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Abstract. Classical monocular Simultaneous Localization And Mapping
(SLAM) and the recently emerging convolutional neural networks (CNNs)
for monocular depth prediction represent two largely disjoint approaches
towards building a 3D map of the surrounding environment. In this paper,
we demonstrate that the coupling of these two by leveraging the strengths
of each mitigates the others shortcomings. Specifically, we propose a
joint narrow and wide baseline based self-improving framework, where on
the one hand the CNN-predicted depth is leveraged to perform pseudo
RGB-D feature-based SLAM, leading to better accuracy and robustness
than the monocular RGB SLAM baseline. On the other hand, the bundle-
adjusted 3D scene structures and camera poses from the more principled
geometric SLAM are injected back into the depth network through novel
wide baseline losses proposed for improving the depth prediction network,
which then continues to contribute towards better pose and 3D structure
estimation in the next iteration. We emphasize that our framework
only requires unlabeled monocular videos in both training and inference
stages, and yet is able to outperform state-of-the-art self-supervised
monocular and stereo depth prediction networks (e.g., Monodepth2) and
feature-based monocular SLAM system (i.e., ORB-SLAM). Extensive
experiments on KITTI and TUM RGB-D datasets verify the superiority
of our self-improving geometry-CNN framework.

Keywords: self-supervised learning, self-improving, monocular depth
prediction, monocular SLAM

1 Introduction

One of the most reliable cues towards 3D perception from a monocular camera
arises from camera motion that induces multiple-view geometric constraints [20]
wherein the 3D scene structure is encoded. Over the years, Simultaneous Local-
ization And Mapping (SLAM) [6, 21, 32] has been long studied to simultaneously
recover the 3D scene structure of the surrounding and estimate the ego-motion
of the agent. With the advent of Convolutional Neural Networks (CNNs), unsu-
pervised learning of single-view depth estimation [13, 16, 60] has emerged as a
promising alternative to the traditional geometric approaches. Such methods rely
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on CNNs to extract meaningful depth cues (e.g., shading, texture, and semantics)
from a single image, yielding very promising results.

Despite the general maturity of monocular geometric SLAM [10, 30, 9] and
the rapid advances in unsupervised monocular depth prediction approaches [29,
44, 57, 2, 15, 38], they both still have their own limitations.
Monocular SLAM. Traditional monocular SLAM has well-known limitations
in robustness and accuracy as compared to those leveraging active depth sensors,
e.g., RGB-D SLAM [31]. This performance issue is due to the inherent scale
ambiguity of depth recovery from monocular cameras, which causes the so-called
scale drift in both the camera trajectory and 3D scene depth, and thus lowers
robustness and accuracy of conventional monocular SLAM. In addition, the
triangulation-based depth estimation employed by traditional SLAM methods is
degenerate under pure rotational camera motion [20].
Unsupervised Monocular Depth Prediction. Most of the unsupervised and
self-supervised methods [60, 16, 15, 2] formulate single image depth estimation
as a novel-view synthesis problem, with appearance based photometric losses
being central to the training strategy. Usually, these models train two networks,
one each for pose and depth. As photometric losses largely rely on the brightness
consistency assumption, nearly all existing self-supervised approaches operate in a
narrow-baseline setting optimizing the loss over a snippet of 2-5 consecutive frames.
Consequently, models like MondoDepth2 [15], work very well for close range
points, but generate inaccurate depth estimates for points that are farther away
(e.g., see 0th iteration in Fig. 6). While it is well known that a wide-baseline yields
better depth estimates for points at larger depth, a straightforward extension
of existing CNN based approaches is inadequate for the following two reasons.
A wide baseline in a video sequence implies a larger temporal window, which
in most practical scenarios will violate the brightness consistency assumption,
rendering the photometric loss ineffective. Secondly, larger temporal windows
(wider baselines) would also imply more occluded regions that behave as outliers.
Unless these aspects are effectively handled, training of CNN based depth and
pose networks in the wide baseline setting will lead to inaccuracies and biases.

In view of the limitations in both monocular geometric SLAM and unsuper-
vised monocular depth estimation approaches, a particularly interesting question
to ask is whether these two approaches can complement each other (see Sec. 5)
and mitigate the issues discussed above. Our work makes contributions towards
answering this question. Specifically, we propose a self-supervised, self-improving
framework of these two tasks, which is shown to improve the robustness and
accuracy on each of them.

While the performance gap between geometric SLAM and self-supervised
learning-based SLAM methods is still large, incorporating depth information
drastically improves the robustness of geometric SLAM methods (e.g., see RGB-D
SLAM vs. RGB SLAM on the KITTI Odometry leaderboard [14]). Inspired by
this success of RGB-D SLAM, we postulate the use of an unsupervised CNN-
based depth estimation model as a pseudo depth sensor, which allows us to design
our self-supervised approach, pseudo RGB-D SLAM (pRGBD-SLAM) that only
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uses monocular cameras and yet achieves significant improvements in robustness
and accuracy as compared to RGB SLAM.

