Appendix

1 Role of Random Occlusion

The random occlusion (RO) we designed for data augmentation is similar to the
random erasing (RE) [6] and cutout [2] methods. In the RE implementation, the
target erasing area is sampled from a combination of random area and aspect
ratio, which could exceed the original image height or width. Therefore, it needs
to try multiple times (100 by default) to generate a reasonable region for erasing.
In contrast, in our implementation of the random occlusion, a square area is used,
with the size randomly sampled at most 0.8 x width of the image, and randomly
put in a valid location. Then the square area is filled with white pixels. Note that
with a simple square area, there is no need to sample multiple times of areas and
aspect ratios and check the validity, and hence the generation process is more
efficient. As for the cutout method, it uses multiple square regions in fixed sizes
specified by hyperparameters, but not in random. The fixed-size regions may
make the cut either too small or too large, and so it is not very convenient to
set.

To show their differences, in the training of QAConv, we compare these data
augmentation methods as well as a baseline without any random occlusion. From
the results shown in Table 1, it can be observed that the three data augmentation
methods generally improve the baseline which does not apply any random oc-
clusion. Intuitively, they are useful for QAConv because random occlusion forces
QAConv to learn various local correspondences, instead of only salient but easy
ones. Besides, the three data augmentation methods perform comparable, with
the RO implementation being slightly better. Therefore, considering also the ef-
ficiency of the RO implementation, it is adopted in the training of the proposed
QAConv algorithm.

Table 1. Role of random occlusion.

Method Market—Duke|Duke— Market
erho Rank-1| mAP |Rank-1| mAP
QAConv without occlusion| 50.5 | 29.5 | 61.6 | 28.4

QAConv with RE [6] 51.6 | 30.6 | 62.0 | 29.8
QAConv with cutout [2] 51.6 | 30.8 | 62.6 | 30.3
QAConv with RO 54.4 | 33.6 | 62.8 | 31.6

2 Complete Comparisons of Backbone Networks

Tables 2 and 3 show complete comparisons between the QAConv results with
the ResNet-50 as backbone (denoted as QAConvsg) and with the ResNet-152
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as backbone (denoted as QAConvyss), with DukeMTMC-reID and Market-1501
as the target datasets, respectively. Results of applying re-ranking alone are not
shown in the main paper.

Table 2. Comparison (%) of backbone networks with DukeMTMC-reID as the target
dataset.

Training | Test: Duke
Method Source [Target| R1 [ mAP
QAConvsg Market 48.8| 28.7
QAConvis2 Market 54.4| 33.6
QAConvso + RR Market 56.9| 47.8
QAConvis2 + RR Market 61.8| 52.4
QAConvsy + RR + TLift [Market 64.5| 55.1
QAConvis2 + RR + TLift|Market 70.0| 61.2
QAConvsg MSMT 69.4| 52.6
QACODV152 MSMT 72.2| 53.4
QAConvso + RR MSMT 76.7| 71.2
QAConvis2 + RR MSMT 78.1| 72.4
QAConvsy + RR + TLift [MSMT 80.3| 77.2
QAConvis2 + RR + TLift| MSMT 82.2| 78.4

3 Comparisons to Other Losses

Since the loss of hard triplet mining [3] is popular in person re-identification, we
further include it in the loss comparisons. Besides, we provide a further analysis
on different loss configurations of the QAConv. The results are shown in Table 4
under Market— Duke, where triplet results are each with its best margin. While
the mini-batch hard triplet loss does improve the softmax cross-entropy loss,
it seems that it is not efficient in learning the QAConv, possibly because local
matching requires large pairs to learn, as done with the proposed class memory
and focal loss, but not in mini-batches. Note that focal loss is a bit aggressive
in learning, but softly. However, the hard triplet loss is in fact more aggressive.

4 Fusion of Global Similarity

To see whether fusing a global similarity branch helps improving the perfor-
mance, we tried an extra global feature learning branch by performing a global
average pooling on the final feature maps, and a softmax cross-entropy loss for
classification. During testing, the cosine similarity computed from this global
feature branch is fused to the QAConv similarity. However, after trying different
weights of the two losses, the best mAP we can get is 28.4% under Market— Duke,
with the weight 0.001 of the global branch. It is a bit worse than the default
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Table 3. Comparison (%) of backbone networks with Market-1501 as the target

dataset.

Training  |Test: Market
Method Source[Target R1 [ mAP
QAConvsg Duke 58.6| 27.2
QAConviss Duke 62.8| 31.6
QAConvso + RR Duke 65.7| 45.8
QACOHV152 + RR Duke 68.5| 51.2
QAConvso + RR + TLift | Duke 74.6| 51.5
QAConvis2 + RR 4 TLift| Duke 78.7| 58.2
QAConvsg MSMT 72.6| 43.1
QAConviss MSMT 73.9| 46.6
QAConvso + RR MSMT 77.4| 65.6
QAConvis2 + RR MSMT 79.2| 69.1
QAConvso + RR + TLift [MSMT 86.5| 72.2
QAConvis2 + RR + TLift| MSMT 88.4| 76.0

Table 4. Role of loss functions under Market—Duke (%).

