
Why do These Match? Explaining the Behavior
of Image Similarity Models Supplementary

Bryan A. Plummer1, Mariya I. Vasileva2, Vitali Petsiuk1, Kate Saenko1,3, and
David Forsyth2

1 Boston University, Boston MA 02215, USA
2 University of Illinois at Urbana-Champaign, Urbana IL 61801, USA

3 MIT-IBM Watson AI Lab, Cambridge MA 02142, USA
{bplum,vpetsiuk,saenko}@bu.edu {mvasile2,daf}@illinois.edu

1 Candidate Salience Map Generator Descriptions

In this section we provide additional details about each of the candidate saliency
map generation methods used in our paper. We split these approaches into two
groups: methods which analyze behavior solely through input manipulation (de-
scribed in Section 1.1) and those which use an optimization procedure to learn
some parameters in combination with input manipulation (described in Sec-
tion 1.2). Please see Section 3.2 of our paper for a description of how these
methods are adapted to our task. We also provide a runtime comparison of each
approach in Table 1. A qualitative comparison between saliency map generators
on the Polyvore Outfits and AwA datasets is provided in Figures 1 and 2.

1.1 Saliency Maps by Input Manipulation

A straightforward approach to producing a saliency map is to manipulate the
input image by removing image regions and measuring the effect this has on
the similarity score. If a large drop in similarity is measured, then the region
must be important to this decision. If almost no change was measured, then
the model considers the image region irrelevant. The saliency map is generated
from this approach by averaging the similarity scores for each pixel location
over all instances where it was removed from the input. The challenge then is
to determine how to manipulate the input image to discover these important
regions.

Sliding Window [7]. The first approach to removing regions of an image we
shall discuss is a sliding window, where regions are sampled regularly across an
image. There is a direct tradeoff, however, with how densely frames are sampled
and the computational time it takes to do a forward pass through the network for
each manipulated image. If frames are not densely sampled to enable an efficient
solution, then it wouldn’t be able to localize important regions accurately. If
regions are too densely sampled then removing them might not make enough
of a difference in the similarity score to take measurements accurately. When
manipulating the inputs of the reference image, we apply 625 occlusion windows



2 Plummer et al.

each covering a square region of about 12% of image area. When manipulating
both images we apply 36 occlusion windows to the reference image.

RISE [5]. This method uses Monte Carlo approach to generate saliency maps.
A set of N random binary masks of size h × w is sampled where each element
is independently set to 1 with probably p, and all other elements are set to
0. Typically these masks are much smaller than the input image, so they are
upsampled using bilinear interpolation. This produces small continuous regions
within the upsampled mask that can be used to manipulate the input image. To
remove the fixed grid structure the masks are upsampled to larger than image
size and then cropped randomly. For both datasets we randomly sample 2,000
random masks upsampled from 8 × 8 mask with the probability of preserving a
region of 0.5. When manipulating the inputs of the reference image, we generate
30 random masks. Although this approach does require a significant number of
random masks, we found this approach significantly outperforms using a sliding
window that samples a similar number of masks on our task.

1.2 Learned Saliency Maps

We shall now discuss methods which combine input manipulation with an op-
timization procedure used to directly learn a saliency map. As in Section 1.1,
we compare generating saliency maps for a single query image at a time using a
fixed reference image as well as generating a saliency map by manipulating both
the query and reference images.

LIME [6]. Rather than masking regions without any concern over the continu-
ity of a region, this approach to generating saliency maps operates over a super-
pixel segmentation of an image. Images are manipulated by randomly deleting
superpixels in the image. After sampling N = 1000 manipulated inputs, the im-
portance of each superpixel is estimated using Lasso. Finally, important regions
are selected using submodular optimization.