Our fusion of geometric SLAM and CNN-based monocular depth estimation
turns out to be symbiotic and this complementary nature sets the basis of our
self-improving framework. To improve the depth predictions, we make use of
two main modifications in the training strategy. First, we eschew the learning
based pose estimates in favor of geometric SLAM based estimates (an illustrative
motivation is shown in Fig. 1). Second, we make use of common tracked keypoints
from neighboring keyframes and impose a symmetric depth transfer and a
depth consistency loss on the CNN model. These adaptations are based on the
observation that both pose estimates and sparse 3D feature point estimates
from geometric SLAM are robust, as most techniques typically apply multiple
bundle adjustment iterations over wide baseline depth estimates of common
keypoints. This simple observation and the subsequent modification is key to
our self-improving framework, which can leverage any unsupervised CNN-based
depth estimation model and a modern monocular SLAM method. In this paper,
we test our framework, with ORBSLAM [31] as the geometric SLAM method
and MonoDepth2 [15] as the CNN-based model. We show that our self-improving
framework outperforms previously proposed self-supervised approaches that
utilizes monocular, stereo, and monocular-plus-stereo cues for self-supervision
(see Tab. 1) and a strong feature based RGB-SLAM baseline (see Tab. 5). The
framework runs in a simple alternating update fashion: first, we use depth maps
from the CNN-based depth network and run pRGBD-SLAM; second, we inject the
outputs of pRGBD-SLAM, i.e., the relative camera poses and common tracked
keypoints and keyframes to fine-tune the depth network parameters to improve
the depth prediction; then, we repeat the process until we see no improvement.
Our specific contributions are summarized here:

– We propose a self-improving strategy to inject into depth prediction net-
works the supervision from SLAM outputs, which stem from more generally
applicable geometric principles.

– We introduce two wide baseline losses, i.e., the symmetric depth transfer loss
and the depth consistency loss on common tracked points, and propose a joint
narrow and wide baseline based depth prediction learning setup, where ap-
pearance based losses are computed on narrow baselines and purely geometric
losses on wide baselines (non-consecutive temporally distant keyframes).

– Through extensive experiments on KITTI [14] and TUM RGB-D [40], our
framework is shown to outperform both monocular SLAM system (i.e., ORB-
SLAM [30]) and the state-of-the-art unsupervised single-view depth prediction
network (i.e., Monodepth2 [15]).

2 Related Work

Monocular SLAM. Visual SLAM has a long history of research in the computer
vision community. Due to its well-understood underlying geometry, various
geometric approaches have been proposed in the literature, ranging from the
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classical MonoSLAM [6], PTAM [21], DTAM [32] to the more recent LSD-
SLAM [10], ORB-SLAM [30] and DSO [9]. More recently, in view of the successful
application of deep learning in a wide variety of areas, researchers have also
started to exploit deep learning approaches for SLAM, in the hope that it can
improve certain components of geometric approaches or even serve as a complete
alternative. Our work makes further contributions along this line of research.
Monocular Depth Prediction. Inspired by the pioneering work by Eigen
et al. [8] on learning single-view depth estimation, a vast amount of learning
methods [3, 26, 12] emerge along this line of research. The earlier works often
require ground truth depths for fully-supervised training. However, per-pixel depth
ground truth is generally hard or prohibitively costly to obtain. Therefore, many
self-supervised methods that make use of geometric constraints as supervision
signals are proposed. Godard et al. [16], relies on the photo-consistency between
the left-right cameras of a calibrated stereo. Zhou et al. [60] learn monocular depth
prediction as well as ego-motion estimation, thereby permitting unsupervised
learning with only a monocular camera. This pipeline has inspired a large
amount of follow-up works that utilize various additional heuristics, including
3D geometric constraints on point clouds [29], direct visual odometry [44], joint
learning with optical flow [57], scale consistency [2], and others [15, 38, 5, 63].
Using Depth to Improve Monocular SLAM. Approaches [41, 56, 53, 27]
leveraging CNN-based depth estimates to tackle issues in monocular SLAM have
been proposed. CNN-SLAM [41] uses learned depth maps to initialize keyframes’
depth maps in LSD-SLAM [10] and refines them via a filtering framework. Yin et
al. [56] use a combination of CNNs and conditional random fields to recover scale
from the depth predictions and iteratively refine ego-motion and depth estimates.
DVSO [53] trains a single CNN to predict both the left and right disparity maps,
forming a virtual stereo pair. The CNN is trained with photo-consistency between
stereo images and consistency with depths estimated by Stereo DSO [46]. More
recently, CNN-SVO [27] uses depths learned from stereo images to initialize
depths of keypoints and reduce their corresponding uncertainties in SVO [11].
In contrast to our self-supervised approach, [41, 56] use ground truth depths for
training depth networks while [53, 27] need stereo images.
Using SLAM to Improve Monocular Depth Prediction. Depth estimates
from geometric SLAM have been leveraged for training monocular depth esti-
mation networks in recent works [22, 1]. In [1], sparse depth maps by Stereo
ORB-SLAM [31] are first converted into dense ones via an auto-encoder, which
are then integrated into geometric constraints for training the depth network. [22]
employ depths and poses by ORB-SLAM [30] as supervision signals for training
the depth and pose networks respectively. This approach only considers five
consecutive frames, thus restricting its operation in the narrow-baseline setting.

3 Method: A Self-Improving Framework

Our self-improving framework leverages the strengths of each, the unsupervised
single-image depth estimation and the geometric SLAM approaches, to mitigate
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Fig. 1. MonoDepth2 [15] pose network
camera poses vs. pseudo RGBD-SLAM
camera poses where depth(D) is from
CNN. The pose network from [15] leads
to significant drift.

