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Abstract. Depth information has proven to be a useful cue in the se-
mantic segmentation of RGB-D images for providing a geometric coun-
terpart to the RGB representation. Most existing works simply assume
that depth measurements are accurate and well-aligned with the RGB
pixels and models the problem as a cross-modal feature fusion to obtain
better feature representations to achieve more accurate segmentation.
This, however, may not lead to satisfactory results as actual depth data
are generally noisy, which might worsen the accuracy as the networks go
deeper.

In this paper, we propose a unified and efficient Cross-modality Guided
Encoder to not only effectively recalibrate RGB feature responses, but
also to distill accurate depth information via multiple stages and aggre-
gate the two recalibrated representations alternatively. The key of the
proposed architecture is a novel Separation-and-Aggregation Gating op-
eration that jointly filters and recalibrates both representations before
cross-modality aggregation. Meanwhile, a Bi-direction Multi-step Propa-
gation strategy is introduced, on the one hand, to help to propagate and
fuse information between the two modalities, and on the other hand,
to preserve their specificity along the long-term propagation process.
Besides, our proposed encoder can be easily injected into the previous
encoder-decoder structures to boost their performance on RGB-D seman-
tic segmentation. Our model outperforms state-of-the-arts consistently
on both in-door and out-door challenging datasets *.

Keywords: RGB-D Semantic Segmentation, Cross-Modality Feature
Propagation

1 Introduction

Semantic segmentation, which aims at assigning each pixel with different seman-
tic labels, is a long-standing task. Besides exploiting various contextual infor-

! Code of this work is available at https://charlescxk.github.io/
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Fig. 1. (a)RGB-D baseline, which is designed with a habitual cross-modality fusion
schema, results in inaccurate classification on the area that exists substantial varia-
tions between RGB and Depth modalities. (b) The depth measurements in out-door
environments are noisy. Without proposed modules, the results will degrade dramati-
cally

mation from the visual cues [24,11,14,12,5,11], depth data have recently been
utilized as supplementary information to RGB data to achieve improved seg-
mentation accuracy [25,31,42,4,15,22,6,19]. Depth data naturally complements
RGB signals by providing the 3D geometry to 2D visual information, which is
robust to illumination changes and helps better distinguishing various objects.
Although significant advances have been achieved in RGB semantic segmen-
tation, directly feeding the complementary depth data into existing RGB seman-
tic segmentation frameworks [24] or simply ensemble results of two modalities [6]
might lead to inferior performance. The key challenges lie in two aspects. (1) The
substantial variations between RGB and Depth modalities. RGB and depth data
show different characteristics. How to effectively identify their differences and
unify the two types of information into an efficient representation for semantic
segmentation is still an open problem. (2) The uncertainty of depth measure-
ments. Depth data provided with existing benchmarks are mainly captured by
Time-of-Flight or structured light cameras, such as Kinect, AsusXtion and Re-
alSense etc. The depth measurements are generally noisy due to different object
materials and limited distance measurement range. The noise is more apparent
for out-door scenes and results in undesirable segmentation, as shown in Fig 1.
Most existing RGB-D based methods mainly focus on tackling the first
challenge. Standard practice is to use the depth data ? as another input and
adopt Fully Convolutional Network (FCN)-like architectures with feature fusion
schemas, e.g., convolution and modality-based affinity etc., to fuse the features
of two modalities [25,6,17,36]. The fused feature is then used to recalibrate the

2 Raw depth map or its encoded representation-HHA map, which includes horizontal
disparity, height above ground and norm angle. For more detail about HHA, please
refer to [13].
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subsequent RGB feature responses or predicted results. Although these methods
provide plausible solutions to unify the two types of information, the assumption
of the input depth data being accurate and well-aligned with RGB signals might
not be true, making these methods sensitive to in-the-wild samples. Moreover,
how to ensure that the network fully utilizes information from both modalities
remains an open problem. Recently, some works [12,37] attempt to tackle the
second challenge by diminishing the network’s sensitivity to the quality of depth
measurements. Instead of utilizing depth data as an extra input, they propose
to distill the depth features via multi-task learning and regard depth data as ex-
tra supervision for training. Specifically, [37] introduces a two-stage framework,
which first predicts several intermediate tasks including depth estimation and
then uses the outputs of these intermediate tasks as the multi-modal input to
final tasks. [42] proposes a pattern-affinitive propagation with jointly predicting
depth, surface normal and semantic segmentation to capture correlative infor-
mation between modalities. We argue that there exists an inherent inefficacy in
such design, i.e. the interaction and correlation of RGB and depth information
are only implicitly modeled. The complementarity of the two types of data for
semantic segmentation was not well studied in this way.

