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Abstract. Unsupervised domain adaptation (UDA) in the task of per-
son re-identification (re-ID) is highly challenging due to large domain di-
vergence and no class overlap between domains. Pseudo-label based self-
training is one of the representative techniques to address UDA. However,
label noise caused by unsupervised clustering is always a trouble to self-
training methods. To depress noises in pseudo-labels, this paper proposes
a Noise Resistible Mutual-Training (NRMT) method, which maintains
two networks during training to perform collaborative clustering and mu-
tual instance selection. On one hand, collaborative clustering eases the
fitting to noisy instances by allowing the two networks to use pseudo-
labels provided by each other as an additional supervision. On the other
hand, mutual instance selection further selects reliable and informative
instances for training according to the peer-confidence and relationship
disagreement of the networks. Extensive experiments demonstrate that
the proposed method outperforms the state-of-the-art UDA methods for
person re-ID.

Keywords: Unsupervised domain adaptation, person re-identification,
collaborative clustering, mutual instance selection

1 Introduction

Person re-identification (re-ID), which aims at retrieving images of the same per-
son from the database given a person image, has advanced considerably relying
on the power of deep learning technology in recent years [58, 50, 51, 34, 29, 32, 35,
48, 53, 19]. However, due to the problem of domain shift [17], the performance of
a deep re-ID model that performs well in a source domain may drop significantly
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Fig. 1. Overview of the proposed Noise Resistible Mutual-Training (NRMT). NRMT
maintains two networks during training, which performs collaborative clustering to ease
the fitting to noisy instances and mutual instance selection to further select reliable
and informative instances for the network update.

when applied to a target domain. Besides, it is usually not easy to obtain la-
bels of target data in practice, which hinders supervised fine-tuning of the deep
model on the target data.

To learn a deep re-ID model which generalizes well in the target domain
without using labels from this domain, unsupervised domain adaptation (UDA)
approaches are proposed given labeled source data and unlabeled target data [24,
56, 21, 45, 57, 5]. Different from the traditional setting of UDA which assumes
that the source and target domains share the same classes, UDA in person re-ID
is under an open-set scenario, i.e., the two domains have totally different person
identities (classes). Thus, it is a more challenging task.

Self-training is an effective strategy for UDA in person re-ID [8, 31, 49, 11],
which performs clustering with the pre-trained source model to assign pseudo-
labels to samples of the target dataset, then alternately updates the model with
the pseudo-labels on target data and re-assigns the labels with the updated
model to make the model adapt to the target data progressively. In the early
stage of training, pseudo-labels assigned by clustering usually contain lots of
noises due to the divergence between the source and target domains. The model
can correct some of them by learning from clean labels. However, as the number
of training iteration increases, some noisy instances are fitted by the model and
cannot be corrected anymore. These noises eventually harm the self-training
model performance on the target data.

In order to address the problem mentioned above, we propose Noise Resistible
Mutual-Training (NRMT) to effectively reduce the impact of noisy instances
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throughout the training process by leveraging dual networks with information
interaction. As shown in Fig. 1, NRMT maintains two networks during training,
which performs collaborative clustering to ease the fitting to noisy instances and
mutual instance selection to further select reliable and informative instances
for the network update. We argue that there always exist some noisy instances
that the single network cannot distinguish by itself in the iteration process of
self-training. Inspired by deep learning with noisy labels [22, 14], we use another
network with different learning ability to assist in correcting pseudo-label errors.

Specifically, for each iteration, collaborative clustering allows the two net-
works to not only learn by their respective pseudo-labels but also exploit the
ones provided by each other as an additional supervision. For one network, its
peer network can provide various labels for instances due to different learning
ability. Although there also exists noises in these labels, they still can be used
to reduce the effect of label errors of the single network because deep neural
networks tend to fit easy (more likely to be correct) instances first [1]. For each
mini-batch, mutual instance selection is introduced to further filter out noisy
instances while keeping informative instances. Here the reliability of a triplet
of instances is assessed for one network according to the prediction confidence
of its peer network on this triplet. Informative instances are also important for
improving the network performance. Thus, we further measure the amount of
information of the triplet by the relationship disagreement of the predictions
across the networks. Combining collaborative clustering at each iteration and
mutual instance selection within each mini-batch, the proposed NRMT can ef-
fectively depress noises in pseudo-labels and improve the performance of both
the two networks.