Mask [2]. In this approach a low resolution saliency map is directly learned
using stochastic gradient decent and upsampled to the image size. Instead of
manipulating an image by just deleting regions as in other methods, two ad-
ditional perturbation operators are defined: adding Gaussian noise and image
blurring. To help avoid artifacts when learning the mask a total-variation norm
is used in addition to an L1 regularization to promote sparsity. This approach
removes the reliance on superpixels and tends to converge in fewer iterations
than LIME, although it is considerably slower in practice than other approaches
(see Table 1). That said - one advantage it does have over other approaches is the
ability to learn the salience map for both the query and reference image jointly
(which we take advantage of when we are not using a fixed reference image). We
learn a 14 × 14 perturbation mask for both datasets. We train the mask for 500
iterations using Adam [4] with a learning rate of 0.1.



Why do These Match? 3

Fig. 1: Qualitative examples comparing the saliency map generator candidates
on the Polyvore Outfits dataset.



4 Plummer et al.

Fig. 2: Qualitative examples comparing the saliency map generator candidates
on the Animals with Attributes dataset.



Why do These Match? 5

Table 1: Runtime comparison of the compared saliency generation methods and
how using a fixed reference image, or manipulating both the query and reference
images affects performance.

Method Fixed Reference? Time(s)

Sliding Window Y 0.2
LIME Y 1.2
Mask Y 4.1
RISE Y 0.3

Sliding Window N 2.5
Mask N 7.2
RISE N 5.8

2 Additional Experimental and Implementation Details

2.1 Compared Attribute Methods

In this section we describe the attribute prediction methods we use as baselines
for our attribute experiments in Section 4.2. More details on our method are
provided in Section 2.2. For our Attribute Classifier, FashionSearchNet, and
SANE predictor we use the same 50-layer ResNet base image encoder [3] and
the last convoluntional layer of the network the same number of channels as the
number of classes. The output of the last convolutional layer we refer to as our
Attribute Activation Maps in our paper, and we use a global average pooling
(GAP) layer to obtain attribute scores from these Attribute Activation Maps.

– Random baseline. For insertion we randomly select an attribute not in
the image to insert into the image. Analogously, for deletion we randomly
select an attribute that is in the image to be removed.

– Attribute Classifier. This model uses a our image encoder as described
earlier as a simple baseline. Although classic methods typically use a fully
connected layer rather than a convolutional layer followed by a GAP layer,
we found the latter (i.e., our approach) to improve performance 2-3 mAP
in our experiments. This model has the same architecture as our SANE
attribute predictor, but unlike the SANE model, it doesn’t get any kind of
supervision of its Attribute Activation Map.

– FashionSearchNet [1]. This network uses an Attribute Activation Map
to identify and extract a region of interest for each attribute. These ex-
tracted regions are fed into two branches consisting of three fully connected
layers which is trained for both attribute classification and image retrieval.
We remove the image retrieval components in our experiments. This model
provides a weakly-supervised baseline of an Attribute Activation Map to
compare to SANE’s saliency-supervised activation map.

2.2 SANE Details

Due to its efficient (see Table 1) and overall good performance (see Table 1)
we selected the fixed-reference RISE as our saliency map generator. For each



6 Plummer et al.

training image, we sample up to five similar images using the ground truth
annotations of each dataset and generate saliency maps using each sampled
image as the reference image. We train our attribute model for 300 epochs using
Adam [4] with a learning rate of 5e−4 and set λ = 5e−3 in Eq. 3 from the paper.
After each epoch, we computed mAP on the validation set and kept the best
performing model according to this metric. Additional qualitative examples for
explanations produced by our SANE model on the Polyvore Outfits and AwA
datasets are provided in Figures 3 and 4.

We provide an example of the attribute deletion process in Figure 5. After
identifying an attribute to remove in an image, we search for the K most similar
image to the input from a database that doesn’t contain the input attribute.
Image similarity is computed over the attribute space, i.e., we want to keep the
predictions of each attribute the same, and only vary the target attribute. For
Polyvore Outfits, we only consider images of the same type (i.e., so tops can only
be replaced with other tops). To ensure we don’t bias towards a single attribute
model, average the predictions made by each attribute model in our experiments
(Attribute Classifier, FashionSearchNet, and SANE).

