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Abstract. In recent years, deep learning emerges as one promising tech-
nique for solving many ill-posed inverse problems in image recovery, and
most deep-learning-based solutions are based on supervised learning. Mo-
tivated by the practical value of reducing the cost and complexity of con-
structing labeled training datasets, this paper proposed a self-supervised
deep learning approach for image recovery, which is dataset-free. Built
upon Bayesian deep network, the proposed method trains a network
with random weights that predicts the target image for recovery with
uncertainty. Such uncertainty enables the prediction of the target im-
age with small mean squared error by averaging multiple predictions.
The proposed method is applied for image reconstruction in compressive
sensing (CS), i.e., reconstructing an image from few measurements. The
experiments showed that the proposed dataset-free deep learning method
not only significantly outperforms traditional non-learning methods, but
also is very competitive to the state-of-the-art supervised deep learning
methods, especially when the measurements are few and noisy.

Keywords: Self-supervised learning, Bayesian neural network, Com-
pressive sensing, Image recovery

1 Introduction

Image recovery is about recovering an image of high quality from its related
measurement. Many image recovery tasks are to solve a linear inverse problem:

y = Ax+ n, (1)

where y denotes the available measurement, x denotes the latent image to re-
cover, n denotes the measurement noise which is often modeled by i.i.d. random
variables componently. The operator A denotes a linear degradation/measuring
process on the latent image, which is usually non-invertible/ill-conditioned. When
A is non-invertible such that the number of unknowns is larger than the num-
ber of independent equations, the solution is not unique. How to resolve such
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solution ambiguity is the main challenge when solving (1). When A is invertible
but ill-conditioned, how to suppress the magnification of measurement noise n
during the recovery becomes the main concern. In the past, the most prominent
approach is the regularization method, which imposes certain image prior on the
solution for resolving solution ambiguities and suppressing noise amplification.

Recently, deep learning emerges as a powerful tool for solving many im-
age recovery problems ; see e.g . [32, 46, 26, 45, 44, 38, 33, 34, 25, 11]. These deep-
learning-based solutions are all using supervised learning, i.e., a DNN (deep
neural network) is trained on a labeled dataset which contains a large amount
of the pairs of measurement and truth image. In supervised learning, the perfor-
mance of the model will be significantly impacted by the characters of training
dataset, including the amount of training samples and the correlation between
the dataset and target image. In many scenarios, it is often very costly or in-
feasible to build a large-scale high-quality dataset closely related to the data for
processing, e.g . magnetic resonance imaging (MRI) and computed tomography
(CT) scanning for medical imaging. Certainly, there is a need to develop deep-
learning methods for image recovery that provide state-of-the-art performance,
while not requesting any additional training data.

In comparison to active ongoing studies on supervised learning methods,
there are few works on unsupervised deep learning for solving ill-posed linear
systems arising from imaging systems. Recently, image denoising, often served
as one sub-module in most image recovery tasks, saw rapid progresses along
this line. For example, deep image prior (DIP) [41], SURE-Net[39], and Self2Self
denoising [35]. Nevertheless, image denoising is very different from general image
recovery tasks. With A = I, image denoising is not an ill-posed problem, and its
focus is on noise suppression. In contrast, most image recovery problems require
solving an ill-posed linear inverse system. In addition to noise suppression, how to
resolve solution ambiguity is another main concern. It is non-trivial to generalize
these denoisers to solving ill-posed image recovery problems. One might use
these denoisers for post-processing to refine the estimate from an image recovery
method. However, this straightforward way does not work well in practice, as
the artifacts in estimates are rather different from measurement noises.

There is great practical value of a deep learning method for solving image
recovery problems without the need of constructing any training dataset. Thus,
this paper aims at developing a self-supervised deep learning method for image
recovery and applying it for image reconstruction in CS.