Our main contributions can be summarized as follows: 1) We present a novel
noise resistible mutual-training method for unsupervised domain adaptation in
person re-ID, which exploits dual network interaction to depress noises in pseudo-
labels of unsupervised iterative training on the target data. 2) We introduce a
collaborative clustering to ease the fitting to noisy instances by the memoriza-
tion effects of deep networks. 3) We propose a mutual instance selection based
on the peer-confidence and relationship disagreement of networks on triplets of
instances to select reliable and informative instances in a mini-batch.

2 Related Work

Unsupervised domain adaptation. Our work is related to unsupervised do-
main adaptation (UDA) [36, 3, 37, 28]. Some methods are proposed to match dis-
tributions between the source and target domains [20, 33]. Long et al. [20] embed
features of task-specific layers in a reproducing kernel Hilbert space to explic-
itly match the mean embeddings of different domain distributions. Sun et al. [33]
propose to learn a linear transformation that aligns the second-order statistics of
feature distributions between the two domains. There are also several works that
learn domain-invariant features [12, 37]. Ganin et al. [12] introduce a gradient
reversal layer to learn features invariant to domain via an adversarial loss. The
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aforementioned methods only consider the closed-set scenario. Recently, some
works are introduced to address the problem of open set domain adaptation [23,
27, 10], where several classes are unknown in the two domains (or in the target
domain). However, classes of the two domains are entirely different for UDA in
person re-ID, which presents a greater challenge.

UDA for person re-ID. There are many research works that have been
proposed for unsupervised cross-domain person re-ID [24, 38, 56, 31, 30, 57, 41,
46, 40, 42, 5, 25, 44]. Some of them focus on image-level domain invariance. Wei
et al. [39] propose a person transfer generative adversarial network to bridge
the domain gap, which considers the style transfer and person identity keeping.
Deng et al. [7] generate target image samples through the coordination between
a CycleGAN and an Siamese network. Several works also try to improve the
model generalization from the view of feature learning. Wang et al. [38] es-
tablish an identity-discriminative and attribute-sensitive feature representation
space transferable to any new (unseen) target domain. Qi et al. [25] develop a
camera-aware domain adaptation to reduce the discrepancy across sub-domains
in cameras and utilize the temporal continuity in each camera to provide dis-
criminative information.

Recently, some methods are developed based on the self-training framework.
Fu et al. [11] present a self-similarity grouping to explore the potential sim-
ilarities by both global and local appearance cues. Zhang et al. [49] propose
a self-training method with progressive augmentation framework to offer com-
plementary data information by different learning strategies for self-training. In
contrast, our method provides complementary information through dual network
interaction. Ge et al. [13] present a mutual mean-teaching framework to softly
refine the pseudo-labels in the target domain. Note that our method and [13]
are complementary and can be combined.

Deep learning with noisy labels. There exist several works that aim at
improving the training of deep models with noisy labels. Decoupling [22] trains
two networks simultaneously, and then updates models only using the instances
that have different predictions from these two networks. Co-teaching [14] pro-
poses to select small-loss instances of each network as the useful knowledge and
transfer such useful instances to its peer network for the further training. Yu
et al. [47] combine the disagreement strategy with Co-teaching, which trains
two deep neural networks with the disagreement-update step (data update) and
the cross-update step (parameters update). These methods mainly focus on the
classification problem, which cannot be directly applied to the metric learning
problem in our task.

3 Our Method

Given a labeled training dataset {Xs,Ys} from the source domain and an un-
labeled training dataset Xt from the target domain where identities of persons
are different from the ones in the source domain, we aim to learn discriminative
feature representations for target testing dataset. In this section, we present the
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proposed Noise Resistible Mutual-Training (NRMT) method, which incorporates
the interaction of dual networks to depress noises in pseudo-labels produced by
unsupervised clustering in a self-training process. Now, we proceed to explain
each component of our NRMT in details.

