efficiency. Our method address this issue in
the non-linear activations, solve this issue better and more efficiently.

Receptive field The region and size of receptive field are essential in vision
recognition tasks [50,33]. The work on effective receptive field [29,11] finds that
different pixels contribute unequally and the center pixels have a larger impact.
Therefore, many methods have been proposed to implement the adaptive recep-
tive field [7,51,49]. The methods achieve the adaptive receptive field and improve
the performance, by involving additional branches in the architecture, such as
developing more complex convolutions or utilizing the attention mechanism. Our
method also achieves the same goal, but in a more simple and efficient manner
by introducing the receptive field into the non-linear activations. By using the
more adaptive receptive field, we can approximate the layouts in common com-
plex shapes, thus achieve even better results than the complex convolutions, by
using the efficient regular convolutions.

3 Funnel Activation

FReLU is designed specifically for visual tasks and is conceptually simple: the
condition is a hand-designed zero for ReLU and a parametric px for PReLU, to
this we modify it to a 2D funnel-like condition dependent on the spatial context.
The visual condition helps extract the fine spatial layout of an object. Next, we
introduce the key elements of FReLU, including the funnel condition and the
pixel-wise modeling capacity, which are the main missing parts in ReLU and its
variants.

ReLU We begin by briefly reviewing the ReLU activation. ReLU, in the form
max(x, 0), uses the max(·) to serve as non-linearity and uses a hand-designed
zero as the condition. The non-linear transformation acts as a supplement of
the linear transformation such as convolution and fully-connected layers.
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Fig. 2. Funnel activation. We propose a novel activation for visual recognition we call
FReLU that follows the spirit of ReLU/PReLU and extends them to 2D by adding
a visual funnel condition T(x). (a) ReLU with a condition zero; (b) PReLU with a
parametric condition; (c) FReLU with a visual parametric condition.

PReLU As an advanced variant of ReLU, PReLU has an original formmax(x, 0)+
p·min(x, 0), where p is a learnable parameter and initialized as 0.25. However, in
most case p < 1, under this assumption, we rewrite it to the form: max(x, px),
(p < 1). Since p is a channel-wise parameter, it can be interpreted as a 1x1
depth-wise convolution regardless of the bias terms.

Funnel condition FReLU adopts the same max(·) as the simple non-linear
function. For the condition part, FReLU extends it to be a 2D condition depen-
dent on the spatial context for each pixel (see Fig. 2). This is in contrast to most
recent methods whose condition depends on the pixel itself (e.g. [31,14]) or the
channel context (e.g. [12]). Our approach follows the spirit of ReLU that uses a
max(·) to obtain the maximum between x and a condition.

Formally, we define the funnel condition as T(x). To implement the spa-
tial condition, we use a Parametric Pooling Window to create the spatial
dependency, specifically, we define the activation function:

f(xc,i,j) = max(xc,i,j ,T(xc,i,j)) (1)

T(xc,i,j) = xωc,i,j · pωc (2)

Here, xc,i,j is the input pixel of the non-linear activation f(·) on the c-th
channel, at the 2-D spatial position (i, j); function T(·) denotes the funnel con-
dition, xωc,i,j denotes a kh × kw Parametric Pooling Window centered on
xc,i,j , p

ω
c denotes the coefficient on this window which is shared in the same

channel, and (·) denotes dot multiply.
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(a) (b) (c)

Fig. 3. Graphic depiction of how the per-pixel funnel condition can achieve pixel-wise
modeling capacity. The distinct sizes of squares represent the distinct activate fields of
each pixel in the top activation layers. (a) The normal activate field that has equal
sizes of squares per-pixel, and can only describe the horizontal and vertical layouts. In
contrast, the max(·) allows each pixel to choose looking around or not in each layer,
after enough number of layers, they have many different sizes of squares. Therefore,
the different sizes of squares can approximate (b) the shape of the oblique line, and (c)
the shape of an arc, which are more common natural object layouts.

Pixel-wise modeling capacity Our definition of funnel condition allows the
network to generate spatial conditions in the non-linear activations for every
pixel. The network conducts non-linear transformations and creates spatial de-
pendencies simultaneously. This is different from common practice which cre-
ates spatial dependency in the convolution layer and conducts non-linear trans-
formations separately. In that case, the activations do not depend on spatial
conditions explicitly; in our case, with the funnel condition, they do.