Motivated by the above observations, we propose to tackle both two chal-
lenges in a simple yet effective framework by introducing a novel cross-modality
guided encoder to FCN-like RGB-D semantic segmentation backbones. The key
idea of the proposed framework is to leverage both channel-wise and spatial-
wise correlation of the two modalities to firstly squeeze the exceptional feature
responses of depth, which effectively suppresses feature responses from the low-
quality depth measurements, and then use the suppressed depth representations
to refine RGB features. In practice, we devise the steps bi-directionally due to
the in-door RGB sources also contain noisy features. In contrast to depth data,
the RGB noisy features are usually caused by similar appearance of different
neighboring objects. We denote the above process as depth-feature recalibration
and RGB-feature recalibration, respectively. We therefore introduce a new gate
unit, namely the Separation-and-Aggregation Gate (SA-Gate), to improve the
quality of the multi-modality representation by encouraging the network to re-
calibrate and spotlight the modality-specific feature of each modality first, and
then selectively aggregate the informative features from both modalities for the
final segmentation. To effectively take advantage of the differences of features
between the two modalities, we further introduce the Bi-direction Multi-step
Propagation (BMP) that encourages the two streams to better preserve their
specificity during the information interaction process in the encoder stage.

Our contributions can be summarized into three-fold:

— We propose a novel bi-directional cross-modality guided encoder for RGB-
D semantic segmentation. With the proposed SA-Gate and BMP modules,
we could effectively diminish the influence of noisy depth measurements,
and also allow incorporating sufficiently complementary information to form
discriminative representations for segmentation.
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— Comprehensive evaluation on the NYUD V2 dataset shows significant im-
provements by our approach when integrated into state-of-the-art RGB se-
mantic segmentation networks, which demonstrate the generalization of our
encoder as a plug-and-play module.

— The proposed method achieves state-of-the-art performances on both in-door
and challenging out-door semantic segmentation datasets.

2 Related Work

2.1 RGB-D Semantic Segmentation

With the development of depth sensors, recently there is a surge of interest in
leveraging depth data as a geometry augmentation for RGB semantic segmenta-
tion task, dubbed as RGB-D semantic segmentation [25,31,20,23,42 3]. Accord-
ing to specific functionality of depth information suited in different architectures,
current RGB-D based methods could be roughly divided into two categories.

Most of the works treat depth data as an additional input source to recali-
brate the RGB feature responses either implicitly or explicitly. Long et al. [24]
shows simply averaging final score maps of RGB and D modalities helps en-
force the inter-object discrimination in the in-door setting. Li et al. [22] utilize
the LSTM layers to selectively fuse the feature from the two modalities input.
With a similar target, [6] proposes locality-sensitive deconvolution networks
along with a gated fusion module. Several recent works [30,9,17] extend the
RGB feature recalibration process from the final outputs of a dual-path net-
work to different stages of the backbone, encouraging better recalibration with
multi-level cross-modality feature fusion. To guide the recalibration with explicit
cross-modality interaction modeling, some works [20,31,26,35] tailor general 2D
operations to 2.5D behaviors with depth guidance. For example, [31] proposes
depth-aware convolution and pooling operations to help recalibrating RGB fea-
ture responses in depth-consistent regions. [20] proposes a depth-aware gate
module that adaptively selects the pooling field size in a CNN according to ob-
ject scale. 3DGNN [26] introduces a 3D graph neural network to model accurate
context with geometry cues provided by depth. Alternatively, some approaches
regard the depth data as an extra supervised signal to recalibrate the RGB
counterpart in a multi-task learning manner. For example, [12] proposes a pat-
tern affinity propagation network to regularize and boost complementary tasks.
[37] introduces a multi-modal distillation model to pass the valid messages from
depth to RGB features.