1.1 Main Idea

In our setting, there is no training dataset available for unsupervised learning,
and only the sensed measurement y and the sensing matrix A are given. It
is shown in DIP [41] that, if an early stop is adopted to avoid overfitting, a
convolutional neural network (CNN) tends to predict structured results even on
random input. Similar to DIP, we also learn a deep neural network (DNN) Fθ,
parameterized by weights θ, to predict x, by taking a random initialization ε0
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as the DNN input:

x = Fθ(ε0). (2)

As x,y are related by (2), we have then

y = AFθ(ε0) + n. (3)

The maximum likelihood estimate (MLE) for x is given by

min
θ

dist(AFθ(ε0),y), (4)

where dist(·, ·) is determined by the statistical model of the measurement noise,
e.g . ‖ · ‖22 for Gaussian white noise. As there is significant redundancy in the pa-
rameters θ, MLE is vulnerable to overfitting. The maximum A posterior (MAP)
estimation addresses such an issue by imposing prior knowledge on θ. Let p(θ)
denote the prior probability distribution of θ and consider Gaussian white noise
with noise variance σ̃2. Then, an MAP estimator is given by

min
θ

1

2σ̃2
‖AFθ(ε0)− y‖22 − log p(θ). (5)

It can be seen that an MAP estimator is the MLE estimator regularized by
the term relating to the prior of θ. Indeed, the early stopping used in DIP for
avoiding overfitting can be interpreted as adding regularization on the MLE with
some implicit prior. Other explicit priors are used as well in image classification,
e.g . the sum-of-squares-based weight decay regularization which assumes the
network weights to follow i.i.d. normal distribution [17]. While an early-stopping-
based regularization is used in DIP to avoid overfitting in the case A = I, the
matrix A in many image recovery problems is non-invertible, i.e., there are more
unknowns than independent linear equations. In such a case, an MAP estimator
with the form of (5) is sometimes not efficient enough to resolve the solution
ambiguity, arising from the non-trivial null space of A:

null(A) := {x 6= 0 : Ax = 0}. (6)

Aiming at addressing such ineffectiveness of the MLE/MAP estimator, this
paper proposed a self-supervised deep learning method for image recovery, which
is built on the framework of Bayesian Neural Network (BNN). Briefly, the weights
of a BNN are not deterministic, but random variables following certain probabil-
ity distributions. Instead of learning deterministic weights, we learn the param-
eters of the probability distributions of these random weights. The motivation
of our approach to tackle ill-posed image recovery problems comes from

(1) Model uncertainty (i.e. weight uncertainty) is helpful to correct the predic-
tion bias caused by the network architecture; see e.g . [3, 5, 20, 15].

(2) An ensemble of multiple realizations of a Bayesian model provides more
accurate inferences than a single deterministic model; see e.g . [2, 22].
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In a nutshell, from the perspective of Bayesian approximation, the proposed
BNN-based approach is about learning an approximation to the minimum mean
square error (MMSE) estimate defined by

x̂ := arg min
u

E(x|y)‖u−x‖22 = E(x|y)(x|y) =

∫
xp(x|y)dx =

∫
Fθ(ε0)p(θ|y)dθ,

(7)
where p(θ|y) is the posterior probability distribution function of θ. Considering
the number of weights and the non-linear structure of the network, the computa-
tion of p(θ|y) is intractable, and thus we use the joint distribution of independent
normal distributions q(θ|µ,σ) to approximate p(θ|y):

q(θ|µ,σ) : θi ∼ N (µi, σ
2
i ), θ = {θi}, µ = {µi}, σ = {σi}. (8)

The cost is defined by the KL divergence between q(θ|µ,σ) and p(θ|y):

(µ∗,σ∗) = arg min
µ,σ

DKL(q(θ|µ,σ)‖p(θ|y)). (9)

Once the model is trained with learned distribution parameters µ∗ and σ∗, we
have a prediction that approximates the MMSE estimate:

x∗ =

∫
Fθ(ε0)q(θ|µ∗,σ∗)dθ. (10)

See Section 3 for a more detailed discussion.

