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1 Interpret the Domain Embedding

Conditional domain normalization (CDN) disentangles the domain-specific at-
tribute out of the semantic features from one domain via a learning a domain
embedding to characterize the domain attribute information. In this section,
we interpret the learned domain embedding via reconstructing the RGB im-
ages from the features. As shown in Fig. 1, we first built a decoder network
Decoder(·; θdec) upon the backbone network G(·; θ∗g) of fixed weights. The pa-
rameters of the backbone network are obtained in the adaptation training (see
Eq.1). The decoder network mostly mirrors the backbone network, with all pool-
ing layers replaced by nearest up-sampling and all normalization layers removed.
The decoder network is trained to reconstruct the RGB images from the features
extracted by the backbone,

arg min
θdec
L = ||Decoder(G(x; θ∗g); θdec)− x||2. (1)

For contrast analysis, only single domain images are used to train the de-
coder network, i.e. the decoder for Cityscapes experiment is trained on Foggy
Cityscapes images, the decoder for SIM10K experiment is trained on SIM10K
images. After we got a trained decoder network, we use it to reconstruct the
RGB image from features encoded with the domain embedding.

Fig. 1: Interpreting the learned domain embedding with a decoder network.
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Fig. 2 shows the effect of domain embedding learned in Cityscapes to Foggy
Cityscapes adaptation experiments (Section 5.1). The top row shows the in-
puts of Foggy Cityscapes; the middle row shows the reconstructed results from
features of Foggy Cityscapes inputs; the bottom row is reconstructed results
from Foggy Cityscapes features encoded with the domain embedding learned
on Cityscapes. With the help of the domain embedding learned on Cityscapes,
the reconstructed results from Foggy Cityscapes features no longer exhibit foggy
characteristics, suggesting that both Cityscapes and Foggy Cityscapes inputs
are embedded into a shared latent space, where their features carry the same
domain attribute. Given the domain gap bridged, the object detector supervised
trained on Cityscapes also works on Foggy Cityscapes.
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Fig. 2: Top row: Original inputs of Foggy Cityscapes; Middle row: Reconstructed
results from features of original inputs; Bottom row: Reconstructed results from
features encoded with the domain embedding of Cityscapes.

Fig. 3 and 4 show the reconstructed results from synthetic data’s features
encoded with domain embedding of real data (BDD100K), which are learned
in SIM10K-to-BDD100K and Synscapes-to-BDD10K adaptation experiments,
respectively (see Section 5.4). Without the domain embedding of real data, the
reconstructed images (middle row of Fig 3 and 4) still exhibit characteristic
of CG (computer graphic), that look identical to the original images. When
the same features of original inputs are encoded with the domain embedding
of real data, the reconstructed images (bottom row of Fig 3 and 4) obviously
becomes more realistic. For example, the color of the sky, the texture of the
road and objects in the reconstructed images look similar to the real images. It
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proves that the learned domain embedding well captures the domain attribute
information of real data, and it can be used to effectively translate the synthetic
images towards real images.
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Fig. 3: Top row: Original inputs of SIM10K; Middle row: Reconstructed results
from features of original inputs; Bottom row: Reconstructed results from features
encoded with the domain embedding of BDD100K.



4 Peng Su et al.

O
r
ig

in
a
l

O
r
ig

in
a
l’
s

fe
a
t
u
r
e

+
D

o
m

a
in

E
m

b
e
d
d
in

g

Fig. 4: Top row: Original inputs of Synscapes; Middle row: Reconstructed results
from features of original inputs; Bottom row: Reconstructed results from features
encoded with the domain embedding of BDD100K.

2 Qualitative Results

Fig. 5 shows example results on the Foggy Cityscapes dataset. Our method can
detect distant objects in fog, suggesting strong generalization capability under
foggy weather conditions.
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Fig. 5: Detection results on Foggy Cityscapes test. The class and score predictions
are at the top left corner of the bounding box. The results are produced by a
Faster RCNN model incorporated with the Conditional Domain Normalization.

Fig. 6 shows example results on the KITTI dataset.
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Fig. 6: Example results of PointRCNN model with Conditional Domain Nor-
malization. For each example, the upper part is the image and the lower part
is the corresponding point cloud. The detected objects are shown with red 3D
bounding boxes. The green bounding boxes represent the ground truth.

Fig. 7 shows example results on the Synthetic and Real dataset. Our method
produces accurate bounding boxes on the real dataset (BDD100K).
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Fig. 7: Example results on Virtual KITTI (1st row), Synscapes (2nd row),
SIM10K (3rd row) and BDD100K (4-6th row). The class and score predictions
are at the top left corner of the bounding box. Zoom in to visualize the de-
tails. The results are produced by a Faster RCNN model incorporated with the
Conditional Domain Normalization layer.