As a result, the pixel-wise condition makes the network has a pixel-wise
modeling capacity, the function max(·) gives per-pixel a choice between looking
at the spatial context or not. Formally, consider a network {F1, F2, ..., Fn} with
n FReLU layers, each FReLU layer Fi has a k × k parametric window. For
brevity, we only analyze the FReLU layers regardless of the convolution layers.
Because the max selection between 1 × 1 and k × k, each pixel after F1 has a
activate filed set {1, 1 + r} (r = k − 1). After the Fn layer, the set becomes
{1, 1 + r, 1 + 2r, ..., 1 + nr}, which gives more choices to each pixel and can
approximate any layouts if n is sufficiently large. With many distinct sizes of
the activate field, the distinct sizes of squares can approximate the shape of the
oblique line and arc (see Fig. 3). As we know, the layout of the objects in the
images are usually not horizontal or vertical, they are usually in the shape of the
oblique line or arc, therefore extracting the spatial structure of objects can be
addressed naturally by the pixel-wise modeling capacity provided by the spatial
condition. We show by experiments that it captures irregular and detailed
object layouts better in complex tasks (see Fig. 4).

3.1 Implementation Details

Our proposed change is simple: we avoid the hand-designed condition in acti-
vations, we use a simple and effective spatial 2D condition to replace it. The
visual activation leads to significant improvements as shown in Fig. 1. We first
change the ReLU activations in the classification task on the ImageNet dataset.
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We use ResNet [15] as the classification network and use the pre-trained network
as backbones for other tasks: object detection and semantic segmentation.

All the regions xωc,i,j in the same channel share the same coefficient pωc , there-
fore, it only adds a slight additional number of parameters. The region repre-
sented by xωc,i,j is a sliding window, the size is default set to a 3×3 square, and
we set the 2-D padding to be 1, in this case,

xωc,i,j · pωc =
∑

i−1≤h≤i+1,j−1≤w≤j+1

xc,h,w · pc,h,w (3)

Parameter initialization We use the gaussian initialization to initialize the
hyper-parameters. Therefore we get the condition values close to zero, which
does not change the origin network’s property too much. We also investigate
the cases without parameters, (e.g. max pooling, average pooling), which do not
show improvement. That shows the importance of the additional parameters.

Parameter computation We assume there is a K ′h×K ′w convolution with the
input feature size of C×H×W input, and the output size of C×H ′×W ′, then
we compute the number of parameters to be CCK ′hK

′
w, and the FLOPs (floating

point operations) to be CCK ′hK
′
wHW . To this we add our funnel condition with

window Kh × Kw, the additional number of parameters is CKhKw, and the
additional number of FLOPs is CKhKwHW . We assume K = Kh = Kw,K ′ =
K ′h = K ′w for simplification.

Therefore the original complexity of parameters is O(C2K ′2), after adopting
FReLU, it becomes O(C2K ′2 +CK2)); and the original complexity of FLOPs is
O(C2K ′2HW ), after adopting the visual activation, it becomes O(C2K ′2HW +
CK2HW ). Usually, C is much larger than K and K ′, therefore the additional
complexity can be negligible. Actually in practice the additional part is negligible
(more details in Table 1). Moreover, the funnel condition is a kh × kw sliding
window, and we implement it using the highly optimized depth-wise separable
convolution operator followed with a BN [21] layer.

4 Experiments

4.1 Image Classification

To evaluate the effectiveness of our visual activation, first, we conduct our ex-
periments on ImageNet 2012 classification dataset[9,37], which comprises 1.28
million training images and 50K validation images.

Our visual activation is easy to adopt on the network structures, by sim-
ply changing the ReLU in the original CNN structure. First, we evaluate the
activation on different sizes of ResNet [15]. For the network structure, we use
the original implementation. Spatial dependency is important especially in the
shallow layers, for the small 224×224 input size, we replace the ReLUs in all the
stages except the last stage, which has a small 7×7 feature map size. For the
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Table 1. Comparisons with other effective activations [14,36] on ResNets [15] in Ima-
geNet 2012. Image size 224x224. Single crop. We evaluate the Top-1 error rate on the
test set.