Different from previous works that hold the ideal assumption of depth source’s
quality and mainly focus on in-door setting, we try to extend the task to the
in-the-wild environment, e.g., CityScapes dataset. The out-door setting is more
challenging due to the inevitable noisy signals contained in the depth data. In
this work, we try to recalibrate RGB feature responses from a filtered depth
representation and vice versa, which effectively enhance the strength of repre-
sentations for both modalities.
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2.2 Attention Mechanism

Attention mechanisms have been widely utilized in kinds of computer vision
tasks, serving as the tools to spotlight the most representative and informative
regions of input signals [11,33,29,16,21,32]. For example, to improve the perfor-
mance of the image/video classification task, SENet [16] introduces a self recal-
ibrate gating mechanism by model importance among different channels of fea-
ture maps. Based on similar spirits, SKNet [21] designs a channel-wise attention
module to select kernel sizes to adaptively adjust its receptive field size based on
multiple scales of input information. [32] introduces a non-local operation which
explores the similarity of each pair of points in space. For the segmentation task,
a well-designed attention module could encourage the network to learn helpful
context information effectively. For instance, DFN [39] introduces a channel at-
tention block to select the more discriminative features from multi-level feature
maps to get more accurate semantic information. DANet [ ] proposes two types
of attention modules to model the semantic inter-dependencies in spatial and
channel dimensions respectively.

However, the main challenge of RGB-D semantic segmentation task is how to
make full use of cross-modality data under the substantial variations and noisy
signals between modalities. The proposed SA-Gate is the first to focus on the
noisy features of cross-modalities by tailoring the attention mechanisms. The
SA-Gate module is specialized for suppressing the exceptional noisy feature of
depth data and recalibrate its counterpart RGB feature responses in a unified
manner at first, and then fuses the cross-modality information with a softmax
gating that is guided by the recalibrated features, achieving effective and efficient
cross-modality feature aggregation.

3 Method

RGB-D semantic segmentation needs to aggregate features from both RGB and
depth modalities. However, both modalities have inevitably noisy information.
Specifically, depth measurements are inaccurate due to the characteristics of
depth sensors and RGB features might generate confusing results due to the
high appearance similarity between the objects. An effective cross-modality ag-
gregation scheme should be able to identify their strengths from each feature
as well as unify the most informative cross-modality features into an efficient
representation. To this end, we put forward a novel cross-modality guided en-
coder. The overall framework of the proposed approach is depicted in Fig. 2 (a),
which consists of a cross-modality guided encoder and a segmentation decoder.
Given RGB-D data as inputs 2, our encoder recalibrates and fuses the comple-
mentary information from the two modalities via the SA-Gate unit, and then
propagates the fused multi-modal features along with modality-specific features
via the Bi-direction Multi-step Propagation (BMP) module. The information is
then decoded by a segmentation decoder network to generate the segmentation
map. We will detail each component in the remaining parts of this section.

3 Note that we use HHA map to encode the depth measurements.
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Fig. 2. (a)The overview of our network. We employ an encoder-decoder architecture.
The input of the network is a pair of RGB-HHA images. During training, each pair of
feature maps (e.g., outputs of RGB-Layer]l and HHA-Layerl) are fused by a SA-Gate
and propagated to the next stage of the encoder for further feature transformation.
Fusion results of the first and the last SA-Gates would be propagated to the segmen-
tation decoder (DeepLab V3+). (b) The architecture of the SA-Gate, which contains
two parts, Feature Separation (FS) and Feature Aggregation (FA)

3.1 Bi-direction Guided Encoder

Separation-and-Aggregation (SA) Gate. To ensure informative feature prop-
agation between modalities, the SA-Gate is designed with two operations. One
is feature recalibration on each single modality, and the other is cross-modality
feature aggregation. The operations are in terms of Feature Separation (FS) and
Feature Aggregation (FA) parts, as illustrated in Fig 2 (b).