3.1 Self-Training with Clustering

Since the ground truth labels of the target person images are not available,
one way to fine-tune the target model is to consider the target labels as latent
variables that can be inferred in the learning process. Thus, a typical self-training
framework for unsupervised domain adaptation aims to minimize the following
loss function:

min
Ŷt,W

L(Ŷt, f(Xt; W)), (1)

where Ŷt denotes the estimated target labels, Xt is the set of target images and
f denotes the target model parameterized by W.

In the case of person re-ID, source and target domains do not share the com-
mon label space. Thus, one cannot directly apply the classifier trained on the
source dataset to estimate the target identities. Similar with [31, 8], we perform
clustering on CNN features to assign pseudo-labels to instances with the most
confident predictions and assume that they are mostly correct. Once the target
model is updated with these pseudo-labels, the remaining instances with less
confidence are continuously explored by the model adapted better to the target
domain. Therefore, to minimize the loss function in Eq. (1), we firstly initialize
the model parameters W on the source data {Xs,Ys} and then apply an alter-
nating block coordinate descent algorithm: 1) Fix W and minimize the loss w.r.t
Ŷt through clustering. 2) Fix Ŷt and optimize the loss w.r.t W by stochastic
gradient descent.

3.2 Mutual-Training with Collaborative Clustering

The problem of self-training based models [31, 8] is that the quality (correct-
ness) of pseudo-labels generated by unsupervised clustering on the target data
heavily affects the model performance. Although the deep learning model in self-
training can avoid fitting noisy instances in the early stage of training due to the
memorization effects of deep neural networks [1] and improve the performance
progressively as more and more instances with high confidence are explored,
there inevitably exist some label errors that cannot be corrected and would be
overfitted as the training proceeds. These accumulated errors eventually impede
the performance growth.

In order to reduce the label error accumulation throughout the training pro-
cess, the proposed NRMT maintains two neural networks f parameterized by
Wf and g parameterized by Wg simultaneously during training, and allows them
to share clustering information by collaborative clustering at each iteration to
reduce the effect of their respective label errors.
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To make f and g have different learning abilities, we use different random
seeds to pre-train f and g on the source dataset Xs with labels Ys by the triplet
loss and the Softmax loss [31]. Here f and g have the same network architecture
to facilitate the deployment. Because deep neural networks are highly non-convex
models, different initializations can still lead to different local optima even with
the same architecture and optimization algorithm [14]. Then, we use the pre-
trained f and g to extract features on the target dataset Xt and obtain two sets of
pseudo-labels Ŷt

f and Ŷt
g through applying clustering to the features. Since the

target domain has classes different from the source domain, we drop the Softmax
loss and fine-tune the networks on the target data only using the triplet loss with
the pseudo-labels. To share clustering information, f and g consider both their
own pseudo-labels and the ones of their peer networks. Thus, we have a joint
loss function for each network:

Lf = Ltri(Ŷ
t
f , f(Xt; Wf )) + Ltri(Ŷ

t
g, f(Xt; Wf )), (2)

Lg = Ltri(Ŷ
t
g, g(Xt; Wg)) + Ltri(Ŷ

t
f , g(Xt; Wg)), (3)

where Ltri is the batch-sampling triplet loss [16].
Different from self-training where the network assigns new pseudo-labels to

the training instances at each iteration only according to its own parameter
update, in NRMT, to make the learning more robust, the two networks f and
g collaboratively assign pseudo-labels, i.e., each instance has two pseudo-labels
from f and g, respectively. The study on memorization in deep networks [1]
suggests that deep networks tend to prioritize learning easy patterns. Usually
noisy instances caused by clustering are relatively hard examples, thus if one
instance is assigned two labels, the networks will fit the clean (easy) one first to
become robust and the error may be eliminated at the next iteration. The joint
loss functions in Eq. (2) and Eq. (3) are similar to Co-training [2] where classifiers
are trained on two views (two independent sets of features). However, here we
have two networks but only have a single view, and we utilize the memorization
effect of deep networks to handle the error in labels.