Model Activation #Params FLOPs Top-1 Err.

ResNet-50

ReLU 25.5M 3.86G 24.0
PReLU 25.5M 3.86G 23.7
Swish 25.5M 3.86G 23.5
FReLU 25.5M 3.87G 22.4

ResNet-101

ReLU 44.4M 7.6G 22.8
PReLU 44.4M 7.6G 22.7
Swish 44.4M 7.6G 22.7
FReLU 44.5M 7.6G 22.1

training settings, we use a batch size of 256, 600k iterations, a learning rate of
0.1 with linear decay schedule, a weight decay of 1e-4, and a dropout [17] rate of
0.1. We present the Top-1 error rate on the validation set. For a fair comparison,
we run all the results on the same code base.

Comparisons with scalar activations We conduct a comprehensive compar-
ison on ResNets [15] with different depths (e.g. ResNet-50, ResNet-101). We take
ReLU as the baseline and take one of its variants PReLU for comparison. Fur-
ther, we compare our visual activation with the activation Swish [36] searched
by the NAS [52,53] technique. Swish has shown its positive influence on various
model structures, comparing with many scalar activations.

Table 1 shows the comparison, our visual activation still outperforms all of
them with a negligible additional complexity. Our visual activation improves
1.6% and 0.7% top-1 accuracy rates on ResNet-50 and ResNet-101. It’s remark-
able that with the increase of model size and model depth, other scalar acti-
vations show limited improvement, while visual activation still has significant
improvement. For example, Swish and PReLU improve the accuracy of 0.1% on
ResNet-101, while visual activation increases still significantly on ResNet-101
with an improvement of 0.7%.

Comparison on light-weight CNNs Besides deep CNNs, we compare the
visual activation with other effective activations on recent light-weight CNNs
such as MobileNets [19] and ShuffleNets [30]. We use the same training settings
in [30]. The model sizes are extremely small, we use a window size of 1×3+3×1
to reduce the additional parameters. Moreover, for MobileNet we slightly refine
the width multiplier from 0.75 to 0.73 to maintain the model complexity. Table
2 shows the comparison results on ImageNet dataset. Our visual activation also
boosts accuracy on light-weight CNNs. ShuffleNetV2 0.5× can improve 2.5%
top-1 accuracy by only adding a slight additional FLOPs.
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Table 2. Comparisons among other effective activations [14,36] on light-weight CNNs
(MobileNet [19], ShuffleNetV2 [30]) in ImageNet 2012. Image size 224x224. Single crop.
We evaluate the Top-1 error rate on the test set.

Model Activation #Params FLOPs Top-1 Err.

MobileNet 0.75

ReLU 2.5M 325M 29.8
PReLU 2.5M 325M 29.6
Swish 2.5M 325M 28.9
FReLU 2.5M 328M 28.5

ShuffleNetV2

ReLU 1.4M 41M 39.6
PReLU 1.4M 41M 39.1
Swish 1.4M 41M 38.7
FReLU 1.4M 45M 37.1

4.2 Object Detection

To evaluate the generalization performance of visual activation on different tasks,
we conduct object detection experiments on COCO dataset [28]. The COCO
dataset has 80 object categories. We use the trainval35k set for training and
use the minival set for testing.

Table 3. Comparisons of different activations in COCO object detection. We use
ResNet-50 [15] and ShuffleNetV2 (1.5×) [30] with different activations as the pre-
trained backbones. We use the RetinaNet [27] detector.