Feature Separation (FS). We take depth stream for example. Due to physical
characteristics of depth sensors, noisy signals in depth modality frequently show
up in regions close to object’s boundaries or partial surfaces outside the scope
of depth sensors, as shown in the second column of Fig. 3. Hence, the network is
expected to first filter noisy signals surrounding these local regions to avoid mis-
leading information propagation on the process of recalibrating complementary
RGB modality and aggregating cross-modality features. In practice, we exploit
high confident activations in RGB stream to filter out exceptional depth activa-
tions at the same level. To do so, global spatial information of both modalities
should be embedded and squeezed to obtain a cross-modality attention vector
first. We achieve this by a global average pooling along the channel-wise dimen-
sions of two modalities, which is followed by concatenation and a MLP operation
to obtain attention vector. Suppose we have two input feature maps denoted as
RGB;, € ROXHXW and HHA;, € RE*HEXW  above operations could be formu-
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lated as
I = fgp(RGBin || HHAin), (1)

where || denotes the concatenation of feature maps from two modalities, Fg,
refers to global average pooling, I = (I1,...,I,..., Is¢c) is the cross-modality
global descriptor for collecting expressive statistics for the whole inputs. Then,
the cross-modality attention vector for the depth input is learned by

Whha = 0(Fmip(1)), Whha € R, (2)

where F,,,;;, denotes MLP network, o denotes sigmoid function scaling the weight
value into (0, 1). By doing so, the network can take advantage of the most infor-
mative visual appearance and geometry features, and thus tends to effectively
suppress the importance of noisy features in depth stream. Then, we could obtain
a less noisy depth representation, namely Filtered HHA, through a channel-wise
multiplication ® between input depth feature maps and the cross-modality gate:

HHAﬁltered - HHAin ® Whha~ (3)

With a filtered depth representation counterpart, the RGB feature responses
could be recalibrated with more accurate depth information. We devise the re-
calibration operation as the summation of the two modalities:

RGBrec = HHAﬁltered + RGBina (4)

where RGB,e. denotes recalibrated RGB feature maps. The general idea behind
the formula is that, instead of directly using element-wise product to reweight
RGB feature with regarding depth features as recalibrate coefficients, the pro-
posed operation using summation could be viewed as some kind of offset to refine
RGB feature responses at corresponding positions, as demonstrated in Table 2.

In practice, we implement recalibration step in a symmetric and bi-directional
manner, such that low confident activations in RGB stream could also be sup-
pressed in the same manner and filtered RGB information RGBgitereqa could
inversely recalibrate the depth feature responses to form a more robust depth
representation HHA ... We visualize feature maps of HHA before and after Fea-
ture Separation Part in Fig. 3. The RGB counterpart is shown in the supple-
mentation.

Feature Aggregation (FA). RGB and D features are strongly complementary
to each other. To make full use of their complementarity, we need to comple-
mentarily aggregate the cross-modality features at a certain position in space
according to their characterization capabilities. To achieve this, we consider
both characteristics of these two modalities and generate spatial-wise gates for
both RGB;, and HHA;, to control information flow of each modality feature
map with soft attention mechanism, which is visualized in Figure 2 (b) and
marked by the second red frame. To make the gate more precise, we use recal-
ibrated RGB and HHA feature maps from FS part, i.e., RGB,o, € REXHXW
and HHA,.. € RE*HXW "t generate the gate. We first concatenate these two
feature maps to combine their features at a certain position in space. Then we



8 Xiaokang Chen et al.

RGB HHA HHA,, HHA,,,

Fig. 3. Visualization of depth features before and after FSP on CityScapes validation
set. We can observe that objects have more precise shapes after FSP and invalid partial
surfaces are completed. More explanation is illustrated in the supplemental material

define two mapping functions to map high-dimensional feature to two different
spatial-wise gates:
frgb :FconcatQ — Grgb € RlXHXW7 (5)