Fig. 2. Overview of Our Self-Improving
Framework. It alternates between pose re-
finement (blue arrows; Sec. 3.1) and depth
refinement (red arrows; Sec. 3.2).

the other’s shortcomings. On one hand, the depth network typically generates
reliable depth estimates for nearby points, which assist in improving the geometric
SLAM estimates of poses and sparse 3D points (Sec. 3.1). On the other hand,
geometric SLAM methods rely on a more holistic view of the scene to generate
robust pose estimates as well as identify persistent 3D points that are visible
across many frames, thus providing an opportunity to perform wide-baseline and
reliable sparse depth estimation. Our framework leverages these sparse, but robust
estimates to improve the noisier depth estimates of the farther scene points by
minimizing a blend of the symmetric transfer and depth consistency losses (Sec.
3.2) and the commonly used appearance based loss. In the following iteration,
this improved depth estimate further enhances the capability of geometric SLAM
and the cycle continues until the improvements become negligible. Even in the
absence of ground truth, our self-improving framework continues to produce
better pose and depth estimates.

An overview of the proposed self-improving framework is shown in in Fig. 2,
which iterates between improving poses and improving depths. Our pose refine-
ment and depth refinement steps are then detailed in Sec. 3.1 and 3.2 respectively.
An overview of narrow and wide baseline losses we use for improving the depth
network is shown in Fig. 3 and details are provided in Sec. 3.2.

3.1 Pose Refinement

Pseudo RGB-D for Improving Monocular SLAM. We employ a well
explored and widely used geometry-based SLAM system, i.e., the RGB-D version
of ORB-SLAM [31], to process the pseudo RGB-D data, yielding camera poses
as well as 3D map points and the associated 2D keypoints. Any other geometric
SLAM system that provides these output estimates can also be used in place of
ORB-SLAM. A trivial direct use of pseudo RGB-D data to run RGB-D ORB-
SLAM is not possible, because CNN might predict depth at a very different scale
compared to depth measurements from real active sensors, e.g., LiDAR. Keeping
the above difference in mind, we discuss an important adaptation in order for
RGB-D ORB-SLAM to work well in our setting. We first note that RGB-D



6 L. Tiwari et al.

ORB-SLAM transforms the depth data into disparity on a virtual stereo to reuse
the framework of stereo ORB-SLAM. Specifically, considering a keypoint with 2D
coordinates (ul, vl) (i.e., ul and vl denote the horizontal and vertical coordinates
respectively) and a CNN-predicted depth dl, the corresponding 2D keypoint
coordinates (ur, vr) on the virtual rectified right view are ur = ul− fxb

dl
, vr = vl,

where fx is the horizontal focal length and b is the virtual stereo baseline.
Adaptation. In order to have a reasonable range of disparity, we mimic the setup

of the KITTI dataset [14] by making the baseline adaptive, b = bKITTI

dKITTI
max

∗ dmax,

where dmax represents the maximum CNN-predicted depth of the input sequence,
and bKITTI = 0.54 and dKITTI

max = 80 (both in meters) are respectively the actual
stereo baseline and empirical maximum depth value of the KITTI dataset.

We also summarize the overall pipeline of RGB-D ORB-SLAM here. The 3D
map is initialized at the very first frame of the sequence due to the availability of
depth. After that, the following main tasks are performed: i) track the camera by
matching 2D keypoints against the local map, ii) enhance the local map via local
bundle adjustment, and iii) detect and close loops for pose-graph optimization
and full bundle adjustment to improve camera poses and scene depths. As we
will show in Sec. 4.4, using pseudo RGB-D data leads to better robustness and
accuracy as compared to using only RGB data.

3.2 Depth Refinement

We start from the pre-trained depth network of Monodepth2 [15], a state-of-the-
art monocular depth estimation network, and fine-tune its network parameters
with the camera poses, 3D map points and the associated 2D keypoints produced
by the above pseudo RGB-D ORB-SLAM (pRGBD-SLAM). In contrast to
Monodepth2, which relies only on the narrow baseline photometric reconstruction
loss between adjacent frames for short-term consistencies, we propose wide
baseline symmetric depth transfer and sparse depth consistency losses to introduce
long-term consistencies. Our final loss (Eq. (4)) consists of both narrow and wide
baseline losses. The narrow baseline losses, i.e., photometric and smoothness
losses, involve the current keyframe Ic and its temporally adjacent frames Ic-1 and
Ic+1, while wide baseline losses are computed on the current keyframe Ic and the
two neighboring keyframes Ik1 and Ik2 that are temporally farther than Ic-1 and
Ic+1 (see Fig. 3). Next, we introduce the notation and describe the losses.
Notation. Let X represent the set of common tracked keypoints visible in all
the three keyframes Ik1, Ic and Ik2 obtained from pRGBD-SLAM. Note that
k1 and k2 are two neighboring keyframes of the current frame c (i.e., k1 <
c < k2) in which keypoints are visible. Let pi

k1= [pi1k1, p
i2
k1], pi

c= [pi1c , p
i2
c ] and

pi
k2= [pi1k2, p

i2
k2] be the 2D coordinates of the ith common tracked keypoint in the

keyframes Ik1, Ic and Ik2 respectively, and the associated depth values obtained
from pRGBD-SLAM are represented by dik1(SLAM), dic(SLAM), and dik2(SLAM) re-
spectively. The depth values corresponding to the keypoints pi

k1, pi
c and pi

k2 can
also be obtained from the depth network and are represented by dik1(w), dic(w),
and dik2(w) respectively, where w stands for the depth network parameters.
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Fig. 3. Narrow and Wide Baseline Losses. Narrow baseline photometric and
smoothness losses involve keyframe Ic and temporally adjacent frames Ic-1 and Ic+1,
and wide baseline symmetric depth transfer and depth consistency losses involve
keyframe Ic and temporally farther keyframes Ik1 and Ik2. Refer to the text below.

