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Abstract. The goal of automatic Sign Language Production (SLP) is to
translate spoken language to a continuous stream of sign language video
at a level comparable to a human translator. If this was achievable, then
it would revolutionise Deaf hearing communications. Previous work on
predominantly isolated SLP has shown the need for architectures that
are better suited to the continuous domain of full sign sequences.

In this paper, we propose Progressive Transformers, the first SLP model
to translate from discrete spoken language sentences to continuous 3D
sign pose sequences in an end-to-end manner. A novel counter decoding
technique is introduced, that enables continuous sequence generation at
training and inference. We present two model configurations, an end-to-
end network that produces sign direct from text and a stacked network
that utilises a gloss intermediary. We also provide several data augmenta-
tion processes to overcome the problem of drift and drastically improve
the performance of SLP models.

We propose a back translation evaluation mechanism for SLP, presenting
benchmark quantitative results on the challenging RWTH-PHOENIX-
Weather-2014T (PHOENIX14T) dataset and setting baselines for fu-
ture research. Code available at https://github.com/BenSaunders27/,
ProgressiveTransformersSLP.

Keywords: Sign Language Production, Continuous Sequence Synthesis,
Transformers, Sequence-to-Sequence, Human Pose Generation

1 Introduction

Sign language is the language of communication for the Deaf community, a rich vi-
sual language with complex grammatical structures. As it is their native language,
most Deaf people prefer using sign as their main medium of communication, as
opposed to a written form of spoken language. Sign Language Production (SLP),
converting spoken language to continuous sign sequences, is therefore essential
in involving the Deaf in the predominantly spoken language of the wider world.
Previous work has been limited to the production of concatenated isolated signs
[63I64], highlighting the need for improved architectures to properly address the
full remit of continuous sign language.

In this paper, we propose Progressive Transformers, the first SLP model
to translate from text to continuous 3D sign pose sequences in an end-to-end
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Fig. 1. Overview of the Progressive Transformer architecture, showing Text to Gloss
to Pose (T2G2P) and Text to Pose (T2P) model configurations. (PT: Progressive
Transformer, ST: Symbolic Transformer)

manner. Our novelties include an alternative formulation of transformer decoding
for continuous variable sequences, where there is no pre-defined vocabulary.
We introduce a counter decoding technique to predict continuous sequences of
variable lengths by tracking the production progress, hence the name Progressive
Transformers. This approach also enables the driving of timing at inference,
producing stable sign pose outputs. We also propose several data augmentation
methods that assist in reducing drift in model production.

An overview of our approach is shown in Figure[l] We evaluate two different
model configurations, first translating from spoken language to sign pose via
glossﬂ intermediary (T2G2P), as this has been shown to increase translation
performance [7]. In the second configuration we go direct, translating end-to-end
from spoken language to sign (T2P).

To evaluate performance, we propose a back translation evaluation method
for SLP, using a Sign Language Translation (SLT) model to translate back to
spoken language (dashed lines in Figure . We evaluate on the challenging
RWTH-PHOENIX-Weather-2014T (PHOENIX14T) dataset, presenting several
benchmark results to underpin future research. We also share qualitative results to
give further insight of the models performance to the reader, producing accurate
sign pose sequences of an unseen text sentence.

The rest of this paper is organised as follows: In Section [2] we go over the
previous research on SLT and SLP. In Section [3] we introduce our Progressive
Transformer SLP model. Section [] outlines the evaluation protocol and presents
quantitative results, whilst Section [5| showcases qualitative examples. Finally, we
conclude the paper in Section [f] by discussing our findings and possible future work.