1xH
]:hha :FconcatQ — tha eR x XWa (6)

where Feoneate € R2OHXW g the concatenated feature, G4, is the spatial-wise
gate for RGB feature map, and Gy, is the spatial-wise gate for HHA feature
map. In practice, we use a 1 x 1 convolution to implement this mapping function.
A softmax function is applied on these two gates:

(4,5) (4,5)

(i) e rad (i.) € hhe
A = (7)
rgb G () Glind) ’ hha a(49) D)
e rgb 4 e hha e rgb 4 e hha

where A,gp, Appa € RP>H>W and Ai]’g) +A§:}7£ = 1. G%g) is the weight assigned
to each position in the RGB feature map and GESL{J is the weight assigned to each
position in the HHA feature map. The final merged feature M can be obtained

by weighting the RGB and HHA maps:
Moy = RGBS A% 1 HHALD AL, ®)

So far, we have added gated RGB and HHA feature maps to obtain the
fused feature maps M. Since SA-Gate is injected into the encoder stage, we then
average the fused features and the original input to obtain RGByyy and HHA
respectively, which share similar spirits with residual learning.

Bi-directional Multi-step Propagation (BMP). By normalizing the sum
of two weights at each position to 1, the numerical scale of the weighted feature
will not significantly differ from the input RGB or HHA. Therefore, it has no
negative influence on the learning of the encoder or the loading of the pre-trained
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parameters. For each layer [, we use the output M! generated by the [-th SA-Gate
to refine the raw output of the I-th layer in the encoder: RGB! (RGB!, +

out —

MY /2, HHA! , = (HHA! + M')/2. This is a bi-directional propagation process
and the refined results will be propagated to the next layer in the encoder for

more accurate and efficient encoding of the two modalities.

3.2 Segmentation Decoder

The decoder can adopt almost any design of decoder from SOTA RGB-based
segmentation networks, since SA-Gate is a plug-and-play module and can make
good use of complementary information of cross-modality on encoder stage. We
show results of combining our encoder with different decoders in Table 6. We
choose DeepLabV3+ [2] as our decoder for it achieves the best performance.

4 Experiments

We conduct comprehensive experiments on in-door NYU Depth V2 and out-
door CityScapes datasets in terms of two metrics: mean Intersection-over-Union
(mIoU) and pixel accuracy (pixel acc.). We also evaluate our model on SUN-
RGBD dataset (Please refer to the supplemental material for more details).

4.1 Datasets

NYU Depth V2 [27] contains 1449 RGB-D images with 40-class labels, in
which 795 images are used for training and the rest 654 images are for testing.

CityScapes [8] contains images from 27 cities. There are 2975 images for train-
ing, 500 for validation and 1525 for testing. Each image has a resolution of
2048 x 1024 and is fine-annotated with pixel-level labels of 19 semantic classes.
‘We do not use additional coarse annotations in our experiments.

4.2 Implementation Details

We use PyTorch framework. For data augmentation, we use random horizontal
flipping and scaling with scales [0.5,1.75]. When comparing with SOTA methods,
we adopt flipping and multi-scale inference strategies as a test-time augmentation
to boost the performance. More details are shown in the supplemental material.

Table 1. Comparison of efficiency on NYUDV2 test set. We use ResNet-50 as backbone
and DeepLab V3+[2] as decoder. FLOPS are estimated for input of 3 x 480 x 480

Methods Params/M FLOPs/G mlIoU(%)
RGB-D baseline 78.2 269.6 46.7
Ours 63.4 204.9 50.4
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4.3 Efficiency Analysis

To verify whether the proposed cross-modality feature propagation helps and
is efficient, we compare the final model with the RGB-D baseline. We aver-
age predictions of two parallel DeepLab V3+ as RGB-D baseline. As shown in
Table 1, the proposed method achieves better performance with significantly
less memory requirement and computational cost when compared with baseline.
The results indicate that aimlessly adding parameters to a multi-modality net-
work will not bring extra representational power to better recognize objects. In
contrast, a well-design cross-modality mechanism, like proposed cross-modality
feature propagation, helps to learn more powerful representations to improve
performance more efficiently.