1.2 Main Contributions

Built on BNN, this paper proposed a self-supervised learning method for image
recovery and applied to solve image reconstruction in CS. The proposed method
is dataset-free without requiring any external training sample. The experiments
showed that the proposed approach not only significantly outperformed repre-
sentative traditional non-learning methods, but also is very competitive to su-
pervised deep learning methods with state-of-the-art performance. Indeed, the
proposed method has its advantages when the measurement is noisy.

The results of this paper have significance in both theoretical research and
practical applications. In the dataset-free setting, existing works showed that a
DNN can effectively learn meaningful image structures from a noisy image by
avoiding overfitting. However, for solving an ill-posed linear problem, the solu-
tion ambiguity requires new techniques to avoid more likely overfitting (with
perturbations from null space), when training a DNN using only the measure-
ment itself. This paper is the first work that showed the weight uncertainty
induced by BNN is effective to handle overfitting, and learning ensemble can
lead to accurate prediction. These results showed great potential of BNN in
solving ill-posed linear inverse problems arising from imaging systems.

CS is one powerful sensing modality for designing imaging systems with
faster sampling and lower energy consumption. It is about reconstructing sig-
nals/images, which are sparse in certain transform domain, using the measure-
ments much less than that traditional uniform sampling (see e.g . [13, 7]). It has
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received great attention in a wide range of applications, including medical imag-
ing [27, 16, 8] and computational photography [14, 1]. Image reconstruction is one
key module in CS-based imaging systems. Existing supervised learning methods
requires a large amount of training samples to provide state-of-the-art perfor-
mance, which often is a challenging task in practice. For instance, it takes a long
time to collect fully-sampled true images in MRI. The performance of the pro-
posed self-supervised method is very competitive to state-of-the-art supervised
learning method, while there is no any prerequisite on training samples. Such a
dataset-free setting makes the proposed method very appealing in practice.

2 Related Work

As this paper is about deep learning for image recovery, we only give a very brief
review on those non-learning methods and focus more on deep learning methods.

2.1 Regularization Methods With Pre-defined Image Prior

Regularization method is one widely-used technique for image recovery, which
imposes certain image prior on the image to resolve solution ambiguities. In
most regularization methods, the problem of image recovery is re-formulated
to some optimization problem, and its minimizer is defined as the estimate of
the truth. Many regularization methods have been proposed for solving vari-
ous image recovery problems, including CS image reconstruction. The `1-norm
relating regularization methods (e.g . [40, 6, 27, 23, 24]) assume the image gradi-
ents are sparse and use `1-norm relating regularizations for image recovery. The
non-local methods exploit the recurrence prior of local image patches for image
reconstruction. For instance, the low-rank regularization method [12] assumes
that the stack of matched patches is of low rank; the BM3D-based regulariza-
tion method [30, 10] employs the BM3D denoiser [9] for regularizing patch stacks.
Non-local wavelet frame method [36] regularizes the image in non-local wavelet
tight frame when recovering the image.

2.2 Supervised Deep Learning Methods

Recently, deep learning has became one powerful technique for solving ill-inverse
problems in imaging. Most existing such solutions are based on supervised learn-
ing, i.e., the DNN is trained on a dataset with the pairs of measurement/image.
Earlier works take an end-to-end approach that learns the direct map between
the measurement and the image, and the main difference among them is NN
architecture, e.g . image recovery [37, 43] and CS image reconstruction [32, 21].
As imaging physics encoded in A is not utilized in an end-to-end approach, their
performance is not significantly better than traditional regularization methods.

A more promising approach is the optimization unrolling with learnable prior.
The idea is unrolling the iterative scheme of a regularization method (e.g. `1-
norm relating method) and replacing the operations related to image prior by a



6 Pang et al.

CNN. For image deconvolution, Meinhardt et al . [29] unrolled the primal-dual
hybrid gradient method, Zhang et al . [46] unrolled a half-quadratic splitting
method, and Nan et al . [33] unrolled a VEM-based iterative scheme. Proximal
forward backward splitting scheme and Douglas-Rachford iteration are unrolled
in [11] and [26] for medical image reconstruction. ADMM-Net [44] unrolled the
alternating direction method of multipliers (ADMM) for MRI image reconstruc-
tion, and Liu et al . [26] proposed another scheme of the ADMM method with
different variable splitting scheme. For CS image reconstruction, ISTA-Net [45]
unrolled the iterative shrinkage-thresholding algorithm (ISTA). A scalable Lapla-
cian pyramid reconstructive adversarial network (LAPRAN) [42] was proposed
for CS image reconstruction which is adaptive to different CS ratios. In SC-
SNet [38], sensing and reconstruction of CS is integrated in one network.