! Glosses are a written representation of sign, defined as minimal lexical items.
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2 Related Work

Sign Language Recognition & Translation: Sign language has been a
focus of computer vision researchers for over 30 years [4/52I57], primarily on
isolated Sign Language Recognition (SLR) [46/56] and, relatively recently, the
more demanding task of Continuous Sign Language Recognition (CSLR) [33/6].
However, the majority of work has relied on manual feature representations
[11] and statistical temporal modelling [60]. The availability of larger datasets,
such as RWTH-PHOENIX-Weather-2014 (PHOENIX14) [I7], have enabled the
application of deep learning approaches such as Convolutional Neural Networks
(CNNs) [32134136] and Recurrent Neural Networks (RNNs) [T2135].

Distinct to SLR, the task of SLT was recently introduced by Camgoz et
al. [7], aiming to directly translate sign videos to spoken language sentences
[I58T4562]. SLT is more challenging than CSLR due to the differences in
grammar and ordering between sign and spoken language. Transformer based
models are the current state-of-the-art in SLT, jointly learning the recognition
and translation tasks [§].

Sign Language Production: Previous approaches to SLP have extensively
used animated avatars [20027/42] that can generate realistic sign production,
but rely on phrase lookup and pre-generated sequences. Statistical Machine
Translation (SMT) has also been applied to SLP [28/37], relying on static rule-
based processing that can be difficult to encode.

Recently, deep learning approaches have been applied to the task of SLP
[15U53J61]. Stoll et al. present an initial SLP model using a combination of Neural
Machine Translation (NMT) and Generative Adversarial Networks (GANs) [54].
The authors break the problem into three separate processes that are trained
independently, producing a concatenation of isolated 2D skeleton poses [16]
mapped from sign glosses via a look-up table. Contrary to Stoll et al., our paper
focuses on automatic sign production and learning the mapping between text
and skeleton pose sequences directly, instead of providing this a priori.

The closest work to this paper is that of Zelinka et al., who build a neural-
network-based translator between text and synthesised skeletal pose [63]. The
authors produce a single sign for each source word with a set size of 7 frames,
generating sequences with a fixed length and ordering. In contrast, our model
allows a dynamic length of output sign sequence, learning the correct length and
ordering of each word from the data, whilst using counter decoding to determine
the end of sequence generation. Unlike [63], who work on a proprietary dataset, we
produce results on the publicly available PHOENIX14T, providing a benchmark
for future SLP research.

Neural Machine Translation: NMT aims to learn a mapping between lan-
guage sequences, generating a target sequence from a source sequence of another
language. RNNs were first proposed to solve the sequence-to-sequence problem,
with Kalchbrenner et al. [26] introducing a single RNN that iteratively applied
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a hidden state computation. Further models were later developed [I0I55] that
introduced encoder-decoder architectures, mapping both sequences to an inter-
mediate embedding space. Bahdanau et al. [3] overcame the bottleneck problem
by adding an attention mechanism that facilitated a soft-search over the source
sentence for the context most useful to the target word prediction.

Transformer networks [58], a recent NMT breakthrough, are based solely on
attention mechanisms, generating a representation of the entire source sequence
with global dependencies. Multi-Headed Attention (MHA) is used to model dif-
ferent weighted combinations of an input sequence, improving the representation
power of the model. Transformers have achieved impressive results in many classic
Natural Language Processing (NLP) tasks such as language modelling [13J65] and
sentence representation [I4] alongside other domains including image captioning
[40/66] and action recognition [19]. Related to this work, transformer networks
have previously been applied to continuous output tasks such as speech synthesis
[4150059], music production [24] and image generation [47].

Applying NMT methods to continuous output tasks is a relatively underre-
searched problem. Encoder-decoder models and RNNs have been used to map
text to a human action sequence [I49] whilst adversarial discriminators have
enabled the production of realistic pose [I8J39]. In order to determine sequence
length of continuous outputs, previous works have used a fixed output size that
limits the models flexibility [63], a binary end-of-sequence (EOS) flag [22] or a
continuous representation of an EOS token [44].