Model Activation #Params FLOPs mAP AP50 AP75 APs APm APl

ResNet-50
ReLU 25.5M 3.86G 35.2 53.7 37.5 18.8 39.7 48.8
Swish 25.5M 3.86G 35.8 54.1 38.7 18.6 40.0 49.4

FReLU 25.5M 3.87G 36.6 55.2 39.0 19.2 40.8 51.9

ShuffleNetV2
ReLU 3.5M 299M 31.7 49.4 33.7 15.3 35.1 45.2
Swish 3.5M 299M 32.0 49.9 34.0 16.2 35.2 45.2

FReLU 3.7M 318M 32.8 50.9 34.8 17.0 36.2 46.8

We present the result on RetinaNet [27] detector. For a fair comparison, we
train all the models in the same code base with the same settings. We use a
batch size of 2, a weight decay of 1e-4 and a momentum of 0.9. We use anchors
for 3 scales and 3 aspect ratios and use a 600-pixel train and test image scale. For
the backbone, we use the pre-trained model in Section 4.1 as a feature extractor,
and compare the generality among different activations.

Table 3 shows the comparison among different activations. The comparison
shows that our visual activation increases 1.4% mAP comparing to the ReLU
backbone, and increases 0.8% mAP comparing to the Swish backbone. It is
worth mentioning that, on all the small, medium, and large objects, FReLU
outperforms all the other counterparts significantly.
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Table 4. Comparisons on the semantic segmentation task in CityScape dataset.
We use the PSPNet [48] as the the framework and use the ResNet-50 [15] as backbone.
The pre-trained backbones are from Table 1.

ReLU Swish[36] FReLU

mean IU 77.2 77.5 78.9

road 98.0 98.1 98.1
sidewalk 84.2 85.0 84.7
building 92.3 92.5 92.7
wall 55.0 56.3 59.5
fence 59.0 59.6 60.9
pole 63.3 63.6 64.3
traffic light 71.4 72.1 72.2
traffic sign 79.0 80.0 79.9
vegetation 92.4 92.7 92.8

ReLU Swish FReLU

terrain 65.0 64.0 64.5
sky 94.7 94.9 94.8
person 82.1 83.1 83.2
rider 62.3 65.5 64.7
car 95.1 94.8 95.3
truck 77.7 70.1 79.8
bus 84.9 84.0 87.8
train 63.3 68.8 74.6
motorcycle 68.3 69.4 69.8
bicycle 78.2 78.4 78.7

We also show the comparison on the light-weight CNNs. As the comparison
of ResNet-50, we use pre-trained ShuffleNetV2 backbones adopted with different
activations. We mainly compare FReLU with ReLU and the effective activation
Swish [36]. Table 3 shows visual activation also outperforms much better than
ReLU and Swish backbones, to which it improves 1.1% mAP and 0.8% mAP
respectively. Moreover, it increases the performance of all the sizes of objects.

4.3 Semantic Segmentation

We further present the semantic segmentation results on CityScape dataset [6].
The dataset is a semantic urban scene understanding dataset, contains 19 cate-
gories. It has 5,000 finely annotated images, 2,975 for training, 500 for validation
and 1525 for testing.

We use the PSPNet [48] as the segmentation framework, for the training
settings we use the poly learning rate policy [4] where the base is 0.01 and the
power is 0.9, we use a weight decay of 1e-4, and 8 GPUs with a batch size of 2
on each GPU.

To evaluate the generality of the previous pre-trained models in Section 4.1,
we use the pre-trained ResNet-50 [15] backbone models with different activations,
we compare FReLU with Swish and ReLU respectively.

In Table 4, we show the comparison with scalar activations. From the result,
we observe that our visual activation outperforms the ReLU and the searched
Swish 1.7% and 1.4% mean IU, respectively. Moreover, our visual activation has
significant improvements in both large and small objects, especially on categories
such as ’train’, ’bus’, ’wall’, etc.

For better visualization of the improved performance, Fig. 4 shows the predict
results on the testing dataset. It shows that by only changing the backbone
activations, the results have obvious improvement. The boundaries of both the
large and the small objects are well-segmented because the pixel-wise modeling
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Image GroundTruth ReLU Swish FReLU

Fig. 4. Visualization of semantic segmentation on ResNet-50[15]-PSPNet[48]
with different activations in backbone. We clip the CityScape images to make the differ-
ences more clear (better view enlarge images). FReLU has better long-range (large or
slender objects) and short-range (small objects) understandings due to its better con-
text capturing capacity. It captures irregular and detailed object layouts in complex
cases much better. We note that modern frameworks are finely optimized with ReLU,
however, it has obvious improvements by only changing the backbones, thus having
the potential for further gains if redesign the frameworks for the visual activation.

capacity can handle both global and detailed regions (see Fig. 3). We note that
the modern recognition frameworks are finely designed with the ReLU activation,
therefore the visual activation still has great potential for further improving the
results, which is beyond the focus of this work.