3.3 Mutual Instance Selection

Although collaborative clustering across networks is able to ease the fitting to
noisy instances for each iteration, these noisy instances still have impact on the
network training in a mini-batch, especially in the advanced stage of training. To
further select reliable and informative instances in a mini-batch, we introduce a
mutual instance selection strategy by considering both the peer-confidence and
relationship disagreement of the two networks.

Reliable Instance Selection by Peer-Confidence. In order to select reliable
instances for training, we consider using the prediction confidence of the peer
network to measure the reliability of instances for one network. We argue that
in the metric learning, the relationship of one pair of instances with other pairs



Noise Resistible Mutual-Training 7

in the feature space can provide more information about the network prediction
than the distance between one instance and another one. Thus, we compute the
prediction confidence based on the relationship of a triplet of instances.

Given an instance x, its corresponding positive instance xp and negative in-
stance xn from a mini-batch, we encode the relationship of the triplet {x, xp, xn}
by the difference between the Euclidean distances of the positive and negative
pairs in the feature space:

D(x, xp, xn; f) = ||f(x)− f(xp)||2 − ||f(x)− f(xn)||2, (4)

D(x, xp, xn; g) = ||g(x)− g(xp)||2 − ||g(x)− g(xn)||2, (5)

where f(x) and g(x) is the features extracted by the networks f and g, respec-
tively. The smaller the difference is, the higher the confidence is. If the difference
of the peer network g (resp. f) of f (resp. g) for the triplet {x, xp, xn} is smaller
than a threshold Tc:

D(x, xp, xn; g) < Tc, (6)

resp. D(x, xp, xn; f) < Tc, (7)

we call {x, xp, xn} as a peer-confident triplet of instances for f (resp. g) and
use this peer-confident triplet to update f (resp. g). Because the two networks
have different learning abilities, we expect that they can filter out various noisy
instances [14] to make up for each other’s mistakes.

Informative Instance Selection by Relationship Disagreement. The
peer-confidence of the network can pick up reliable (clean) instances in a mini-
batch, but these instances usually contain lots of easy instances which provide
limited information for the network performance improvement. To further select
more informative instances, we propose to use the relationship disagreement be-
tween one network and its peer network to measure the amount of information
on the basis of the peer-confidence.

Similar to the peer-confidence, we compute the relationship disagreement on
a triplet of instances. We first define the prediction inconsistency of the two
networks f and g combined with Eq. (4) and Eq. (5) as:

I(x, xp, xn; f, g) = D(x, xp, xn; f)−D(x, xp, xn; g). (8)

Larger absolute value of the inconsistency indicates that the triplet of instances
has larger amount of information. It can be considered that there is the rela-
tionship disagreement between the predictions of two networks for the triplet
{x, xp, xn} if the absolute value of the prediction inconsistency is larger than a
threshold Td:

|I(x, xp, xn; f, g)| > Td (9)

The networks are only updated on the mini-batch data with the relationship
disagreement. Furthermore, when combined with the peer-confidence, Eq. (9)
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Fig. 2. Three types of triplets of instances obtained by the proposed mutual instance
selection strategy. Different shapes (circle, triangle and square) denote different ground
truth class labels and different colors (blue, green and yellow) denote different pseudo-
labels. (a) Noisy triplet of instances obtained by D(x, xp, xn; g) ≥ Tc; (b) Reliable but
easy triplet of instance obtained by D(x, xp, xn; g) < Tc but I(x, xp, xn; f, g) ≤ Td;
(c) Reliable and informative triplet of instances obtained by D(x, xp, xn; g) < Tc and
I(x, xp, xn; f, g) > Td. (Best viewed in color).

can be rewritten with the absolute symbol removed:

I(x, xp, xn; f, g) > Td, (10)

I(x, xp, xn; g, f) > Td. (11)

The intuition is that, for the item within the absolute symbol in Eq. (9) which
is smaller than −Td, because Td is not less than zero and {x, xp, xn} meets the
peer-confidence condition in Eq. (6) or Eq. (7), we have

D(x, xp, xn; f) < D(x, xp, xn; g)− Td < D(x, xp, xn; g) < Tc, (12)

or D(x, xp, xn; g) < D(x, xp, xn; f)− Td < D(x, xp, xn; f) < Tc. (13)

As a result, when Tc is set to a proper small value, for the network f or g, the
triplet {x, xp, xn} is actually an easy instance that can be ignored during train-
ing. Fig. 2 illustrates three types of triplets of instances obtained by the proposed
mutual instance selection strategy, where we consider instances selection for the
network f according to the prediction of the network g.