Symmetric Depth Transfer Loss. Given the camera intrinsic matrix K, and
the depth value dic(w) of the ith keypoint pi

c, the 2D coordinates of the key-
point pi

c can be back-projected to its corresponding 3D coordinates as: Xi
c(w)=

K−1[pi
c, 1]T dic(w). Let TSLAM

c→k1 represent the relative camera pose of frame
k1 w.r.t. frame c obtained from pRGBD-SLAM. Using TSLAM

c→k1, we can trans-
fer the 3D point Xi

c(w) from frame c to k1 as: Xi
c→k1(w) = TSLAM

c→k1 Xi
c(w)=

[xic→k1(w), yic→k1(w), dic→k1(w)]T . Here, dic→k1(w) is the transferred depth of
the ith keypoint from frame c to frame k1. Following the above procedure, we can
obtain the transferred depth dik1→c(w) of the same ith keypoint from frame k1
to frame c. The symmetric depth transfer loss of the keypoint pi

c between frame
pair c and k1, is the sum of absolute errors (`1 distance) between the transferred
network-predicted depth dic→k1(w) and the existing network-predicted depth
dik1(w) in the target keyframe k1, and vice-versa. It can be written as:

T i
c↔k1(w)=|dic→k1(w)−dik1(w)|+|dik1→c(w)−dic(w)|. (1)

Similarly, we can compute the symmetric depth transfer loss of the same ith

keypoint between frame pair c and k2, i.e., T i
c↔k2(w), and between k1 and k2,

i.e., T i
k1↔k2(w). We accumulate the total symmetric transfer loss between frame

c and k1 in Tc↔k1, which is the loss of all the common tracked keypoints and the
points within the patch of size 5× 5 centered at the common tracked keypoints.
Similarly, we compute the total symmetric depth transfer loss Tc↔k2 and Tk1↔k2

between frame pair (c, k2), and (k1, k2) respectively.
Depth Consistency Loss. The role of the depth consistency loss is to make
depth network’s prediction consistent with the refined depth values obtained from
the pRGBD-SLAM. Note that depth values from pRGBD-SLAM undergo multiple
optimization over wide baselines, hence are more accurate and capture long-term
consistencies. We inject these long-term consistent depths from pRGBD-SLAM
to depth network through the depth consistency loss. The loss for the frame c
can be written as follows:

Dc =

∑
i∈X |dic(w)− dic(SLAM)|

|X |
. (2)

Photometric Reconstruction Loss. Denote the relative camera pose of frame
Ic-1 and Ic+1 w.r.t. current keyframe Ic obtained from pRGBD-SLAM by
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TSLAM

c-1→c and TSLAM

c+1→c respectively. Using frame Ic+1, TSLAM

c+1→c, network-predicted
depth map dc(w) of the keyframe Ic, and the camera intrinsic K, we can syn-
thesize the current frame Ic [15, 16]. Let the synthesized frame be represented
in the functional form as: Ic+1→c(dc(w), TSLAM

c+1→c, K). Similarly we can synthe-
size Ic-1→c(dc(w), TSLAM

c-1→c, K) using frame Ic-1. The photometric reconstruction
error between the synthesized and the original current frame [13, 16, 60] is then
computed as:

Pc = pe(Ic+1→c(dc(w),TSLAM

c+1→c,K), Ic)+pe(Ic-1→c(dc(w),TSLAM

c-1→c,K), Ic), (3)

where we follow [16, 15] to construct the photometric reconstruction error function
pe(·, ·). Additionally, we adopt the more robust per-pixel minimum error, multi-
scale strategy, auto-masking, and depth smoothness loss Sc from [15].

Our final loss for fine-tuning the depth network at the depth refinement
step is the weighted sum of narrow baseline losses (i.e., photometric (Pc) and
smoothness loss (Sc)), and wide baseline losses (i.e., symmetric depth transfer
(Tc↔k1, Tc↔k2, Tk1↔k2) and depth consistency loss (Dc)):

L = αPc + βSc + γDc + µ(Tc↔k1 + Tc↔k2 + Tk1↔k2). (4)

4 Experiments

We conduct experiments to evaluate depth refinement and pose refinement steps
of our self-improving framework with the state-of-the-arts in self-supervised depth
estimation and RGB-SLAM based pose estimation respectively.

4.1 Datasets and Evaluation Metrics

KITTI Dataset. Our experiments are mostly performed on the KITTI dataset [14],
which contains outdoor driving sequences for road scene understanding [39, 7]. We
further split KITTI experiments into two parts: one focused on depth refinement
evaluation and the other on pose refinement. For depth refinement evaluation we
train/fine-tune the depth network using the Eigen train split [8] which contains
28 training sequences and evaluate depth prediction on the Eigen test split [8]
following the baselines [60, 55, 29, 57, 44, 64, 54, 35, 28, 4]. For pose refinement eval-
uation, we train/fine-tune the depth network using KITTI odometry sequences
00-08 and test on sequences 09-10 and 11-21. Note, for evaluation on sequences
09-10 we use the ground-truth trajectories provided by [14], while for evaluation
on sequences 11-21, since the ground-truth is not available we use the pseudo
ground-truth trajectories obtained by running stereo version of ORB-SLAM on
these sequences.
TUM RGB-D Dataset. For completeness and to demonstrate the capability of
our self-improving framework on indoor scenes, we evaluate on the TUM RGB-D
dataset [40], which consists of indoor sequences captained by a hand-held camera.
We choose freiburg3 sequences because only they have undistorted RGB images
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and ground truth available to train/fine-tune and evaluate respectively. We use 6
of 8 freiburg3 sequences for training/fine-tune and the remaining 2 for evaluation.
Metrics for Pose Evaluation. For quantitative pose evaluation, we compute
the Root Mean Square Error (RMSE ), Relative Translation (Rel Tr) error, and
Relative Rotation (Rel Rot) error of the predicted camera trajectory. Since
monocular SLAM systems can only recover camera poses up to a global scale,
we align the camera trajectory estimated by each method with the ground truth
one using the EVO toolbox [18]. We then use the official evaluation code from
the KITTI Odometry benchmark to compute the Rel Tr and Rel Rot errors for
all sub-trajectories with length in {100, . . . , 800} meters.
Metrics for Depth Evaluation. For quantitative depth evaluation, we use
the standard metrics, including the Absolute Relative (Abs Rel) error, Squared
Relative (Sq Rel) error, RMSE, RMSE log, δ < 1.25 (namely a1 ), δ < 1.252

