
18 S. Ebrahimi et al.

Adversarial Continual Learning
(Supplementary Materials)

Sayna Ebrahimi1,2, Franziska Meier1, Roberto Calandra1,
Trevor Darrell2, Marcus Rohrbach1

Facebook AI Research, Menlo Park, USA
UC Berkeley EECS, Berkeley, CA, USA

9 ACL Algorithm

Algorithm 1 shows the ACL pseudocode.

Algorithm 1 Adversarial Continual Learning (ACL))

1: function TRAIN(θP , θS , θD,Dtr,Dts,m)

2: Hyper-parameters: λ1, λ2, λ3, αS , αP , αD
3: R← 0 ∈ RT×T
4: M← {}
5: fkθ = f(θS ⊕ θP )
6: for k = 1 to T do
7: for e = 1 to epochs do
8: Compute Ladv for S using

(x, t) ∈ Dtrk ∪M
9: Compute Ltask using (x, y) ∈

Dtrk ∪M
10: Compute Ldiff using P k, S, and

x ∈ Dtrk
11: LACL = λ1Ladv + λ2Ltask +

λ3Ldiff

12: θ′S ← θS − αS∇LACL

13: θ′Pt
← θPk − αPk∇LACL

14: Compute Ladv for D us-
ing (S(x), t) and (z′ ∼
N (µ,

∑
), t = 0)

15: θ′D ← θD − αD∇Ladv

16: end for
17: M← UPDATEMEMORY(Dtrk ,M, C,m)
18: Store θPk

19: fkθ ← f(θ′S ⊕ θ′P )
20: Rk,{1···k} ← EVAL (fkθ ,Dts{1···k})
21: end for
22: end function

function UPDATEMEMORY(Dtrk ,M, C,m)

s← m
C

B s := # of samples per class
for c = 1 to C do

for i = 1 to n do
(xki , y

k
i , t

k
i ) ∼ Dtrk

M←M∪ (xk, yk, tk)
end for

end for
returnM

end function

function EVAL(fkθ ,Dts{1···k})
for i = 1 to k do
Rk,i = Accuracy(fkθ (x, t), y)for(x, y, t) ∈
Dtsi

end for
return R

end function



Adversarial Continual Learning 19

10 Datasets

Table 5a shows a summary of the datasets utilized in our work. From left to
right columns are given as: dataset name, total number of classes in the dataset,
number of tasks, image size, number of training images per task, number of
validation images per task, number of test images per task, and number of classes
in each task. Statistic of 5-Split MNIST and 5-Datasets experiments are given
in 5b and 5c, respectively. We did not use data augmentation for any dataset.

(a) Statistics of utilized datasets. Datasets are as follows: a) 5-Split MNIST [20], b)
Permuted MNIST [35], c) 20-Split CIFAR100 [19], d) 20-Split miniImageNet [9], e)
5-Datasets

Dataset #Classes #Tasks Input Size #Train/Task #Valid/Task #Test/Task

a 10 5 1× 28× 28 10 see Tab. 5b see Tab. 5b
b 10 10/20/30/40 1× 28× 28 51, 000 9, 000 10, 000
c 100 20 3× 32× 32 2, 125 375 500
d 100 20 3× 84× 84 2, 125 375 500

e 5× 10 5 3× 32× 32 see Tab. 5c see Tab. 5c see Tab. 5c

(b) Number of training, validation, and test samples per task for 5-Split MNIST

Task number
T = 1
(0,1)

T=2
(2,3)

T=3
(4,5)

T=4
(6,7)

T=5
(8,9)

# Training samples 10766 10276 9574 10356 10030
# Validation samples 1899 1813 1689 1827 1770
# Test samples 2115 2042 1874 1986 1983

(c) Statistics of utilized datasets in 5-Datasets. MNIST, notMNIST, and Fashion
MNIST are padded with 0 to become 32× 32 and have 3 channels.

Dataset MNIST notMNIST Fashion MNIST CIFAR10 SVHN

# Training samples 51,000 15,526 9,574 42,500 62,269
# Validation samples 9,000 2,739 1,689 7,500 10,988
# Test samples 10,000 459 1,874 10,000 26,032

11 Results on 5-Split MNIST

Table 6 shows results obtained for 5-Split MNIST experiment described in sec-
tion 7, respectively.



20 S. Ebrahimi et al.

Table 6: Class Incremental Learning on 5-Split MNIST. measuring ACC (%),
BWT (%), and Memory (MB). (**) denotes that methods do not adhere to the
continual learning setup: ACL-JT and ORD-JT serve as the upper bound for
ACC for ACL/ORD networks, respectively. (∗) denotes result is obtained by
using the original provided code. (‡) denotes result reported from original work
and (††) denotes results are reported by [10]; All results are averaged over 3
runs, the standard deviation is provided in parenthesis

Method ACC% BWT%
Arch
(MB)

Replay
Buffer
(MB)

EWC †† [18] 95.78(0.35) -4.20(0.21) 1.1 -
HAT †† [31] 99.59(0.01) 0.00(0.04) 1.1 -
UCB ‡ [10] 99.63(0.02) 0.00(0.00) 2.2 -
VCL ∗[25] 95.97(1.03) -4.62(1.28) 1.1 -