2.3 Unsupervised Deep Learning Method for Image Denoising

There are few existing works on unsupervised deep learning methods for image
recovery problems. Most existing unsupervised deep learning methods focus on
image denoising, one sub-module often seen in image recovery. Based on the
observation that regular image structures appear before random patterns during
the training, Ulyanov et al . [41] proposed the deep image prior (DIP) method
for image denoising by using early stopping to avoid overfitting. By simplifying
a deep decoder, Heckel and Hand [19] proposed to use an under-parameterized
NN for avoiding overfitting. Based on Stein’s unbiased risk estimator (SURE),
Soltanayeva and Chun [39] proposed a regularization on NN weights to train a
denoising NN without training data. Quan et al . [35] proposed to use dropout
in both training and testing for learning a denoising NN without training data.

Image denoising does not need to consider the ill-posedness of the matrix
A. Thus, these denoising methods cannot be easily generalized to solve ill-posed
image recovery problems with good performance. Using the SURE denoiser,
Zhussip et al . [47] developed a SURE-AMP method for CS image reconstruction
based on the denoiser approximate message passing (AMP) framework. However,
its performance is not competitive to other supervised learning methods.

3 Main Body

In this section, we give a detailed discussion on the proposed self-supervised
BNN for CS image reconstruction. Let y denote the measurement, x denote the
image to predict, n denote the measurement noise, and they are related by

y = Ax+ n. (11)

Let Fθ denote the BNN whose weights θ = {θi} are random variables. Consider
a random initialization ε0. As shown in (7), provided the posterior probability
distribution function p(θ|y), the MMSE estimate of the truth x is given by

x̂ =

∫
Fθ(ε0)p(θ|y)dθ. (12)
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The amount of weights and complexity of a DNN makes p(θ|y) computationally
intractable. Thus, we take a Bayesian approximation approach to approximate
p(θ|y) by using the following independent joint normal distribution q(θ|µ,σ):

θi ∼ N (µi, σi), (13)

where µ = {µi},σ = {σi}, mean and s.t.d., are distribution parameters.

3.1 Training

The training of the BNN is done by minimizing the distance between the pre-
diction of the NN and the MMSE estimate in (12). As we use q(θ|µ,σ) defined
by (13) to approximate p(θ|y) in the MMSE estimate, we proposed to train the
BNN by minimizing the KL divergence between q(θ|µ,σ) and p(θ|y):

min
µ,σ

KL(q(θ|µ,σ)‖p(θ|y)). (14)

The minimum of the KL-divergence is difficult to find for general distributions.
Thus, we further simplify the optimization problem by assuming that the prior
distribution p(θ) can be well approximated by the joint distribution of i.i.d.
normal distribution with zero mean and standard deviation σ. Then, we have

Proposition 1. Suppose that the measurement noise n is Gaussian white noise

such that p(n) ∼
∏
i exp(

−n2
i

2σ̃2 ) and p(θ) ∼
∏
i exp(

−θ2
i

2σ2 ). Then, we have

minµ,σ KL(q(θ|µ,σ)‖p(θ|y))
⇔ minµ,σ Eθ∼q(θ|µ,σ)‖AFθ(ε0)− y‖22 + λ1(‖µ‖22 + ‖σ‖22)− λ2

∑
i log σi,

(15)
where λ1 = σ̃2/σ2 and λ2 = 2σ̃2.

Proof. See the supplementary for the detailed derivation.