(namely a2 ), and δ < 1.253 (namely a3 ) as defined in [8]. Again, since the
depths from monocular images can only be estimated up to scale, we align the
predicted depth map with the ground truth one using their median depth values.
Following [8] and other baselines, we also clip the depths to 80 meters.
Note. In all tables, best performances are in bold and second bests are underlined.

4.2 Implementation Details

We implement our framework based on Monodepth2 [15] and ORB-SLAM [31],
i.e., we use the depth network of Monodepth2 and the RGB-D version of ORB-
SLAM for depth refinement and pose refinement respectively. We would like to
emphasize, that our self-improving strategy is not specific to MonoDepth2 or
ORB-SLAM. Any other depth network that allows to incorporate SLAM outputs
and any SLAM system that can provide the desired SLAM outputs can be put
into the self-improving framework. We set the weight of the smoothness loss term
of the final loss (Eq. (4)) β = 0.001 similar as in [15] and α,γ, and µ to 1. The
ablation study results on disabling different loss terms can be found in Tab. 3. A
single self-improving loop takes 0.6 hour on a NVIDIA TITAN Xp 8GB GPU.
KITTI Eigen Split/Odometry Experiments. We pre-train MonoDepth2
using monocular videos of the KITTI Eigen split training set with the hyper-
parameters as suggested in MonoDepth2 [15]. We use an input/output resolution
of 640 × 192 for training/fine-tuning and scale it up to the original resolution
while running pRGBD-SLAM. We use same hyperparameters as for KITTI Eigen
split to train/fine-tune the depth model on KITTI Odometry train sequences
mentioned in Sec. 4.1. During a self-improving loop, we discard pose network of
MonoDepth2 and instead use camera poses from pRGBD-SLAM.
Outlier Removal. Before running a depth refinement step, we run an outlier
removal step on the SLAM outputs. Specifically, we filter out outlier 3D map
points and the associated 2D keypoints that satisfy at least one of the following
conditions: i) it is observed in less than 3 keyframes, ii) its reprojection error in
the current keyframe Ic is larger than 3 pixels.
Camera Intrinsics. Monodepth2 computes the average camera intrinsics for the
KITTI dataset and uses it for the training. However, for our fine-tuning of the
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depth network, using the average camera intrinsics leads to inferior performance,
because we use the camera poses from pRGBD-SLAM, which runs with different
camera intrinsics. Therefore, we use different camera intrinsics for different
sequences when fine-tuning the depth network.
For fine-tuning the depth network pre-trained on KITTI Eigen split training
sequences, we run pRGBD-SLAM on all the training sequences, and extract
camera poses, 2D keypoints and the associated depths from keyframes. For
pRGBD-SLAM(RGB-D ORB-SLAM), we use the default setting of ORB-SLAM,
except for the adjusted b described in Sec. 3.1. The same above procedure is
followed for depth model pre-trained on KITTI Odometry training sequences.
The average number of keyframes used in a self-improving loop is ∼ 9K and
∼ 10K for KITTI Eigen split and KITTI Odometry experiments respectively.
At each depth refinement step, we fine-tune the depth network parameters with
1 epoch only, using learning rate 1e-6, keeping all the other hyperparameters
the same as pre-training. For both KITTI Eigen split and KITTI Odometry
experiments we report results after 5 self-improving loops.

TUM RGB-D Experiments. For TUM RGB-D, we pre-train/fine-tune the
depth network on 6 freiburg3 sequences, and test on 2 freiburg3 sequences. The
average number of keyframes in a self-improving loop is ∼ 3.5K. We use an
input/output resolution of 480× 320 for pre-training/fine-tuning and scale it up
to the original resolution while running pRGBD-SLAM. We report results after
3 self-improving loops. Other details can be found in the supplementary material.

4.3 Monocular Depth/Depth Refinement Evaluation

In the following, we evaluate the performance of our depth estimation on the
KITTI Raw Eigen split test set and TUM RGB-D frieburg3 sequences.
Results on KITTI Eigen Split Test Set. We show the depth evaluation
results on the Eigen split test set in Tab. 1. From the table, it is evident that our
refined depth model (pRGBD-Refined) outperforms all the competing monocular
(M) unsupervised methods by non-trivial margins, including MonoDepth2-M
re-trained depth model, and even surpasses the unsupervised methods with stereo
(S) training, i.e., Monodepth2-S, and combined monocular-stereo (MS) training,
i.e., MonoDepth2-MS, in most metrics. Our method also outperforms several
ground-truth depth supervised methods [8, 26]. The reason is probably that the
aggregated cues from multiple views with wide baseline losses (e.g., our symmetric
depth transfer, depth consistency losses) lead to more well-posed depth recovery,
and hence even higher accuracy than learning with the pre-calibrated stereo
rig with smaller baselines. Further analysis is provided in Sec. 5. Fig. 4 shows
some qualitative results, where our method (pRGBD-Refined) shows visible
improvements. Refer supplementary material for more qualitative results.