For the clarity, the training process of NRMT is summarized in Algorithm 1.
It is worth noting that we only maintain two networks in the stage of training
and the performance of the two networks can be aligned to the similar level via
the information interaction. Thus, we can use any one of the two networks for
the deployment in practice.
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Algorithm 1 Noise Resistible Mutual-Training (NRMT)

Input: Deep networks f and g, labeled source training dataset {Xs,Ys}, unlabeled
target training dataset Xt, maximal number of updates Nmax, maximal number of
iterations Imax.

Output: f and g.
1: Pre-train f and g on {Xs,Ys} with different random seeds, respectively;
2: for I = 1 to Imax do
3: Extract features f(x) and g(x) on Xt;
4: Perform clustering on f(x) and g(x) to generate pseudo-labels Ŷt

f and Ŷt
g;

5: for N = 1 to Nmax do
6: Sample mini-batches M(Ŷt

f ) and M(Ŷt
g) from Xt with Ŷt

f and Ŷt
g;

7: Obtain Mf (Ŷt
f ) and Mf (Ŷt

g) by Eq. (6) and Eq. (10);

8: Obtain Mg(Ŷt
f ) and Mg(Ŷt

g) by Eq. (7) and Eq. (11);

9: Update f with both Mf (Ŷt
f ) and Mf (Ŷt

g) as in Eq. (2);

10: Update g with both Mg(Ŷt
f ) and Mg(Ŷt

g) as in Eq. (3);
11: end for
12: end for

4 Experiments

In this section, we evaluate the proposed NRMT using three large-scale person re-
ID datasets, i.e., Market-1501 [52], DukeMTMC-reID [54, 26] and MSMT17 [39]
and the performance evaluations are presented in term of Cumulative Matching
Characteristic (CMC) and mean Average Precision (mAP) under the single-
query setting.

4.1 Datasets

Market-1501 [52] contains 32,668 labeled images of 1,501 identities. 12,936
images of 751 identities form the training set. 3,368 query images from the other
750 identities and 19,732 gallery images (with 2,793 distractors) are used as the
test set. The bounding boxes of persons are generated by Deformable Part Model
(DPM) [9]. DukeMTMC-reID [54, 26] includes 36,411 labeled images of 1,404
identities. 702 identities are randomly selected for training and the rest is used
for testing. There are 16,522 training images, 2,228 query images and 17,661
gallery images. MSMT17 [39] is the largest re-ID dataset consisting of 126,441
bounding boxes of 4,101 identities taken by 12 outdoor and 3 indoor cameras.
32,621 images of 1,041 identities are used for training.

4.2 Implementation Details

We adopt ResNet-50 [15] as the architectures of the two networks and initialize
them with the parameters pre-trained on ImageNet [6]. All images are resized to
256×128. Random horizontal flipping and random erasing [55] are employed for
training data augmentation. We use the Softmax and triplet losses to pre-train
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Table 1. Evaluation on different values of the threshold Tc. Results of the two networks
f and g are reported, respectively.

Tc
Duke → Market Market → Duke

mAP R1 mAP R1

0 71.0/70.2 86.9/86.5 61.1/60.9 76.9/76.6
0.5 71.5/70.6 87.3/87.0 61.7/61.4 77.5/77.0
1.0 72.2/71.1 88.0/87.5 62.3/62.0 78.1/77.5
1.5 72.0/71.0 87.7/87.3 62.0/61.8 78.0/77.2
2.0 71.7/70.7 87.4/87.0 61.7/61.5 77.7/77.0

Table 2. Evaluation on different values of the threshold Td. Results of the two networks
f and g are reported, respectively.