We see on the left side of Figure 5 that some attributes like colors are largely
retained when the attribute has to do with a non-color based attribute. On the
returned AwA images on the right side of Figure 5 we see how some attributes can
lead to significant changes in the images or almost none at all depending on the
attribute selected to remove. For some items we can see that multiple attributes
may have changed in the retrieved images in these figures. To try to account for
this, we compute our attribute insertion/deletion metrics over the K = 5 most
similar images to the input returned by our image selection procedure and then
average the change in similarity using these 5 images. While this does provide a
noisy estimate of the change in similarity, our human evaluation in Section 4.4
shows that there is a correlation between gains in our automatic metrics and
improvements in a human user’s understanding of predictions made by an image
similarity model.

In Section 3.3 we discuss how we estimate how likely each attribute is a
“good” explanation in held-out data. This is used as a prior to bias our attribute
selections towards attributes that are known to be good attribute explanations.
In Figure 6 we show the ground truth bias for the attribute detection task
according to our metrics for the AwA dataset. Note, however, that this prior
would change for a different image similarity model. For example, if the image
similarity model was more biased towards colors, then we would expect to see
the likelihood for “black,” “brown,” and “gray” to increase.



Why do These Match? 7

Fig. 3: Additional qualitative examples of our SANE explanations on the
Polyvore Outfits dataset.



8 Plummer et al.

Fig. 4: Additional qualitative examples of our SANE explanations on the AwA
dataset.



Why do These Match? 9

Attribute to Remove

“studded”

Input Image Returned Image

“lace”

“silver”

Attribute to Remove

“walks”

Input Image Returned Image

“active”

“fast”

Fig. 5: Examples of the attribute deletion process used to evaluate how good an
attribute is as an explanation. We measure the similarity of the input image and
some reference image as well as between the returned image and the reference
image. If a large change in similarity is measured then the attribute is considered
a “good” explanation. If similarity stays about the same, the attribute is con-
sidered a “poor” explanation, e.g ., trying to remove “active” from the pandas
on the right.

3 User Study

An example of our user study variants for a given image triplet is shown in Fig-
ures 7 and 8. The question asks users to select, given the image triplet (A,B,C)
presented, along with any additional information in each case, whether the im-
age similarity model predicted B or C as a better match for A, as outlined in
Section 4.3.



10 Plummer et al.

Fig. 6: The likelihood each attribute in the AwA dataset was identified as the
best attribute for an image pair on held-out data.



Why do These Match? 11

A B

A C

B matches A because B is glittery.

C matches A because C is black.

(a) Control Case 
(no explanations)

Which image do you think the model predicted is a 
better match for A?

(b) Random Maps (c) Saliency Maps (d) Predicted Attributes

A B

A C

A B

A C

A B

A C

B matches A because B is retro.

C matches A because C is round.

(e) SANE Attributes (ours)

A B

A C

B matches A because B is retro.

C matches A because C is round.

(f) Random Maps and 
SANE Attributes

B matches A because B is retro.

C matches A because C is round.

A B

A C

(g) Saliency Maps and 
SANE Attributes

A B

A C

Fig. 7: Variants of our user study for a given image triplet on the Polyvore Outfits
dataset.

4 Discovering Useful Attributes

For datasets without attribute annotations, or those where the annotated at-
tributes doesn’t cover the extent of the visual attributes present in the dataset
(i.e. there are many unannotated attributes) we propose a method of discovering
attributes that are useful for providing model explanations. An attribute that is
useful for explanations would commonly appear in the high importance regions
of saliency maps. When generating saliency maps for a query image, if many
reference images attend to the same region of the query image then it is likely
they are all matching to it for similar reasons (i.e. there may be some attribute
that they share which matches the query). Given this observation, we discover
attributes using the following saliency-based procedure:

1. Obtain K similar images for query image q using k-NN.
2. Generate a saliency map over q for each of the similar (reference) images.
3. Keep only those reference images which have their saliency peaks in the most

common location (such as a unit square in a 7 × 7 grid) and pick top N of
them that have the highest similarity.