Results on TUM RGB-D Sequences. The depth evaluation results on the
two TUM frieburg3 RGB-D sequences is shown in Tab. 2. Our refined depth
model (pRGBD-Refined) outperforms pRGBD-Initial/Monodepth2-M in both
sequences and all metrics. Refer supplementary material for qualitative results.
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Table 1. Depth evaluation result on KITTI Eigen split test set. M: self-supervised
monocular supervision, and S: self-supervised stereo supervision, D: depth supervision.
‘-’ means the result is not available from the paper. pRGBD-Refined outperforms all the
self-supervised monocular methods and several stereo only and combined monocular
and stereo methods. Our results are after 5 self-improving loops.

Lower is better Higher is better
Method Train Abs Rel Sq Rel RMSE RMSE log a1 a2 a3

se
lf

-s
u
p

e
rv

is
e
d

Yang[55] M 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Mahjourian[29] M 0.163 1.240 6.220 0.250 0.762 0.916 0.968
Klodt[22] M 0.166 1.490 5.998 - 0.778 0.919 0.966
DDVO[44] M 0.151 1.257 5.583 0.228 0.810 0.936 0.974
GeoNet[57] M 0.149 1.060 5.567 0.226 0.796 0.935 0.975
DF-Net[64] M 0.150 1.124 5.507 0.223 0.806 0.933 0.973
Ranjan[35] M 0.148 1.149 5.464 0.226 0.815 0.935 0.973
EPC++[28] M 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Struct2depth(M)[4] M 0.141 1.026 5.291 0.215 0.816 0.945 0.979
WBAF [59] M 0.135 0.992 5.288 0.211 0.831 0.942 0.976
MonoDepth2-M (re-train) [15] M 0.117 0.941 4.889 0.194 0.873 0.957 0.980
MonoDepth2-M (original) [15] M 0.115 0.903 4.863 0.193 0.877 0.959 0.981
pRGBD-Refined M 0.113 0.793 4.655 0.188 0.874 0.960 0.983
Garg[13] S 0.152 1.226 5.849 0.246 0.784 0.921 0.967
3Net (R50)[34] S 0.129 0.996 5.281 0.223 0.831 0.939 0.974
Monodepth2-S[15] S 0.109 0.873 4.960 0.209 0.864 0.948 0.975
SuperDepth [33] S 0.112 0.875 4.958 0.207 0.852 0.947 0.977
monoResMatch [43] S 0.111 0.867 4.714 0.199 0.864 0.954 0.979
DepthHints [49] S 0.106 0.780 4.695 0.193 0.875 0.958 0.980
DVSO[53] S 0.097 0.734 4.442 0.187 0.888 0.958 0.980
UnDeepVO [24] MS 0.183 1.730 6.570 0.268 - - -
EPC++ [28] MS 0.128 0.935 5.011 0.209 0.831 0.945 0.979
Monodepth2-MS[15] MS 0.106 0.818 4.750 0.196 0.874 0.957 0.979
Eigen[8] D 0.203 1.548 6.307 0.282 0.702 0.890 0.890
Liu[26] D 0.201 1.584 6.471 0.273 0.680 0.898 0.967
Kuznietsov[23] DS 0.113 0.741 4.621 0.189 0.862 0.960 0.986
SVSM FT[28] DS 0.094 0.626 4.252 0.177 0.891 0.965 0.984
Guo[19] DS 0.096 0.641 4.095 0.168 0.892 0.967 0.986
DORN[12] D 0.072 0.307 2.727 0.120 0.932 0.984 0.994

TUM RGBD Sequences
Lower is better Higher is better

Method AbRelSqRelRMSERMSElog a1 a2 a3
pRGBD-I 0.397 0.848 1.090 0.719 0.483 0.722 0.862
pRGBD-R 0.307 0.341 0.743 0.655 0.5220.7660.873

Table 2. Depth evaluation re-
sults on two frieburg3 RGB-D
sequences. pRGBD-R results are
after 3 self-improving loops.

4.4 Monocular SLAM/Pose Refinement Evaluation

In this section, we evaluate pose estimation/refinement on the KITTI Odometry
sequences 09 and 10, KITTI Odometry test set sequences 11-21, and two TUM
frieburg3 RGB-D sequences.

Results on KITTI Odometry Sequences 09 and 10. We show the quanti-
tative results on seqs 09 and 10 in Tab. 4. It can be seen that our pRGBD-Initial
outperforms RGB ORB-SLAM [30] both in terms of RSME and Rel Tr. Our
pRGBD-Refined further improves pRGBD-Initial in all metrics, which verifies
the effectiveness of our self-improving mechanism in terms of pose estimation.
The higher Rel Rot errors of our method compared to RGB ORB-SLAM could
be due to the high uncertainty of CNN-predicted depths for far-away points,
which affects our rotation estimation [20]. In addition, our methods outperform
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Table 3. Ablation study on
1st self-improving loop using
KITTI Eigen split. The best
performance is in bold

.

Lower is better Higher is better
Loss AbsRel SqRel RMSERMSElog a1 a2 a3
w/o Dc 0.117 0.958 4.956 0.194 0.862 0.955 0.980
w/o Tc 0.118 0.955 4.867 0.194 0.872 0.957 0.980
w/o Pc 0.117 0.942 4.855 0.194 0.8730.958 0.980
all losses 0.117 0.931 4.809 0.192 0.8730.9580.981

RGB MonoDepth2-S

MonoDepth2-M pRGBD-Refined

Fig. 4. Qualitative depth evaluation on
KITTI Raw Eigen’s split test set.