GEM∗ [21] 94.34(0.82) -2.01(0.05) 6.5 0.63
VCL-C ∗ [25] 93.6(0.20) -3.10(0.20) 1.7 0.63

ORD-FT 65.96(3.53) -40.15(4.27) 1.1 -
ORD-JT∗∗ 99.88(0.02) - 189.3 -
ACL-JT∗∗ (Ours) 99.89(0.01) - 190.8 -

ACL (Ours) 99.76(0.03) 0.01(0.01) 1.6 -

12 Effect of memory size on ACL

Fig. 2 shows the effect of memory size on ACL and memory-dependent baselines
when 1, 3, 5, and 13 images per class are used during training where in the left
it illustrates the memory effect for ACL and memory-dependent baselines. We
also show how memory affects the BWT in ACL in Fig. 2 (right) which follows
the same pattern as we observed for ACC. Numbers used to plot this figure with
their standard deviation are given in Table 2.

13 Intransigence Measure

Table 7 shows our results for Intransigence (I) measure introduced in [5] and
computed for the k-th task as below:

Ik = a∗k − ak,k (6)

where a∗k is the accuracy on the k-th task using a reference model trained with
all the seen datasets up to task k and ak,k denotes the accuracy on the k-th task
when trained up to task k in an incremental manner. Ik ∈ [−1, 1].

Table 7 shows I evaluated at the end of tasks sequence for ACL and the
strongest baselines (HAT [31] and ER-RES) in 5-Split MNIST, Permuted MNIST,
20-Split CIFAR100, and 20-Split miniImageNet experiments. We found ACL



Adversarial Continual Learning 21

Fig. 2: Left: Comparing the replay buffer effect on ACC on
20-Split miniImageNet achieved by ACL against A-GEM [6] and ER-RES [7]
when using 1, 3, 5, and 13 samples per classes within each task discussed in 5.2.
Right: Insensitivity of ACC and BWT to replay buffer in ACL. Best viewed in
color.

achieves the lowest I (lower the better) value compared to baselines, always
negative, which means in ACL, learning tasks up to a specific task in hand in-
creases the model’s ability to learn new ones which is consistent with our idea
of proposing a shared latent space for better initialization for new tasks.

Table 7: Intransigence measure results obtained for 5-Split MNIST,
Permuted MNIST, 20-Split CIFAR100, and 20-Split miniImageNet experi-
ments in HAT [31], ER-RES, and ACL. Ik denotes the measure computed at
the end of the k-th task. A) 5-Datasets, B) Permuted MNIST (I10), C) 20-Split
CIFAR100 (I20), D) 20-Split miniImageNet (I20)

A B C D

HAT [31] -0.0001 -0.01 0.1 0.1
ER-RES 0.002 0.001 -0.002 -0.02

ACL (Ours) -0.5 -0.04 -0.03 -0.2

14 Visualizing the effect of adversarial learning in ACL

Here we illustrate the role of adversarial learning in factorizing the latent space
learned for continually learning a sequence of tasks using the t-distributed Stochas-
tic Neighbor Embedding (t-SNE) [37] plots for the 20-Split miniImageNet ex-
periment. The depicted results are obtained without using the orthogonality
constraint, (Ldiff), to merely present the role of adversarial learning.

Fig. 3 visualizes the latent spaces of the shared and private modules trained
with and without the discriminator. In the first row, we used the model trained
on the entire sequence of 20-Split miniImageNet and evaluated it on the test-sets



22 S. Ebrahimi et al.

belonging to task #20 including 100 images for 5 classes, a total of 500 samples,
which are color-coded with their class labels. In the second row, once again we
used our final model trained on the entire sequence of 20-Split miniImageNet
and tested it on the first 10 tasks of the sequence one at a time and plotted
them all in a single figure for both shared and private modules with and without
the discriminator where samples are color-coded with their task labels.

We first compare the discriminator’s effect on the latent space generated by
the shared modules (second column). The shared modules trained with adver-
sarial loss, consistently appear as a uniformly mixed distribution of encoded
samples both for task #20 and the first 10 tasks. In contrast, in the generated
features without a discriminator in the fourth column for task #20, we observe a
non-uniformly distributed mixture of features where small clusters can be found
for some classes showing an entangled representation within each task. Similar
to the pattern for task #20, we observe a mixed latent space representing the
shared space for the first 10 tasks (fourth column).

The effect of the discriminator on the private modules’ latent spaces is shown
in the third and fifth columns where in the former, private modules trained with
a discriminator, appear to be nearly successful in uncovering class labels (first
row) and task labels (second row), although the final classification is yet to
be happening in the private heads. As opposed to that, in the absence of the
discriminator, private modules generate features as entangled as those generated
by their shared module counterparts (first row). Private modules of the first 10
tasks is not as well-clustered as the private module trained with discriminator.
As we can see in the fifth column, features for task #6 are spread into two parts
with one close to task #7 and the other next to task #9.

w. Discriminator w/o Discriminator

Task 
Number Shared Private Shared Private

Task 20

Tasks 1-10

Without 
Dis

C1

C2

C3

C4

C5

C1

C2

C3

C4

C5

C1

C2

C3

C4

C5

C1

C2

C3

C4

C5

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

Fig. 3: Visualizing the effect of adversarial learning on the latent space generated
by shared and private modules on 20-Split miniImageNet.