For the data-dependent term Eθ∼q(θ|µ,σ)‖AFθ(ε0) − y‖22 in (15), we only
sample one instance of θ from the distribution q(θ|µ,σ) to approximate the ex-
pectation at each iteration for computational efficiency, which can be interpreted
as a variation of the stochastic gradient descent (SGD) algorithm. It is noted
that each σi denotes the standard deviation, which should be always positive.
Thus, we adopt the same re-parameterization trick as [5] that re-expresses σi by

σi = log(1 + exp(ρi)). (16)

Then, at every iteration of BNN training, we first randomly draw sample ε from
standard normal distribution N (0, 1) and then generate the network weights by

θi = µi + log(1 + exp(ρi)) · ε. (17)

More details on back-propagation for BNN can be found in the related materials.
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3.2 Testing

Once the BNN is trained by (15) with estimated distribution parameters µ∗

and σ∗, we have now an approximation to the posterior probability distribution
p(θ|y), i.e. q(θ|µ∗,σ∗). The approximate MMSE estimate is then given by

x∗ =

∫
Fθ(ε0)q(θ|µ∗,σ∗)dθ. (18)

Although both Fθ(ε0) and q(θ|µ∗,σ∗) have explicit forms, the above integration
is still intractable. Instead, we use Monte Carlo (MC) integration in practice

x∗ ≈ 1

T

T∑
j=1

Fθj (ε0), (19)

where {θj} are the realizations of random variable θ from the distribution
q(θ|µ∗,σ∗) and T is the total sampling number.

3.3 Network Structure

We adopt the decoder part of a plain encoder-decoder NN as our NN with the
following motivations. (a) Different from classic encoder-decoder network which
takes images as inputs, our network input is a random vector which is very
similar to the “code” generated by the encoder. Thus, the encoder does not see
its function in our setting. (b) Owing to the need to learn both µ and σ, the
parameter number of the BNN is twice as that of its deterministic counterpart.
Using only the decoder results in the reduction of model size, which is helpful
for avoiding overfitting and reducing computational cost.

The NN architecture is illustrated in Figure 1. To recover an image of size
H×W×C, the size of our NN input is H/32×W/32×128. The input is forwarded
into our decoder NN which contains five decoder blocks. Each of the first four
decoder blocks sequentially connects an upsampling layer with a scaling factor of
2, and two Bayesian convolution layers both of which have 128 channels and are
equipped with the leaky ReLU. The last decoder block contains an upsampling
layer with a scaling factor of 2, and three aforementioned Bayesian convolution
layers whose numbers of output channels are 64, 32, C with two LReLUs and one
Sigmoid layer followed respectively. A Bayesian convolution layer is a convolution
layer such that its weights are generated by (17) during training and testing.

4 Image Reconstruction in CS

In this section, we apply the proposed self-supervised image recovery method
to solve image reconstruction problem in CS. Mathematically, CS image recon-
struction can be formulated as solving an under-determined linear system:

y = Ax+ n, (20)
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Fig. 1: Structure of the BNN used in the proposed method.

where A ∈ RM×N (or CM×N ) denotes the sensing matrix with M � N , y
denotes the measurements collected by sensors, and n denotes noise. The ex-
periments are conducted on two settings of CS: one is the block-wise random
Gaussian CS problem in natural image acquisition, and the other is the random
Fourier downsampling CS problem in magnetic resonance imaging (MRI).

4.1 Implementation Details

Our method is implemented using Pytorch. For convolution layers, the kernel size
is 3×3 and both the stride and padding number is 1. The bi-linear interpolation
is used for upsampling layers. For leaky ReLUs, the negative slope is fixed to
0.01. The BNN parameter µ is initialized using the normal distribution as [18].
The initial value of ~ρ is drawn from the uniform distribution on [−5,−4]. The
model is trained by the Adam optimizer with fixed learning rate 10−4. The
parameter λ1 and λ2 in (15) are updated as follows:

λ1 = γ1(σ̃ + 10−3)2, λ2 = γ2(σ̃ + 10−3)2, (21)

with γ1 = 0.05 and γ2 = 0.25. The training procedure is stopped either the
maximum iteration number 105 is reached or the residual ‖AFθ(ε0)−y‖22/M is
less than (σ̃ + 10−3)2. The sampling number T used in the MC approximation
during prediction is set to 100. For comparison to other methods, we cite the
results directly from the literature if possible; otherwise, we run the codes from
the authors with the effort on the tuning-up of parameters to reproduce. If none
is available, we leave it blank in the table.