(a) seq 09 (b) seq 19

Fig. 5. Qualitative pose evaluation results on
KITTI sequences.

all the competing supervised and self-supervised methods by a large margin,
except for the supervised method of [51] with lower Rel Tr than ours on sequence
10. Note that we evaluate the camera poses produced by the pose network of
Monodepth2-M [15] in Tab. 4, yielding much higher errors than ours. Fig. 5(a)
shows the camera trajectories estimated for sequence 09 by RGB ORB-SLAM, our
pRGBD-Initial, and pRGBD-Refined. It is evident that, although all the methods
perform loop closure successfully, our methods generate camera trajectories that
align better with the ground truth.

Table 4. Quantitative pose
evaluation results on KITTI
Odometry Sequences 09 and
10. - means the result is not
available from the paper.

Seq. 09 Seq. 10
Method RMSE RelTr RelRotRMSE RelTr RelRot

S
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p

e
rv
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d

DeepVO[47] - - - - 8.11 0.088
ESP-VO[48] - - - - 9.77 0.102
GFS-VO[50] - - - - 6.32 0.023
GFS-VO-RNN[50] - - - - 7.44 0.032
BeyondTracking[51] - - - - 3.94 0.017
DeepV2D[42] 79.06 8.71 0.037 48.49 12.81 0.083

S
e
lf
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u
p

e
rv

is
e
d

SfMLearner [60] 24.31 8.28 0.031 20.87 12.20 0.030
GeoNet[57] 158.45 28.72 0.098 43.04 23.90 0.090
Depth-VO[58] - 11.93 0.039 - 12.45 0.035
vid2depth[29] - - - - 21.54 0.125
UnDeepVO[24] - 7.01 0.036 - 10.63 0.046
Wang et al.[45] - 9.88 0.034 - 12.24 0.052
CC[35] 29.00 6.92 0.018 13.77 7.97 0.031
DeepMatchVO[37] 27.08 9.91 0.038 24.44 12.18 0.059
Li et al.[25] - 8.10 0.028 - 12.90 0.032
Monodepth2-M[15] 55.47 11.47 0.032 20.46 7.73 0.034
SC-SfMLearer[2] - 11.2 0.034 - 10.1 0.050
RGB ORB-SLAM 18.34 7.42 0.004 8.90 5.85 0.004
pRGBD-Initial 12.21 4.26 0.011 8.30 5.55 0.017
pRGBD-Refined 11.97 4.20 0.010 6.35 4.40 0.016

Results on KITTI Odometry Test Set. The KITTI Odometry leaderboard
requires complete camera trajectories of all frames of all the sequences. Since
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Seq
RGB ORB-SLAM pRGBD-Initial pRGBD-Refined

RMSERelTrRelRotRMSERelTrRelRotRMSERelTrRelRot
11 14.83 7.69 0.003 6.68 3.28 0.016 3.64 2.96 0.015
13 6.58 2.39 0.006 6.83 2.52 0.008 6.43 2.31 0.007
14 4.81 5.19 0.004 4.30 4.14 0.014 2.15 3.06 0.014
15 3.67 1.78 0.004 2.58 1.61 0.005 2.07 1.33 0.004
16 6.21 2.66 0.002 5.78 2.14 0.006 4.65 1.90 0.004
18 6.63 2.38 0.002 5.50 2.30 0.008 4.37 2.21 0.006
19 18.68 4.91 0.002 23.96 2.82 0.007 13.85 2.52 0.006
20 9.19 6.74 0.016 8.94 5.43 0.027 7.03 4.50 0.022
12 X X X X X X 94.2 32.94 0.026
17 X X X 14.71 8.98 0.011 12.23 7.23 0.011
21 X X X X X X X X X

Table 5. Pose evaluation re-
sults on KITTI Odometry
test set. Since the ground
truth for the KITTI Odom-
etry test set is not avail-
able we run Stereo ORB-
SLAM[31] to get the com-
plete camera trajectories and
use them as the pseudo
ground truth to evaluate. ‘X’
denotes tracking failure.

RGB SLAM pRGBD-Initial pRGBD-Refined
RMSE RlTr RlRot RMSE RlTr RlRot RMSE RlTr RlRot

W X X X 0.23 0.02 0.52 0.09 0.01 0.30
L 1.72 0.02 0.32 1.40 0.01 0.34 0.39 0.01 0.33

Table 6. Pose evaluation re-
sults on two frieburg3 RGB-D
sequences, walking xyz (W) and
large cabinet validation (L).

we keep the default setting from ORB-SLAM, causing tracking failures in a few
sequences, to facilitate quantitative evaluation on this test set (i.e., sequences
11-21), we use pseudo-ground-truth computed as mentioned in Sec. 4.1 to evaluate
all the competing methods in Tab. 5. From the results, RGB ORB-SLAM fails on
three challenging sequences due to tracking failures, whereas our pRGBD-Initial
fails on two sequences and our pRGBD-Refined fails only on one sequence. Among
the sequences where all the competing methods succeed, our pRGBD-Initial re-
duces the RMSEs of RGB ORB-SLAM by a considerable margin for all sequences
except for sequence 19. After our self-improving mechanism, our pRGBD-Refined
further boosts the performance, reaching the best results both in terms of RMSE
and Rel Tr. Fig. 5(b) shows qualitative comparisons on sequence 19.
Results on TUM RGB-D Sequences. Performance of pose refinement step
on the two TUM RGB-D sequences is shown in Tab. 6. The result shows increased
robustness and accuracy by pRGBD-Refined. In particular, RGB ORB-SLAM
fails on walking xyz, while pRGBD-Refined succeeds and achieves the best perfor-
mance on both sequences. Refer supplementary material for qualitative results.