3 Progressive Transformers

In this section, we introduce Progressive Transformers, an SLP model which
learns to translate spoken language sentences to continuous sign pose sequences.
Our objective is to learn the conditional probability p(Y|X) of producing a
sequence of signs Y = (y1,...,yy) with U time steps, given a spoken language
sentence X = (x1,...,x7) with T words. Gloss can also be used as intermediary
supervision for the network, formulated as Z = (21, ..., zx) with N glosses, where
the objective is then to learn the conditional probabilities p(Z|X) and p(Y|Z).

Producing a target sign sequence from a reference text sequence poses several
challenges. Firstly, the sequences have drastically varying length, with the number
of frames much larger than the number of words (U >> T'). The sequences also
have a non-monotonic relationship due to the different vocabulary and grammar
used in sign and spoken languages. Finally, the target signs inhabit a continuous
vector space requiring a differing representation to the discrete space of text.

To address the production of continuous sign sequences, we propose a pro-
gressive transformer-based architecture that allows translation from a symbolic
to a continuous sequence domain. We first formalise a Symbolic Transformer
architecture, converting an input to a symbolic target feature space, as detailed
in Figure . This is used in our Text to Gloss to Pose (T2G2P) model to convert
from spoken language to gloss representation as an intermediary step before pose
production, as seen in Figure
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Fig. 2. Architecture details of (a) Symbolic and (b) Progressive Transformers.
(ST: Symbolic Transformer, PT: Progressive Transformer, PE: Positional Encoding,
CE: Counter Embedding, MHA: Multi-Head Attention)

We then describe the Progressive Transformer architecture, translating from a
symbolic input to a continuous output representation, as shown in Figure [2b. We
use this model for the production of realistic and understandable sign language
sequences, either via gloss supervision in the T2G2P model or direct from spoken
language in our end-to-end Text to Pose (T2P) model. To enable sequence length
prediction of a continuous output, we introduce a counter decoding that allows
the model to track the progress of sequence generation. In the remainder of this
section we describe each component of the architecture in detail.

3.1 Symbolic Transformer

We build on the classic transformer [58], a model designed to learn the mapping
between symbolic source and target languages. In this work, Symbolic Trans-
formers (Figure ) translate from source text to target gloss sequences. As
per the standard NMT pipeline [43], we first embed the source, x;, and target,
zn, tokens via a linear embedding layer, to represent the one-hot-vector in a
higher-dimensional space where tokens with similar meanings are closer. Symbolic
embedding, with weight, W, and bias, b, can be formulated as:

wy = W2 2y + b7, g =W 2 + b 1)

where w; and g,, are the vector representations of the source and target tokens.
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Transformer networks do not have a notion of word order, as all source
tokens are fed to the network simultaneously without positional information.
To compensate for this and provide temporal ordering, we apply a temporal
embedding layer after each input embedding. For the symbolic transformer, we
apply positional encoding [58], as:

W = wy + PositionalEncoding(t) (2)

Gn = gn + PositionalEncoding(n) 3)

where PositionalEncoding is a predefined sinusoidal function conditioned on the
relative sequence position ¢ or n.

Our symbolic transformer model consists of an encoder-decoder architecture.
The encoder first learns the contextual representation of the source sequence
through self-attention mechanisms, understanding each input token in relation to
the full sequence. The decoder then determines the mapping between the source
and target sequences, aligning the representation sub-spaces and generating target
predictions in an auto-regressive manner.

