DPDist : Comparing Point Clouds Using Deep Point Cloud Distance 17
Supplementary Material

5.1 Training details

The SPD network is trained with a batch size of 16 for 1000 epochs, using
the Adam optimizer, a learning rate of 0.001 with an exponential decay rate
of 0.5 every 3 x 10° steps, and batch normalization. Training the SPD network
takes approximately 3 hours (N = 256), and using DPDist to measure the
distance between point clouds takes 6ms. All timing approximations were tested
on NVIDIA GeForce RTX 2080 Ti GPU and an Intel Core i9 CPU at 3.60GHz.

5.2 Ablation study

We explore the influence of the 3DmFV parameters (number of local and global
Gaussians) on our method’s performance. Given an input point cloud of 512
points, we reconstruct a mesh from the learned implicit function representation
using Marching cubes [12]. We then sample 10k points from the reconstructed
mesh and compare them to 10k points sampled on the original CAD model
using Chamfer L1 and normal consistency as specified in [14]. For each point
from one set, we find it’s nearest neighbor in the second set. Then we compute
the euclidean distances and the normal consistency between them and average
over all points in the set. We then alternate sets and average between the two
results. We evaluate our results on ModelNet40 datase’s ”chair” category.

In the first experiment we explore the influence of the global Gaussian grid
size. We use a local grid size of 3% and a global size of 43, 83, and 162. The results
in Table 1 are consistent with the thorough hyper parameter study conducted
in [3] and show that 8 Gaussian grid is adequate, balancing the computation-
accuracy trade-off.

In the second experiment we explore the influence of the local Gaussian grid
size. We use a global grid size of 8 and a local size of 12,33, and 53. The results
in Table 2 show that the results between 3% and 5% are comparable with a slight
advantage to 33. However, this is most likely attributed to the small size of the
dataset and we chose to use 5% in our experiments, maintaining a higher network
capacity.

Number of Gaussian 4x4x4 8x8x38 16 x 16 x 16
Chamfer L1 | 0.130189 0.071805 0.058943
Normal Counsistency T [0.718058 0.794560 0.809462
Table 1: Comparing global Gaussian grid sizes using Chamfer L1 and Normal
consistency evaluation metrics. This experiment was done with a local patch size
of 33.

18 Dahlia Urbach, Yizhak Ben-Shabat, and Michael Lindenbaum

Local Patch Size I1x1x1 3 x3x3 5X5x%X5H
Chamfer L1 | 0.103590 0.071805 0.072714
Normal Consistency T [0.693455 0.794560 0.739863
Table 2: Comparing local patch Gaussian grid sizes using Chamfer L1 and Nor-
mal consistency evaluation metrics. This experiment was done with a global
Gaussian grid size of 83.

5.3 Training Auto-Encoders

In this experiment we compare DPDist to CD as loss function for training a
simple auto-encoder. We use a PointNet encoder [16] and three fully connected
layers with sizes of 1024, 1024, N * 3 as the decoder (N is the number of output
points). The loss for the auto-encoder is defined as the similarity between the
output point cloud to the input point cloud. Previous works [6,1,24,7,11,25] use
the CD or EMD loss between the point clouds.

Fig. 9 shows that when using DPDist, the generated point clouds suffer from
high non-uniformity. Essentially, multiple points are able to coincide and satisfy
the objective function. This flaw is a direct consequence of the main strength
of the proposed method: the sampling invariance property. This property makes
it robust to changes in sampling and replaces the comparison between sam-
ples to comparison between underlying surfaces. Our method is robust for both
non-uniform and sparse sampling, and this is the reason it is effective in the reg-
istration task. In essence, there is a trade-off between sampling invariance and
generation coverage. The focus of this paper is comparing between point clouds,
therefore exploring modifications required for point generation is left for future
work.

5.4 Real-world data

In this experiment, we use the Sydney Urban dataset, which contains LiDAR
scans of outdoor objects. Because this dataset does not provide a ground truth
surface, we use an equivalent class in the ModelNet dataset for training. We
conduct the Translation detection test (Sec 4.2) on the car class and compare
DPDist performance to the other measures. Remarkably, although the training
was done on synthetic data, our method outperforms CD, EMD, and Hausdorff
and is comparable to partial Hausdorff. Table 3 reports the transformation dis-
tance where the method reached a minimum (i.e. lower is better). These results
align with our CAD experiments.

Note that we train our method on synthetic data without data corruptions
such as noise and occlusions. Further improvement may be achieved by adding
more realistic scenarios into the training data or by training the proposed method
directly on data collected by real-world sensors.

DPDist : Comparing Point Clouds Using Deep Point Cloud Distance

Input

Chamfer

19

Fig. 9: Point cloud auto-encoding results. We can see the auto-encoder output
results when training with DPDist (middle), and Chamfer (right) distance loss
for N = 128. While Chamfer distance provides better coverage, our method gives
a sparser output due to its sampling invariance property.

Method |Ours CD EMD Hausdorff |PH9 PHS8 PH5
Mean 0.01385 10.02879 0.02381 |0.03201 |0.01091 |0.00863 |0.02807
Std. 0.01061 |0.01119 |0.01335 |0.01391 |0.00740 |0.00752 |0.01491

Table 3: Detecting translation - given a set of translations, we report the trans-
formation distance where the method reached a minimum (i.e., lower is better).
Our method outperforms the commonly used CD and EMD, and is comparable
with the partial Hausdorff variants.