5 Discussion

The previous sections demonstrate the optimum performance comparing with
other effective activations. To further investigate our visual activation, we con-
duct ablation studies. We first discuss the properties of the visual activation,
then we discuss the compatibility with existing methods.

5.1 Properties

Our funnel activation mainly has two components: 1) funnel condition, and 2)
max(·) non-linearity. Separately, we investigate the effect of each component.
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Table 5. Ablation on the different spatial con-
dition manners, and the different non-linear
manners. The experiments are conducted on
ResNet-50 [15]. Model A, B, C compare differ-
ent visual conditions with/without parameters.
Model D replaces max with sum, to this we
add a ReLU, or it will not converge. Model E
separates and evaluates the performance of the
spatial condition itself. DW(x) represent the 3x3
depth-wise separable convolution.

Model Activation Top-1 Err.

A Max(x, ParamPool(x)) 22.4
B Max(x, MaxPool(x)) 24.4
C Max(x, AvgPool(x)) 24.5

A Max(x, ParamPool(x)) 22.4
D Sum(x, ParamPool(x)) 23.6
E Max(DW(x), 0) 23.7

Table 6. Ablation on different
normalization methods after the
spatial condition layer. We adopt
Batch Normalization (BN) [21],
Layer Normalization (LN) [2], In-
stance Normalization (IN) [43] and
Group Normalization (GN) [45]
after the spatial condition layer
which is implemented by depth-
wise convolution. ImageNet results
on ShuffleNetV2 0.5×.

Normalization Top-1 Err.

- 37.6
BN 37.1
LN 36.5
IN 38.0
GN 36.5

Ablation on the spatial condition First, we compare the different manners
of the spatial condition. Besides the manner of parametric pooling that we used,
to investigate the importance of the additional parameters, we compare other
pooling manners without additional parameters, they are max pooling and av-
erage pooling. We simply replace the parametric pooling with the other two
non-parametric manners and evaluate the results on the ImageNet dataset.

Table 5 (A, B, C) shows the importance of the parametric pooling. Without
additional parameter, the results decrease more than 2% top-1 accuracy, even
perform worse than the baseline that does not use spatial condition. Table 6
shows the comparison of different normalization after the spatial condition.

Ablation on the non-linearity Second, we also compare the use of non-
linearity. In our method, we use the max(·) function to perform the non-linearity,
simultaneously capturing visual dependency. In contrast, we compare with the
manners that separately capture visual dependency and non-linearity.

For the spatial context capturing, we use two manners: 1) use the parametric
pooling as before, then linearly add up with the original feature, 2) simply add
a depth-wise separable convolution layer. For the non-linear transformation, we
use the ReLU function. Table 5 (A,D,E) show the results. Comparing with the
baseline, the spatial context itself improves about 0.3% accuracy, but together
as the non-linear condition in our method, it further increases more than 1%.
Therefore, performing the spatial dependency and non-linearity separately has
not an ideal effect as doing them simultaneously.

Ablation on the window size In the parametric pooling window, the size
of the window decides the size of the area each pixel looks. We simply change
the window size in the funnel condition and compare different sizes among {1×
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Table 7. Ablation on the window size.
We simply change the window size in the
funnel condition. We evaluate the top-1
error rate on ImageNet dataset using the
ResNet-50 [15] structure.

Model Window size Top-1 Err.

A 1×1 23.7
B 3×3 22.4
C 5×5 22.9
D 7×7 23.0
E Sum(1×3,3×1) 22.6
F Max(1×3, 3×1) 22.4

Table 8. Ablation on different layers.
We replace the ReLU with FReLU after
the 1×1 convolution and the 3×3 convolu-
tion. Results are performed on ResNet-50
[15] and MobileNet [19].

1×1 conv. 3×3 conv. Top-1 Err.