5 Analysis of Self-Improving Loops

In this section, we analyze the behaviour of three different evaluation metrics for
depth estimation: Squared Relative (Sq Rel) error, RMSE error and accuracy
metric a2, as defined in Sec. 4. The pose estimation is evaluated using the absolute
trajectory pose error. In Fig. 6, we use the KITTI Eigen split dataset and report
these metrics for each iteration of the self-improving loop. The evaluation metrics
corresponding to the 0th self-improving loop are of the pre-trained MonoDepth2-
M. We summarize the findings from the plots in Fig. 6 as below:

– A comparison of evaluation metrics of farther scene points (e.g.max depth
80) with nearby points (e.g.max depth 30) at the 0th self-improving loop
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(a) (b) (c) (d)

Fig. 6. Depth/Pose evaluation metric w.r.t. self-improving loops. Depth evaluation
metrics in (a-c) are computed at different max depth caps ranging from 30-80 meters.

shows that the pre-trained MonoDepth2 performs poorly for farther scene
points compared to nearby points.

– In the subsequent self-improving loops, we can see the rate of reduction in
the Sq Rel and RMSE error is significant for farther away points compared to
nearby points, e.g., slope of error curves in Fig. 6(b-c) corresponding to max
depth 80 is steeper than that of max depth 30. This validates our hypothesis
of including wider baseline losses that help the depth network predict more
accurate depth values for farther points. Overall, our joint narrow and wide
baseline based learning setup helps improve the depth prediction of both the
nearby and farther away points, and outperforms MonoDepth2 [15].

– The error plot in Fig. 6(d) shows a decrease in pose error with self-improving
loops and complements the improvement in depth evaluation metrics as
shown in Fig.6(a)-(c). We terminate the self-improvement loop once there is
no furhter improvement, i.e., at the 5th iteration.

6 Conclusion

In this work, we propose a self-improving framework to couple geometrical and
learning based methods for 3D perception. A win-win situation is achieved — both
the monocular SLAM and depth prediction are improved by a significant margin
without any additional active depth sensor or ground truth label. Currently,
our self-improving framework only works in an off-line mode, so developing an
on-line real-time self-improving system remains one of our future works. Another
avenue for our future works is to move towards more challenging settings [52],
e.g., rolling shutter cameras [36, 61] or uncalibrated cameras [17, 62].
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10. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: Large-scale direct monocular slam.
In: ECCV (2014)

11. Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: Fast semi-direct monocular visual
odometry. In: ICRA (2014)

12. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression
network for monocular depth estimation. In: CVPR (2018)

13. Garg, R., BG, V.K., Carneiro, G., Reid, I.: Unsupervised cnn for single view depth
estimation: Geometry to the rescue. In: ECCV (2016)

14. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: CVPR (2012)

15. Godard, C., Aodha, O.M., Firman, M., Brostow, G.J.: Digging into self-supervised
monocular depth estimation. In: ICCV (2019)

16. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estima-
tion with left-right consistency. In: CVPR (2017)

17. Gordon, A., Li, H., Jonschkowski, R., Angelova, A.: Depth from videos in the wild:
Unsupervised monocular depth learning from unknown cameras. In: CVPR (2019)

18. Grupp, M.: evo: Python package for the evaluation of odometry and slam.
https://github.com/MichaelGrupp/evo (2017)

19. Guo, X., Li, H., Yi, S., Ren, J., Wang, X.: Learning monocular depth by distilling
cross-domain stereo networks. In: ECCV (2018)

20. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge
University Press (2003)

21. Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In:
ISMAR (2007)



16 L. Tiwari et al.

22. Klodt, M., Vedaldi, A.: Supervising the new with the old: learning sfm from sfm.
In: ECCV (2018)

23. Kuznietsov, Y., Stuckler, J., Leibe, B.: Semi-supervised deep learning for monocular
depth map prediction. In: CVPR (2017)

24. Li, R., Wang, S., Long, Z., Gu, D.: Undeepvo: Monocular visual odometry through
unsupervised deep learning. In: ICRA (2018)

25. Li, Y., Ushiku, Y., Harada, T.: Pose graph optimization for unsupervised monocular
visual odometry. In: ICRA (2019)

26. Liu, F., Shen, C., Lin, G., Reid, I.: Learning depth from single monocular images
using deep convolutional neural fields. IEEE Transactions on Pattern Analysis and
Machine Intelligence 38(10), 2024–2039 (2015)

27. Loo, S.Y., Amiri, A.J., Mashohor, S., Tang, S.H., Zhang, H.: CNN-SVO: Improving
the mapping in semi-direct visual odometry using single-image depth prediction.
In: ICRA (2019)

28. Luo, C., Yang, Z., Wang, P., Wang, Y., Xu, W., Nevatia, R., Yuille, A.: Every pixel
counts++: Joint learning of geometry and motion with 3d holistic understanding.
arXiv preprint arXiv:1810.06125 (2018)

29. Mahjourian, R., Wicke, M., Angelova, A.: Unsupervised learning of depth and
ego-motion from monocular video using 3d geometric constraints. In: CVPR (2018)

30. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate
monocular slam system. IEEE Transactions on Robotics 31(5), 1147–1163 (2015)

31. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: An open-source slam system for monoc-
ular, stereo, and rgb-d cameras. IEEE Transactions on Robotics 33(5), 1255–1262
(2017)

32. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: Dense tracking and
mapping in real-time. In: ICCV (2011)
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