Table 2. Ablation study on feature separation (FS) part on NYU Depth V2 test set.
No decoder is used here

Backbone Concat Self-global Cross-global Product Proposed mlIoU(%)

Res50 v 47.8
Res50 v 47.5
Res50 v 47.8
Res50 v 47.5
Res50 v 48.6

4.4 Ablation Study

We perform ablation studies on our design choices under same hyperparameters.
Feature Separation. We employ the F'S operation before the feature aggrega-
tion in SA-Gate, to filter out noisy features for bi-directional recalibration step.
To verify effectiveness of this operation, we ablate each design of FS in Table 2.
Note that we ablate four different architectures and replace all FS parts in the
network for comparison. ‘Concat’ represents we concatenate RGB;j, and HHA;,
feature maps and directly pass them to feature aggregation part. ‘Self-global’
represents we filter single modality features with its own global information.
‘Cross-global’ represents the filtered RGB is added to input RGB and vice versa.
The filtering guidance comes from cross-modality global information. ‘Product’
means we multiply RGB;, by HHAg)ereq and vice versa. We see that from col-
umn 2 to 4, not using cross-modality information to filter noisy feature or refine
features without explicit cross-modality recalibration lead to about 1% drop.
On the other hand, the last two columns indicate the cross-modality guidance
(E.q 4) is more appropriate and effective than cross-modality re-weighting when
doing cross-modality recalibration. Overall, these results show that proposed FS
operator effectively filters incorrect messages and recalibrates feature responses,
achieving the best performance among all compared designs.

Feature Aggregation. We employ the SA-Gating mechanism to adaptively se-
lect the feature from the cross-modal data, according to their different character-
istics at each spatial location. This gate can effectively control information flow



Bi-directional Cross-Modality Feature Propagation with SA-Gate 11

Table 3. Ablation study on feature aggregation (FA) part on NYU Depth V2 test set.
No decoder is used here

Backbone Addition Conv Proposed mlIoU(%)

Resb0 v 47.8
Resb0 v 48.0
Resb0 v 48.6

Table 4. Ablation study on encoder design on NYU Depth V2 test set. "*’ means we
average two outputs of RGB and HHA to get final output. No decoder is used here

Backbone Blockl Block2 Block3 Blockd mlIoU(%)

Resb50* 45.9
Res50" v 47.8
Resb0* v 47.5
Resb50* v 46.8
Resb0* v 44.3
Resb50" v v 47.9
Res50" v v v 48.3
Res50* v v v v 48.0
Resb0 v v v v 48.6

of multimodal data. To evaluate the validity of the design, we perform ablation
study on feature aggregation, as shown in Table 3. The experiment setting is kept
the same as above. ‘Addition’ represents directly adding the recalibrated RGB
and HHA feature maps. ‘Conv’ represents conducting convolution on the con-
catenated feature map. ‘Proposed’ represents the FA operator. We see that FA
operator leads to the best result, since it considers the spatial-wise relationship
between two modalities and can better explore the complementary information.
Design of Encoder. We verify and analyze the effectiveness of proposed BMP
to our encoder, and how it functions with the SA-Gate. Toward this end, we
conduct two ablation studies as shown in Table 4 & 5. We use ResNet-50 as
our backbone here and directly upsampling the final score map by a factor of
16, without using a segmentation decoder. The first row in Table 4 & 5 is the
baseline that averages score maps generated by two ResNet-50 (RGB & D).
For the first ablation, we gradually embed SA-Gate unit behind different
layers of ResNet50. Note that we generate score maps for both two sides and
average them as final segmentation result. This setting is different from those
above, because last block of ResNet may not be equipped with a SA-Gate in this
part, i.e., no fused feature is generated from last block. From Table 4, we observe
that if SA-Gate is embedded into a higher stage, it will lead to relatively worse
performance. Besides, when stacking SA-Gate stage by stage, the additional
gain continuously reduces. These two phenomena show that features of different
modalities are more different in lower stage and an early fusing will achieve better
performance. Table 5 shows results of second experiment. We observe that both
SA-Gate and BMP can boost performance. Meanwhile, they complement each
other and performs better in the presence of the other component. Moreover,
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Table 5. Ablation study for BMP and SA-Gate. No decoder is used here