4.2 CS on Natural Image Acquisition

For the CS-based reconstruction on natural images, we follow the setting of one
recent deep-learning-based method, i.e. ISTA-Net [45]. Two datasets are used
for testing. One is “Set11” [45] with 11 images and the other is “BSD68” [28]
with 68 images. These images are cropped into non-overlapped blocks of size
33 × 33 to generate the measurements. The sensing matrix A of size M × N
(N = 1089) is first sampled from independent standard normal distribution
entry-wisely and then orthogonalized row-wisely. The CS ratio, i.e. M/N , is set
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to 4%, 10%, 25%, 40% respectively. In the noisy case, Gaussian white noise with
s.t.d. 10 are added to the measurements. See Table 1 for the computational times
of our method. The time varies for different settings as our method stops the
iteration when the residual meets tolerance.

Table 1: Computational time (in hours) of our method for processing images in
Set11 and Set68 in different settings, on a TITAN RTX GPU.

Dataset σ̃ 40% 25% 10% 4%

Set11
0 4.7 4.9 5.1 5.8
10 1.2 1.2 0.7 0.4

Dataset σ̃ 40% 25% 10% 4%

Set68
0 25.0 24.9 25.3 40.9
10 11.3 10.7 7.3 5.3

Table 2: Average PSNR(dB)/SSIM results of different methods on Set11 [45] and
BSD68 [28] in noiseless CS-based natural image reconstruction.

Dataset Method 40% 25% 10% 4%

Set11

TVAL3 30.52/0.90 26.44/0.80 21.35/0.59 17.45/0.41
DAMP 33.49/0.93 28.21/0.85 21.16/0.60 15.69/0.35

ReconNet -/- 25.54/0.76 22.68/0.64 19.98/0.53
ISTA 35.97/0.96 32.59/0.93 26.64/0.81 21.59/0.62
DIP 33.28/0.92 31.33/0.91 27.40/0.83 23.15/0.69
Ours 35.71/0.95 32.30/0.92 27.49/0.83 23.26/0.70

BSD68

TVAL3 29.39/0.86 26.48/0.77 22.49/0.58 19.10/0.42
DAMP 28.03/0.79 25.57/0.70 21.92/0.52 17.11/0.33

ReconNet -/- 25.31/0.71 23.16/0.60 21.28/0.50
ISTA 32.17/0.92 29.36/0.85 25.32/0.70 22.40/0.56
DIP 30.10/0.87 27.78/0.80 24.82/0.69 22.51/0.58
Ours 31.28/0.90 28.63/0.84 25.24/0.71 22.52/0.58

Four methods are included in the comparison, i.e. TVAL3 [23], D-AMP [31],
ReconNet [21] and ISTA [45]. The first two are regularization methods while
the last two are supervised deep learning methods. In addition, we also include
the DIP method [41], which is a recent unsupervised learning technique for
image recovery. There is no work that directly extends the original DIP for CS
image reconstruction. Thus, following the DIP for image super-resolution [41],
we implement a DIP-based CS reconstruction method by using the cost function

min
θ
‖AFθ(ε0)− y‖22. (22)

The NN used for CS image reconstruction is the same as that for super-resolution,
i.e. an encoder-decoder NN with skip-connections whose model size is compara-
ble to ours. The NN stops if it hits the maximum iteration number 2 × 104 or
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Table 3: Average PSNR(dB)/SSIM results of different methods on Set11 [45] and
BSD68 [28] in CS-based natural image reconstruction with noise level σ̃ = 10.

