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1 Proof of Proposition 1

The KL divergence between q(θ|µ,σ) and p(θ|y) can be rewritten as

KL(q(θ|µ,σ)‖p(θ|y))
= KL(q(θ|µ,σ)‖p(θ))− Eθ∼q(θ|µ,σ) log p(y|θ) + const.

(1)

Since p(θ) ∼
∏
i exp(

−θ2i
2σ2 ) and q(θ|µ,σ) ∼

∏
i exp(−(θi−µi)

2
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), we have

KL(q(θ|µ,σ)‖p(θ)) =
∑
i

KL(q(θi|µi, σi)‖p(θi))

=
1

2σ2 (‖µ‖22 + ‖σ‖22)−
∑
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log σi + const.
(2)

On the other hand, p(n) ∼
∏
i exp(

−n2
i

2σ̃2 ), which gives us

log p(y|θ) = − 1

2σ̃
‖AFθ(ε0)− y‖22 + const. (3)

Finally, we obtain

min
µ,σ

KL(q(θ|µ,σ)‖p(θ|y))

= min
µ,σ

Eθ∼q(θ|µ,σ)‖AFθ(ε0)− y‖22 + λ1(‖µ‖22 + ‖σ‖22)− λ2
∑
i

log σi,
(4)

where λ1 = σ̃2/σ2 and λ2 = 2σ̃2. The proof is done.

2 More Ablation Studies

In the main paper, we have conducted ablation studies to demonstrate the ad-
vantages of our BNN over deterministic NNs. Now we want to further show the
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effectiveness of our Monte Carlo (MC) prediction scheme

x∗ ≈ 1

T

T∑
j=1

Fθj (ε0), (5)

where {θj}j = 1T are the realizations of random variable θ from the distribution
q(θ|µ∗,σ∗) and T is the total sampling number. As a comparison, we test the
performance of the single prediction scheme, which only uses the mean of the
weights, i.e. µ∗, to predict as follows

x̃ = Fµ∗(ε0). (6)

See Table 1 for the quantitative results on Set11 [1] in CS reconstruction of
natural images. It can be seen that in noise-free case, there is no performance
gain of our MC prediction (5) over the single prediction scheme (6). In contrast,
in noisy case, our MC prediction significantly outperformed the single one. This
phenomenon may be explained by the weight uncertainty of the trained BNN
model.

Recall that weight uncertainty is measured by the variance σ∗ and the signal-
to-noise ratio µ∗/σ∗ in Figure 1. It can be seen that the weight uncertainty is
of large magnitude in the noisy case such that multiple predictions via MC
sampling of the weights are more diverse and averaging them provides more
gains in performance. For a better understanding, we select a 10 × 10 block
from the natural image “Lena256” to visualize the diversity of the predictions
via MC sampling of the weights in Figure 2. The x-axis stands for the pixel
at the selected 10 × 10 block, which varies from 1 to 100. The y-axis is the
corresponding pixel value. We plot the mean and variance of the predictions
{Fθj (ε0)}100j=1, where the weights θj are sampled from q(θ|µ∗,σ∗). The mean is
the central blue line and the variance is reflected by the shallow blue area. In
the noiseless case, the shallow blue area even can not be observed which means
that the multiple predictions via MC sampling of the weights are the same. This
explains the finding that there is no difference in the performance of the single
prediction (6) and our MC prediction in the noiseless case.

Table 1. Average PSNR(db)/SSIM results of ablation studies on Set11 [1].

σ̃ prediction 40% 25% 10% 4%

0
single 35.71/0.95 32.30/0.92 27.49/0.83 23.26/0.70
ours 35.71/0.95 32.30/0.92 27.49/0.83 23.26/0.70

10
single 29.50/0.86 27.87/0.82 24.54/0.73 21.36/0.62
ours 30.39/0.88 28.67/0.84 25.23/0.76 21.91/0.64
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Fig. 1. Histograms of the variance σ∗ (left) and signal-to-noise ratio µ∗/σ∗ (right) of
the weights of the trained BNN for natural image “boats” with different CS ratios and
noise levels.

(a) (b) (c) (d)

Fig. 2. The diversity of the predictions {Fθj (ε0)}100j=1 for a 10×10 block of the natural
image “boats”, where the weights θj are sampled from q(θ|µ∗,σ∗). The central blue
lines are the mean of the predictions over 100 times and the shallow blue areas indicate
the variance. From left to right, the settings are: (a) CS ratio = 40, σ = 0; (b) CS ratio
= 40, σ = 10;(c) CS ratio = 4, σ = 0;(d) CS ratio = 4, σ = 10.
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3 An Interesting Demo on Batch Processing

In the previous experiments, we only process one single image once. It is attrac-
tive to see whether our method is able to process multiple images in a batch
during one period of training. In this section, we show a demo on MRI data for
batch image processing. The maximum iteration for batch processing is increased
to 1.5×105. See Table 2 for the comparison of batch image processing and sepa-
rate processing on MRI data in compressive sensing. In the noisy case, the results
of the batch training are even better than that of the separate training.

Table 2. Comparison of PSNR(db)/SSIM results of separate training and batch train-
ing on MRI data in compressive sensing.

mask 1D Gaussian 2D Gaussian radial

σ 0 10% 0 10% 0 10%

Separate 31.38/0.91 25.65/0.76 36.10/0.96 27.12/0.82 34.08/0.95 27.07/0.82
Batch 31.44/0.91 25.99/0.80 34.78/0.94 27.41/0.84 33.37/0.94 27.36/0.84
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