Method mloU (%)
Resb50 (Average of Dual Path) 45.9
Res50 + SA-Gate 47.4 (1.5% 1)
Res50 + BMP 47.8 (1.9% 1)
Resb0 + BMP + SA-Gate 48.6 (2.7% 1)

Table 6. The plug-and-play property evaluation of the proposed model on NYU Depth
V2 test set. Method indicates different decoders, SA-Gate indicates the proposed
fusion module. RGB: RGB image as inputs; RGB-D: the simple method which only
average final score maps of RGB path and HHA path. Note that we reproduce these
methods using official open-source code and all experiments use the same setting as
our method

Method RGB(%mlIoU) RGB-D(%mlIoU) RGB-D w SA-Gate(%mlIoU)
DeepLab V3 [1] a7 165 49.1 (26 1)
PSPNet [13] 43.1 46.2 48.2 (2.0 1)
DenseASPP [3¢] 423 45.7 47.8 (2.11)
OCNet, [10] 445 47.6 49.1 (1.5 1)
DeepLab V3+ [7] 443 46.7 50.4 (3.71)
DANet, [11] 43.0 455 48.6 (3.11)
FastFCN [34] 45.4 47.6 50.1 (2.5 1)

when associating Table 5 & 2, we see that SA-Gate helps BMP better propagate
valid information than other gate mechanisms. It demonstrates effectiveness and
importance of a more accurate representation to the feature propagation.

The Plug-and-Play Property of Proposed Encoder. We conduct ablation
study to validate the flexibility and effectiveness of our method for different types
of decoders. Following recent RGB-based semantic segmentation algorithms, we
splice their decoders with our model to form modified RGB-D versions (i.e.,
RGB-D w SA-Gate), as shown in Table 6. We see that in the column 2 and 4, our
method consistently helps achieving significant improvements against original
RGB versions. Besides, comparing with naive RGB-D modifications, our method
also boosts the performance at least 1.5% mloU. Especially, with the decoders
in Deeplab V34 [2], our method achieves 3.7% mIoU improvements. The results
verify both the flexibility and effectiveness of our method for various decoders.

4.5 Visualization of SA-Gate

We visualize first SA-Gate in our model to see what it has learned, as shown
in Fig 4.  Note that the black region in GT represents ignored pizels when
caleulating IoU. We reproduce RDFNet-101 [25] in PyTorch with 48.7% mlIoU
on NYU Depth V2, which is close to the result in the original paper (49.1%). Red
represents a higher weight assigned to RGB and blue represents a higher weight
assigned to HHA. From column 4, we can see that RGB has a stronger response
at boundary and HHA responds well in glare and dark areas. The phenomenon
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RGB HHA Result of RDFNet Gate of Ours  Result of Ours Ground Truth

Fig. 4. Visualization of feature selection through SA-Gate on NYUD V2 test set. For
each row, we show (1) RGB, (2) HHA, (3) results of RDFNet-101, (4) visualization of
SA-Gate, (5) results of ours, (6) GT. Red represents a higher weight assigned to RGB
and blue represents a higher weight assigned to HHA. Best viewed in color

Table 7. State-of-the-art comparison experiments on NYU Depth V2 test set

Method mloU(%) Pixel Acc.(%)
3DGNN [20] 131 N

Kong et al. [20] 44.5 72.1

CFN [27] a7 -
RDF-101 [25] 9.1 75.6
PADNet [37] 50.2 75.2
ACNet [17] 48.3 :

PAP [12] 50.4 76.2
Ours 52.4 77.9

is reasonable since RGB feature has more details in high contrast areas and
HHA feature is not affected by lighting conditions. From row 1, details inside
yellow boxes are lost in HHA while obvious in RGB. Our method successfully
identifies chair legs and distinguishes table that looks similar to chair. In row
2, glare blurs the border of the photo frame. Since our model focuses more on
HHA in this area, it predicts the photo frame more completely than RDFNet.
Besides, our model captures more details than RDFNet on clothes stand. In row
3, cabinet in dark red is hard to recognize in RGB but with identifiable features
in HHA. Improper fusion of RGB and HHA leads to erroneous semantics for this
area (column 3). While our model pays more attention to HHA in this area to
achieve more precise results.