Dataset Method 40% 25% 10% 4%

Set11

TVAL3 26.66/0.72 24.75/0.67 21.02/0.54 17.28/0.39
DAMP 29.25/0.86 26.35/0.80 20.84/0.58 15.56/0.35

ReconNet -/- 24.36/0.66 22.00/0.57 19.62/0.49
ISTA 27.98/0.75 27.26/0.75 24.55/0.70 20.79/0.56
DIP 28.87/0.83 27.36/0.79 24.19/0.68 21.27/0.55
Ours 30.39/0.88 28.67/0.84 25.23/0.76 21.91/0.64

BSD68

TVAL3 26.15/0.68 24.80/0.63 22.03/0.52 18.93/0.39
DAMP 26.55/0.72 24.87/0.65 21.70/0.51 16.96/0.33

ReconNet -/- 24.12/0.61 22.36/0.53 20.77/0.46
ISTA 26.68/0.70 25.84/0.68 23.86/0.60 21.64/0.50
DIP 25.24/0.64 24.07/0.59 22.46/0.51 21.13/0.45
Ours 28.13/0.81 26.47/0.75 23.79/0.64 21.54/0.53

TVAL3 DAMP ReconNet ISTA DIP Ours

Fig. 2: Results of Gaussian CS image reconstruction using noisy input with ratio 25%.

the residual ‖AFθ(ε0)−y‖22/M reaches the same tolerance (σ̃+ 10−3)2 as ours.

See Table 2 and Table 3 for the quantitative results in both noiseless and
noisy cases. See Figure 2 for visual comparison of some examples. Generally,
our method outperformed two traditional non-learning methods (TVAL3 and
DAMP) by a large margin and the unsupervised deep-learning method DIP.
Even compared to the state-of-the-art (SOTA) supervised learning methods,
our method remains very competitive. The SOTA supervised learning methods
(e.g . ISTA) have small advantages when the measurements are noise-free and
ours has noticeable advantages when the measurements are noisy.
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Additionally, we compared the behavior of the BNN method to the DIP
method over iterations. We run 105 steps for both without early stopping on
a sample image. See Figure 3 for the trace of PSNR and residual value over
iteration. It can be seen that our method is more stable to the iteration number
than the DIP method in terms of PSNR value. Moreover, the residual of DIP de-
creases to zero eventually even in the presence of noise, which causes overfitting,
while the residual of our method does not vanish. This indicates the advantages
of our BNN over the DIP method when processing noisy measurements.

Fig. 3: PSNR (left) and residual(right) over iterations of DIP and our method with CS
ratio 25% and noise level σ̃ = 10 on the natural image “boats”.

4.3 CS Image Reconstruction in MRI

For CS in MRI, we use the down-sampled data in the k-space. The sensing
matrix A is the dot production of a random down-sampling mask M and the
discrete Fourier transform F . Following the setting in [26], the contaminated
measurements are generated by y = M � F (x + n1 + in2), where the entries
of n1 and n2 follow i.i.d. normal distribution of mean zero and s.t.d. σ̃. Then
the noise n in (20) takes the form of n = M � F (n1 + in2), which is com-
plex and also follows i.i.d. Gaussian distribution entry-wisely. The dataset is the
same as [26] with 21 MRI images from ADNI (Alzheimer’s Disease Neuroimag-
ing Initiative). We test three types of down-sampling masks of sampling ratio
25%, namely, 1D Gaussian mask, 2D Gaussian mask, and radial mask shown in
Figure 4. In the noisy case, Gaussian white noise with s.t.d. σ̃ as 10% of the
maximum pixel value of the MRI image are added to the down-sampled k-space
measurements. We compare the performance of our method with the simple zero-
filling method (ZF) [4], TV-regularization-based method [27], ADMM-Net [44],
the plug-in methods in [26] with three different networks: SCAE, SNLAE, and
GAN, and DIP [41]. See Table 4 for the quantitative comparison of different
method and Figure 5 for visual comparison on some sample images. It can be
seen that our method outperformed all the other methods in all settings, except
that DIP performs best in the noiseless case with 1D Gaussian mask.
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Table 4: Average PSNR(dB)/SSIM of the results of of different methods for CS-based
MRI reconstruction.