Td
Duke → Market Market → Duke

mAP R1 mAP R1

0.3 71.2/70.4 87.3/86.8 61.3/61.0 77.0/76.7
0.4 71.6/70.7 87.6/87.2 61.8/61.5 77.5/77.1
0.5 72.2/71.1 88.0/87.5 62.3/62.0 78.1/77.5
0.6 72.0/70.8 87.7/87.3 62.1/61.7 77.8/77.3
0.7 71.5/70.4 87.3/86.9 61.6/61.3 77.2/76.8

the two networks on the source dataset with different random seeds, respectively.
The margin m in the triplet loss is 0.5. For each mini-batch, we randomly sample
32 identities and 4 images per identity. The SGD optimizer with a momentum
of 0.9 is used to train the networks and the learning rate is 6e-5.

The peer-confidence threshold Tc is set to 1.0 and the relationship disagree-
ment threshold Td is set to 0.5. The HDBSCAN clustering algorithm [4] is
adopted to produce pseudo-labels for each iteration, which does not require the
number of clusters as prior parameter. The number of minimum samples for each
cluster is set to 8. The maximal number of iterations is 30. At the first half of
the iterative process, we train the networks only using collaborative clustering.
Then we add mutual instance selection to further select clean and informative
data in mini-batches for the network update.

4.3 Parameter Analysis

We first study impacts of some important parameter settings in the proposed
NRMT, including the peer-confidence threshold Tc, the relationship disagree-
ment threshold Td and the number of minimum samples in the HDBSCAN clus-
tering algorithm.

Peer-confidence threshold Tc. To analyze the impact of Tc in Eq. (6)
and Eq. (7), we fix the relationship disagreement threshold Td = 0.5 in all
experiments. The results are listed in Table 1. We can observe that a proper
value of Tc is important for NRMT to filter out noisy instances, which provides
a reasonable assessment of the noise confidence. The best performance is achieved
when Tc is set to 1.0.
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Table 3. Evaluation on different numbers of the minimum samples for each cluster in
HDBSCAN. Results of the two networks f and g are reported, respectively.

Min. Samp.
Duke → Market Market → Duke

mAP R1 mAP R1

6 71.5/70.7 86.8/86.5 61.7/61.6 77.1/77.0
8 72.2/71.1 88.0/87.5 62.3/62.0 78.1/77.5
10 71.9/71.1 87.5/87.1 61.8/61.4 77.7/ 76.9

Table 4. Performance evaluation of components in the proposed NRMT on Market-
1501 and DukeMTMC-reID. Separate Training: Train the two networks separately.
CC: Collaborative clustering. SC: Instance selection by the peer-confidence. SD: In-
stance selection by the relationship disagreement. Results of the two networks f and g
are reported, respectively.

Methods
DukeMTMC-reID → Market-1501

mAP R1 R5 R10

Direct Transfer 33.0/32.3 63.3/62.3 77.2/76.5 82.3/81.9
Separate Training 54.2/53.0 76.4/75.6 88.3/87.8 92.2/91.8

Ours w/ CC 68.9/68.2 85.9/85.5 94.0/94.1 96.2/96.1
Ours w/ CC+SC 70.9/70.1 86.8/86.3 94.3/94.2 96.3/96.1
Ours w/ CC+SC+SD 72.2/71.1 88.0/87.5 94.7/94.5 96.5/96.4

Methods
Market-1501 → DukeMTMC-reID

mAP R1 R5 R10

Direct Transfer 30.2/30.2 47.3/46.5 61.9/61.8 68.2/68.1
Separate Training 48.7/48.2 67.2/66.5 80.3/80.0 84.3/84.1

Ours w/ CC 59.1/58.7 75.8/75.4 85.5/85.2 88.2/88.3
Ours w/ CC+SC 60.6/60.2 76.6/76.3 86.1/85.9 88.9/88.7
Ours w/ CC+SC+SD 62.3/62.0 78.1/77.5 87.0/86.8 89.7/89.2

Relationship disagreement threshold Td. We also conduct experiments
to investigate the impact of Td in Eq. (10) and Eq. (11). In all experiments,
we fix the peer-confidence threshold Tc = 1.0. As reported in Table 2, when
Td = 0.5, we can obtain the best results. When Td is set to a larger value, fewer
instances are selected for update, which is likely to discard instances that are
actually informative. Too small values of Td will allow most of the instances to be
involved in update, which may contain too many easy instance and thus cannot
provide effective information for improving the network.