Method Rank-1mAP

Softmax cross-entropy 34.9 |18.4

Softmax cross-entropy + triplet 39.6 |23.0

ResNet-152 Arc loss [1] 353 |17.1
Center loss [5, 4] 38.9 |22.1

Class memory loss 40.7 |21.8

Mini-batch triplet (w/o class memory)| 42.2 |23.7

Softmax cross-entropy 43.4 |24.9

Binary cross-entropy 46.1 |27.3

QAConvsg Softmax cross-entropy + triplet 44.3 |24.2
Binary cross-entropy + triplet 44.7 | 23.6

Focal loss + triplet 43.3 [23.2

Focal loss (default) 48.8 |28.7
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QAConv (28.7%). This may be because the vanilla global feature branch can-
not handle misalignments and occlusions, and so more advanced techniques are
needed here. This deserves a further study.

5 TLift for Other Methods

Note that TLift can also be generally applied to other methods for improve-
ments. To demonstrate this, Tables 5 and 6 show results of applying TLift to
all baseline methods under Market—Duke and Duke—Market, respectively. It
can be observed that, beyond the improvements made by re-ranking, TLift can
further improve all baseline methods. The improvements are consistently large,
with Rank-1 improved by 10.1%-14.1%, and mAP improved by 3.6%-11.1%.

Table 5. Role of TLift under Market—Duke (%).

Original + RR + RR + TLift
Rank-1/mAP|Rank-1{mAP|Rank-1| mAP
Softmax cross-entropy| 34.9 |18.4| 41.5 |30.5| 51.7 | 39.7

Arc loss [1] 353 |17.1| 39.8 |26.3| 51.0 | 34.8
Center loss [5, 4] 38.9 |22.1| 42,5 |31.5| 56.6 | 42.6
Class memory loss 40.7 |21.8| 47.8 [36.1| 59.6 | 46.2
QAConv 54.4 (33.6| 61.8 |52.4| 70.0 | 61.2

Method

Table 6. Role of TLift under Duke—Market (%).

Method Original + RR + RR + TLift
Rank-1\mAP|Rank-1\mAP|Rank-1| mAP
Softmax cross-entropy| 48.5 |21.4| 53.2 |33.7| 63.3 | 38.0
Arc loss [1] 489 |21.4| 54.5 |[34.8| 64.8 | 39.3
Center loss [5, 4] 48.8 |[22.0| 52.5 |33.3| 63.0 | 36.9
Class memory loss 47.8 [20.5| 52,9 |33.1| 63.4 | 375
QAConv 62.8 |31.6| 68.5 [51.2| 78.7 | 58.2

6 Parameter Analysis

Considering the memory consumption and the efficiency, the kernel size of QA-
Conv is set to s = 1. Parameters for TLift are 7 = 100, o = 200, K = 10, and
a = 0.2. They were fixed in all experiments after some initial tries. To under-
stand their influence, we vary them one by one, with corresponding results shown
in Tables 7 and 8. It can be observed that, the parameters are not sensitive in a
broad range, so that they are easy to select. Besides, some better results can be
obtained by varying parameters other than the defaults.
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Table 7. Influence of TLift parameters under Market—Duke (%). Bold numbers are
with the default parameters.

T 50 100 150 200 250 300 350 400 450 500
Rank-1 | 69.3 70.0 69.7 69.8 69.1 683 66.8 655 644 639
mAP | 60.7 61.2 60.7 59.9 588 573 55.7 540 524 51.2

o 50 100 150 200 250 300 350 400 450 500
Rank-1 | 67.4 69.5 70.4 70.0 694 69.2 689 684 68.0 67.7
mAP | 554 59.6 609 61.2 61.0 60.8 605 601 59.8 59.5

K 5 10 15 20 30 40 50 100 150 200
Rank-1 | 69.7 70.0 70.2 70.0 694 689 682 67.0 655 64.8
mAP | 60.8 61.2 61.2 61.0 60.3 59.6 588 56.8 557 552

o 0.01 0.02 0.05 0.1 0.2 03 04 05 07 1
Rank-1 | 70.4 704 70.2 702 70.0 694 69.1 68.6 683 67.5
mAP | 60.8 60.8 60.8 61.0 61.2 61.1 61.0 609 604 59.7

Table 8. Influence of TLift parameters under Duke—Market (%). Bold numbers are
with the default parameters.

T 50 100 150 200 250 300 350 400 450 500
Rank-1 | 76.2 78.7 79.8 79.7 79.9 79.0 786 782 7T7.6 77.2
mAP | 572 58.2 586 584 582 577 572 566 56.0 554

o 50 100 150 200 250 300 350 400 450 500
Rank-1 | 76.1 785 78.6 787 786 781 780 779 779 776
mAP | 55.6 57.6 581 b58.2 585 587 588 59.0 59.1 59.2

K 5 10 15 20 30 40 50 100 150 200
Rank-1 | 79.6 78.7 781 776 76.6 76.2 758 744 734 727
mAP | 56.9 58.2 584 583 580 579 578 573 56.6 559

o 0.01 0.02 0.05 0.1 0.2 03 04 05 07 1
Rank-1 | 784 785 787 788 787 785 780 77.6 765 754
mAP | 53.8 54.1 55.0 56.3 58.2 594 599 600 59.5 585
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7 Memory Usage

One drawback of QAConv is that it requires more memory to run than other
methods, and it needs to store feature maps of images, rather than features,
where feature maps are generally larger in size than representation features. For
training on the DukeMTMC-relD, the GPU memory consumption for the QA-
Conv is about 2.83GB, while that for the softmax baseline is about 2.78GB.
They are comparable because though QAConv spends some more on class mem-
ory, it uses three layers of the ResNet-50, while the softmax baseline uses four
layers. For inference, the peak GPU memory for the QAConv is about 2.3GB,
while that for the softmax baseline is about 1.7GB.
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