ResNet-50
X 22.9

X 23.0
X X 22.4

MobileNet
X 29.2

X 29.0
X X 28.5

Table 9. Ablation of visual activation on
different stages (Stage {2-4} in ResNet-50
[15]). In each stage we replace each ReLU with
our visual activation. The results are the top-1
error rates on ImageNet. Image size 224x224.

Stage 2 Stage 3 Stage 4 Top-1 Err.

X 23.1
X 23.0

X 23.3
X X 22.8

X X 23.0
X X X 22.4

Table 10. Ablation comparisons of
the compatibility between FReLU
and SENet [20] on ResNet-50 [15].
The results are the top-1 error rates
on ImageNet. Image size 224x224.
Single crop.

Model #Params FLOPs Top-1

ReLU 25.5M 3.9G 24.0
FReLU 25.5M 3.9G 22.4
ReLU+SE 26.7M 3.9G 22.8
FReLU+SE 26.7M 3.9G 22.1

1, 3×3, 5×5, 7×7}. The case of 1×1 does not have the spatial condition and it
is the case of PReLU since the parameter value is smaller than 1. Table 7 shows
the comparison results. We conclude that 3 × 3 is the best choice. The larger
window sizes also show benefits but do not outperform 3×3.

Further, we consider the case using an irregular window instead of squares.
We use multiple windows of sizes 1×3 and 3×1, we consider to use the sum and
max of them as the condition. Table 7 {B,E,F} show the comparison. The results
show that irregular window sizes also have the optimum performance since they
have a more flexible pixel-wise modeling capacity (Fig. 3).

5.2 Compatibility with Existing Methods

To adopt the new activation into the convolutional networks, we have to choose
which layers, and which stages to adopt. Moreover, we also investigate the com-
patibility with existing effective approaches such as SENet.

Compatibility with different convolution layers First, we compare the
positions after different convolution layers. That is, we investigate the effect
of FReLU in different positions after 1×1 and 3×3 convolutions. We conduct
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experiments on ResNet-50 [15] and ShuffleNetV2 [30]. We replace the ReLU
after the 1×1 convolution and the 3×3 convolution and observe the improvement.
Table 8 shows the results, in the bottleneck of the above two networks. From the
results, we can see that the improvements on different layers are comparable,
and it has the optimum performance when adopting both of them.

Compatibility with different stages Secondly, we investigate the compat-
ibility with different stages in the CNN structures. The visual activations are
important especially on the layer with high spatial dimensions. For the classifi-
cation network whose shallow layers have larger spatial dimensions and deeper
layers have large channel dimensions, there may be differences when we apply
visual activations on different stages. For Stage 5 of ResNet-50 with 224x224
input, it has a relatively small 7x7 feature size, which mainly contains channel
dependency instead of spatial dependency. Therefore, we adopt visual activations
on Stage {2-4} on ResNet-50, as Table 9 shows. The results reveal that adopting
the shallow layers has a larger effect, while a deeper layer has a smaller effect.
Moreover, adopting FReLU on all of them has the optimum top-1 accuracy.

Compatibility with SENet At last, we compare the performance with SENet
[20] and show the compatibility with it. Without the complex advances in CNN
architecture, it achieves significant improvements on all the three vision tasks,
simply together with the regular convolution layers. We further compare visual
activation with recent effective attention module SENet, since SENet is one of
the most effective attention modules recently.

Table 10 shows the result, although SENet uses an additional block to en-
hance the model capacity, it is remarkable that the simple visual activation even
outperforms SENet. We also wish the visual activation we proposed can co-exist
with other techniques, such as the SE module. We adopt the SE module on the
last stage in ResNet-50 to avoid overfitting. Table 10 also shows the co-existence
between FReLU and SE module. Together with SENet, funnel activation im-
proves 0.3% accuracy further.

6 Conclusions

In this work, we present a funnel activation specifically designed visual tasks,
which easily captures complex layouts using the pixel-wise modeling capacity.
Our approach is simple, effective, and finely compatible with other techniques,
that provides a new alternative activation for image recognition tasks. We note
that ReLU has been so influential that many state-of-the-art architectures have
been designed for it, however, their settings may not be optimal for the funnel
activation. Therefore, it still has a large potential for further improvements.
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