Number of minimum samples. To evaluate the influence of the number
of minimum samples in HDBSCAN, we report the results of {6, 8, 10} minimum
samples in Table 3. As we can see, the number 8 yields the superior performance.
Note that our NRMT is not very sensitive to this prior clustering parameter.

4.4 Ablation Study

We further validate the effectiveness of each component in the proposed NRMT,
including collaborative clustering, instance selection by the peer-confidence and



12 F. Zhao et al.

0 5 10 15 20 25 30
Number of iterations

40

50

60

70

80

Ac
cu

ra
cy

 (%
) o

f p
se

ud
o-

la
be

ls 
of

 f

Ours w/ CC
Separate Training

0 5 10 15 20 25 30
Number of iterations

40

50

60

70

80

Ac
cu

ra
cy

 (%
) o

f p
se

ud
o-

la
be

ls 
of

 g

Ours w/ CC
Separate Training

Fig. 3. Comparison on the accuracy of pseudo-labels in the iteration process for
DukeMTMC-reID → Market-1501.

relationship disagreement on Market-1501 and DukeMTMC-reID. The results
are shown in Table 4. As we can see, by sharing clustering information between
two networks on the whole dataset, “Ours w/ CC” improves the performance of
both the two networks compared with “Separate Training”. This demonstrates
that the collaborative clustering is able to ease the fitting to noisy instances
caused by unsupervised clustering by exploiting different learning abilities of two
networks and the memorization effect of deep networks. “Ours w/ CC+SC” and
“Ours w/ CC+SC+SD” further obtain better results by prediction information
interaction between the networks in mini-batches, which can pick up clean and
informative instances to update the networks.

To explore the ability of correcting label errors of collaborative clustering,
Fig. 3 illustrates the accuracy of pseudo-labels generated by clustering in the iter-
ation process. It can be seen that the pseudo-label accuracy of the two networks
f and g trained with collaborative clustering are both improved significantly
compared with the networks trained separately. This shows that sharing clus-
tering information between two networks on the whole dataset can effectively
correct label errors at each iteration and reduce the accumulation of noises dur-
ing training.

In Fig. 4, we show some examples of clean and informative, noisy and easy
triplets of instances obtained by the proposed mutual instance selection strategy.
We can observe that the clean and informative triplets selected by our strategy
contains negative examples with similar appearances and positive examples with
large variations. Meanwhile, our strategy can filter out not only noisy triplets
but also easy triplets. This indicates that our strategy is able to act as a robust
online hard example mining for the triplet loss in training with noisy labels.

4.5 Comparison with State-of-the-art Methods

In this section, we compare the proposed NRMT with the state-of-the-art un-
supervised person re-ID methods on the transfers between DukeMTMC-reID and
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(a) Clean and informative triplets of instances

(b) Nosiy triplets of instances

(c) Easy triplets of instances

Fig. 4. Examples of (a) clean and informative, (b) noisy and (c) easy triplets of in-
stances obtained by the proposed mutual instance selection strategy in a mini-batch.
Only the clean and informative triplets are used for the network update. For each
triplet, the first two ones are positive examples and the last one is negative example.

Market-1501 and the transfers from DukeMTMC-reID/Market-1501 to MSMT17.
Here we reports the averaged performance of the two networks f and g in NRMT.

Table 5 shows the results on the transfers between DukeMTMC-reID and
Market-1501. We first compare the proposed NRMT with two hand-crafted fea-
tures, i.e., LOMO [18] and Bag-of-Words (BoW) [52]. We can see that deep
learning features can significantly improve the performance. Three unsupervised
methods including UMDL [24], PUL [8] and DECAMEL [45] are compared. Our
method surpasses these methods by a large margin by adapting to the target
data from the source data progressively. We also compare with the unsuper-
vised domain adaptation methods, including UDAP [31], MAR [46], ECN [57],
PCB-R-PAST [49], SSG [11], ACT [43], etc. our method still achieves the best
performance. Especially, our NRMT outperforms PCB-R-PAST [49], which also
focuses on the improvement of label quality, by 17.1%/9.4% on mAP/Rank-1
accuracy for DukeMTMC-reID → Market-1501 and by 7.9%/5.4% for Market-
1501 → DukeMTMC-reID. This demonstrates the effectiveness of information
interactions between dual networks for noise reduction. Moreover, our NRMT
also exceeds the second best method ACT [43] by clear margins.