4.6 Comparing with State-of-the-arts

NYU Depth V2. Results are shown in Table 7. Our model achieves leading
performance. On the consideration of a fair comparison to [12,17,37] that utilize
ResNet-50 as backbone, we also use same backbone and achieve 51.3% mloU,
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Table 8. Cityscapes test set accuracies. ‘*’ means RGB-D based methods

- g = = . . Y B O FR @ 2 5
Method § ¥ 2 B E 2 ® ¥ bé E % g E B g 2 g g .:"..L: mloU
CCNet [15] BT 81.4
BFP [10] 98.7 87.0 93.5 59.8 63.4 68.9 76.8 80.9 93.7 72.8 95.5 87.0 72.1 96.0 77.6 89.0 86.9 69.2 77.6| 81.4
DANet [11] 98.6 86.1 93.5 56.1 63.3 69.7 77.3 81.3 93.9 72.9 95.7 87.3 72.9 96.2 76.8 89.4 86.5 72.2 78.2| 81.5
ACFNet [11] 98.7 87.1 93.9 60.2 63.9 71.1 78.6 81.5 94.0 72.9 95.9 88.1 74.1 96.5 76.6 89.3 81.5 72.1 79.2| 81.8
LDFNet* [19] e 71.3
Shu Kong et al.* [20] T 78.2
PADNet * [37] T
Choi et al.* [7] 98.8 88.0 93.9 60.5 63.3 71.3 78.1 81.3 94.0 72.9 96.1 87.9 74.5 96.5 77.0 88.0 85.9 72.7 79.0| 82.1
RGB baseline (Deeplab V3+ [2])[98.7 87.1 93.9 61.0 63.8 71.5 78.6 82.6 93.9 72.6 95.9 88.3 74.8 96.5 68.9 86.1 86.4 73.6 79.1| 81.8
RGB-D baseline® 98.7 86.7 93.7 57.8 61.8 70.0 77.3 81.8 93.9 72.2 95.9 87.9 74.1 96.3 70.7 87.9 80.3 72.2 78.6| 80.9
Ours” 98.7 87.3 93.9 63.8 62.7 70.8 77.9 82.2 93.9 72.8 95.9 88.2 75.2 96.5 80.4 91.6 89.0 73.2 78.9| 82.8

which is still better than these methods. Specifically, [25,17] try to use channel-
wise attention or vanilla convolution to extract complementary feature, which
are more implicit than our model in selecting valid feature from complementary
information. Besides, we can see that utilizing depth data as extra supervision
(such as [12,37]) could make network more robust than general RGB-D meth-
ods that take both RGB and depth as input sources [25,6,26]. However, our
results demonstrate that once the input RGB-D information could be effectively
recalibrated and aggregated, higher performance could be obtained.
CityScapes. We achieve 81.7% mlIoU on validation set and 82.8% mloU on
test set, which are both leading performances. Table 8 shows results on test set.
We observe that due to serious noise of depth measurements in this dataset,
most of previous RGB-D based methods even worse than RGB-based methods.
However, our method effectively distills depth feature and extracts valid infor-
mation in it and boosts the performance. Note that [7] is a contemporary work
and we outperform them by 0.7%. We exclude the results of GSCNN [28] for fair
comparison, since it uses a stronger backbone WideResNet instead of ResNet-
101. However, we still outperform GSCNN by 0.9% mlIoU on the validation set
and achieve the same performance as it on test set.

5 Conclusion

In this work, we propose a cross-modality guided encoder along with SA-Gate
and BMP modules to address two key challenges in RGB-D semantic segmen-
tation, i.e., the effective unified representation for different modalities and the
robustness to low-quality depth source. Meanwhile, our proposed encoder can
act as a plug-and-play module, which can be easily injected to current state-of-
the-art RGB semantic segmentation frameworks to boost their performances.
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