Method 1D Gaussian 2D Gaussian radial
σ̃ 0 10% 0 10% 0 10%

ZF 23.06/0.62 20.37/0.26 25.30/0.50 22.38/0.36 25.45/0.51 22.38/0.36
TV 25.77/0.76 22.25/0.37 32.79/0.90 24.92/0.49 32.32/0.90 25.16/0.49

ADMM-Net 28.99/0.87 22.98/0.44 34.97/0.94 25.84/0.60 33.67/0.93 25.96/0.61
SCAE 29.37/0.88 22.72/0.63 35.61/0.95 26.06/0.74 33.94/0.94 26.13/0.70

SNLAE 29.06/0.86 24.39/0.56 32.85/0.86 26.15/0.67 32.53/0.88 26.38/0.66
GAN 27.47/0.82 23.32/0.69 32.94/0.91 26.31/0.75 32.26/0.90 25.53/0.74
DIP 31.80/0.92 23.38/0.68 35.63/0.95 24.41/0.72 33.81/0.94 24.54/0.73
Ours 31.38/0.91 25.65/0.76 36.10/0.96 27.12/0.82 34.08/0.95 27.07/0.82

1D Gaussian 2D Gaussian radial

Fig. 4: Three different types of sampling masks of sample ratio 25%.

ZF TV ADMM-net SCAE SNLAE GAN DIP Ours

Fig. 5: MRI reconstruction results with 1D Gaussian mask of sampling ratio 25%; the
first row corresponds to the noiseless case and the second row noisy case.
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4.4 Ablation Study

Ablation study is conducted on CS reconstruction for image acquisition on the
dataset Set11 to show how much performance improvement weight uncertainty
of BNN can bring in. Two deterministic versions of the BNN are used for compar-
ison. One is the MLE estimator which trains the NN with deterministic weights:
minθ ‖AFθ(ε0) − y‖22. The other is the MAP estimator which trains the NN
with deterministic weights using (5) and a Gaussian prior on the weights:

min
θ
‖AFθ(ε0)− y‖22 − 2σ̃2 log(p(θ)) = ‖AFθ(ε0)− y‖22 + γσ̃2‖θ‖22, (23)

where γ is set to 0.05 after tuning-up and σ̃2 replaced with a small perturbation
(σ̃ + 10−3)2 as ours. All these two versions and ours use the same architecture
and stopping criteria. See Table 5 for the comparison. Clearly, the BNN with
random weights significantly outperformed the other two deterministic versions.
This clearly indicates the effectiveness of weight uncertainty in BNN on handling
the overfitting in our self-supervised learning methods for CS reconstruction.

Table 5: Average PSNR(dB)/SSIM results of ablation studies on natural image Set11.

σ̃ Method Weights 40% 25% 10% 4%

0
MLE Deterministic 32.34/0.92 29.43/0.87 25.13/0.75 21.13/0.61
MAP Deterministic 32.90/0.92 29.51/0.87 25.01/0.74 21.08/0.60
Ours Random 35.71/0.95 32.30/0.92 27.49/0.83 23.26/0.70

10
MLE Deterministic 28.87/0.84 27.24/0.80 23.92/0.70 20.35/0.56
MAP Deterministic 28.82/0.84 27.18/0.80 23.90/0.70 20.25/0.56
Ours Random 30.39/0.88 28.67/0.84 25.23/0.76 21.91/0.64

5 Conclusion

Built Bayesian neural network with random weights, this paper proposed a self-
supervised framework of deep learning with state-of-the-art performance for re-
constructing an image from fewer and noisy measurements in CS. The work in
this paper not only has its value in the applications of CS-based imaging systems,
but also provides a new insight for developing dataset-free un-supervised/self-
supervised deep learning methods for other image recovery problems.
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