We also evaluate our NRMT on transfers from DukeMTMC-reID and Market-
1501 to MSMT17 in Table 6 . The results obtained by NRMT are 20.6%/45.2%
on mAP/R1 accuracy for DukeMTMC-reID → MSMT17 and 19.8%/43.7% for
Market-1501→MSMT17, which all exceed the second best method, i.e., SSG [11].
This further demonstrates the superiority of our NRMT on the large-scale dataset.
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Table 5. Comparison with the state-of-the-art UDA methods on Market-1501 and
DukeMTMC-reID. The averaged performance of the two networks f and g is reported.

Methods
Market-1501 DukeMTMC-reID

mAP R1 R5 R10 mAP R1 R5 R10

LOMO [18] 8.0 27.2 41.6 49.1 4.8 12.3 21.3 26.6
BoW [52] 14.8 35.8 52.4 60.3 8.3 17.1 28.8 34.9

UMDL [24] 12.4 34.5 52.6 59.6 7.3 18.5 31.4 37.6
PUL [8] 20.5 45.5 60.7 66.7 16.4 30.0 43.4 48.5
DECAMEL [45] 32.4 60.2 - - - - - -

PTGAN [39] - 38.6 - 66.1 - 27.4 - 50.7
SPGAN+LMP [7] 26.7 57.7 75.8 82.4 26.2 46.4 62.3 68.0
TJ-AIDL [38] 26.5 58.2 74.8 81.1 23.0 44.3 59.6 65.0
HHL [56] 31.4 62.2 78.8 84.0 27.2 46.9 61.0 66.7
ARN [17] 39.4 70.3 80.4 86.3 33.4 60.2 73.9 79.5
UDAP [31] 53.7 75.8 89.5 93.2 49.0 68.4 80.1 83.5
MAR [46] 40.0 67.7 81.9 - 48.0 67.1 79.8 -
ECN [57] 43.0 75.1 87.6 91.6 40.4 63.3 75.8 80.4
CR-GAN+LMP [5] 33.2 64.5 79.8 85.0 33.3 56.0 70.5 74.6
PCB-R-PAST [49] 54.6 78.4 - - 54.3 72.4 - -
SSG [11] 58.3 80.0 90.0 92.4 53.4 73.0 80.6 83.2
ACT [43] 60.6 80.5 - - 54.5 72.4 - -

NRMT 71.7 87.8 94.6 96.5 62.2 77.8 86.9 89.5

Table 6. Comparison with the state-of-the-arts on transfers from DukeMTMC-reID
and Market-1501 to MSMT17.

Methods
DukeMTMC-reID → MSMT17 Market-1501 → MSMT17
mAP R1 R5 R10 mAP R1 R5 R10

PTGAN [39] 3.3 11.8 - 27.4 2.9 10.2 - 24.4
ECN [57] 10.2 30.2 41.5 46.8 8.5 25.3 36.3 42.1
SSG [11] 13.3 32.2 - 51.2 13.2 31.6 - 49.6

NRMT 20.6 45.2 57.8 63.3 19.8 43.7 56.5 62.2

5 Conclusions

This paper proposed a noise resistible mutual-training method (NRMT) for un-
supervised domain adaptation (UDA) in person re-ID to effectively depress label
noises in a self-training process. In NRMT, two networks are maintained during
training. For each iteration, these two networks share clustering information to
ease the fitting to noisy instances. For each mini-batch update, the networks also
exchange prediction information to further select both reliable and informative
instances. Extensive experimental results demonstrate that the proposed NRMT
achieves the state-of-the-art performance for UDA in person re-ID.
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