4. For each reference image, generate its saliency map with q and crop a 30×30
patch around the peak saliency region in the reference image.

5. Upsample all the generated patches to full image resolution and get their
embeddings.



12 Plummer et al.

A B

A C

B matches A because B is strong.

C matches A because C is fast.

(a) Control Case 
(no explanations)

Which image do you think the model predicted is a 
better match for A?

(b) Random Maps (c) Saliency Maps (d) Predicted Attributes

B matches A because B is smart.

C matches A because C is bulbous.

(e) SANE Attributes (ours)

B matches A because B is smart.

C matches A because C is bulbous.

(f) Random Maps and 
SANE Attributes

B matches A because B is smart.

C matches A because C is bulbous.

(g) Saliency Maps and 
SANE Attributes

A B

A C

A B

A C

A B

A C

A B

A C

A B

A C

A B

A C

Fig. 8: Variants of our user study for a given image triplet on the AwA dataset.

6. Cluster the patches produced for multiple queries q. Each cluster represents
an attribute. If multiple patches were extracted from an image and they
got assigned to different clusters, this image would be labeled with multiple
attributes.

Figure 9a illustrates the clustering produced by this procedure for a set of
queries from Polyvore Outfits dataset.

To evaluate this approach we compare it to randomly assigning images to
clusters and to clustering based on their own embeddings, disregarding the
saliency of image regions (Figure 9b). Saliency-based attribute discovery works
best among the three unsupervised methods for Polyvore Outfits data, but full-
frame clustering outperforms it for the AwA dataset (Table 2). We suspect the
full frame clustering works better for AwA since it considers the background
more than the patch-based method (Polyvore Outfits image’s typically have
white backgrounds). In addition, our discovered attributes would likely be nois-
ier due to the similarity model focusing on the background patches in some im-
ages as well. Although our initial results are promising, attempting to discover
attributes useful for explanations warrants additional investigation.

References

1. Ak, K.E., Kassim, A.A., Lim, J.H., Tham, J.Y.: Learning attribute representations
with localization for flexible fashion search. In: The IEEE Conference on Computer



Why do These Match? 13

Table 2: Discovered attribute explanation performance comparison using the full
SANE model.

Polyvore Outfits Animals with Attributes 2

Attribute Types Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓)

Random 25.3 -6.3 2.1 -8.5
Full Frame Discovery 29.4 -9.7 4.8 -22.6
Patch Discovery 30.2 -10.3 5.4 -22.9
Supervised Attributes 31.5 -11.8 6.2 -24.1

Vision and Pattern Recognition (CVPR) (2018)
2. Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful

perturbation. In: The IEEE International Conference on Computer Vision (ICCV)
(2017)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2016)

4. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: The Inter-
national Conference on Learning Representations (2015)

5. Petsiuk, V., Das, A., Saenko, K.: Rise: Randomized input sampling for explanation
of black-box models. In: British Machine Vision Conference (BMVC) (2018)

6. Ribeiro, M.T., Singh, S., Guestrin, C.: ”why should i trust you?”: Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (2016)

7. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In:
The European Conference on Computer Vision (ECCV) (2014)



14 Plummer et al.

(a) Patch-based clustering

(b) Full-frame clustering

Fig. 9: Six clusters defining the attributes for two approaches to attribute dis-
covery. (a) Each image is assigned a list of clusters that have patches from this
image. Clustering is performed on salient patches. (b) Each image is assigned
one of the clusters as an attribute. Clustering is performed on full-frame images.