The symbolic encoder (Eg) consists of a stack of L identical layers, each
containing 2 sub-layers. Given the temporally encoded source embeddings, w;, a
MHA mechanism first generates a weighted contextual representation, performing
multiple projections of scaled dot-product attention. This aims to learn the
relationship between each token of the sequence and how relevant each time step
is in the context of the full sequence. Formally, scaled dot-product attention
outputs a vector combination of values, V', weighted by the relevant queries, @,
keys, K, and dimensionality, d:

T
Attention(Q, K, V) = softmax( QK
Vi,

MHA stacks parallel attention mechanisms in h different mappings of the same
queries, keys and values, each with varied learnt parameters. This allows different
representations of the input to be generated, learning complementary information
in different sub-spaces. The outputs of each head are then concatenated together
and projected forward via a final linear layer, as:

WV (4)

MHA(Q, K,V) = [head,, ..., head,] - WO,
where head; = Attention(QWiQ, KwWE . vw)) (5)
and WO7WZ-Q,W1-K and W, are weights related to each input variable.
The outputs of MHA are then fed into the second sub-layer of a non-linear
feed-forward projection. A residual connection [23] and subsequent layer norm

[2] is employed around each of the sub-layers, to aid training. The final symbolic
encoder output can be formulated as:

hy = Es(W¢|w1:r) (6)

where h; is the contextual representation of the source sequence.
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The symbolic decoder (Dg) is an auto-regressive architecture that produces
a single token at each time-step. The positionally embedded target sequences,
§n, are passed through an initial MHA self-attention layer similar to the encoder,
with an extra masking operation. Alongside the fact that the targets are offset
from the inputs by one position, the masking of future frames prevents the model
from attending to subsequent time steps in the sequence.

A further MHA sub-layer is then applied, which combines encoder and decoder
representations and learns the alignment between the source and target sequences.
The final sub-layer is a feed forward layer, as in the encoder. After all decoder
layers are processed, a final non-linear feed forward layer is applied, with a
softmax operation to generate the most likely output token at each time step.
The output of the symbolic decoder can be formulated as:

Zn41 = argmaX DS(gn|gl:n71; hl:T) (7>

where 2,41 is the output at time n + 1, from a target vocabulary of size .

3.2 Progressive Transformer

We now adapt our symbolic transformer architecture to cope with continuous
outputs, in order to convert source sequences to a continuous target domain.
In this work, Progressive Transformers (Figure ) translate from the symbolic
domains of gloss or text to continuous sign pose sequences that represent the
motion of a signer producing a sentence of sign language. The model must produce
skeleton pose outputs that can both express an accurate translation of the given
input sequence and a realistic sign pose sequence.

We represent each sign pose frame, vy, as a continuous vector of the 3D
joint positions of the signer. These joint values are first passed through a linear
embedding layer, allowing sign poses of similar content to be closely represented
in the dense space. The continuous embedding layer can be formulated as:

where j, is the embedded 3D joint coordinates of each frame, y,,.

We next apply a counter embedding layer to the sign poses as temporal
embedding (CE in Figure . The counter, ¢, holds a value between 0 and
1, representing the frame position relative to the total sequence length. The
joint embeddings, j,, are concatenated with the respective counter value, ¢,
formulated as:

Ju = [ju, CounterEmbedding(u)] 9)

where CounterEmbedding is a linear projection of the counter value for frame wu.

At each time-step, counter values are predicted alongside the skeleton pose, as
shown in Figure [3) with sequence generation concluded once the counter reaches
1. We call this process Counter Decoding, determining the progress of sequence
generation and providing a way to predict the end of sequence without the use
of a tokenised vocabulary.
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Fig. 3. Counter decoding example, showing the simultaneous prediction of sign pose,
Ju, and counter, &, € {0: 1}, with é = 1.0 denoting end of sequence

The counter provides the model with information relating to the length and
speed of each sign pose sequence, determining the sign duration. At inference, we
drive the sequence generation by replacing the predicted counter value, ¢, with
the ground truth timing information, ¢*, to produce a stable output sequence.

The Progressive Transformer also consists of an encoder-decoder architecture.
Due to the input coming from a symbolic source, the encoder has a similar setup
to the symbolic transformer, learning a contextual representation of the input
sequence. As the representation will ultimately be used for the end goal of SLP,
these representations must also contain sufficient context to fully and accurately
reproduce sign. Taking as input the temporally embedded source embeddings,
Wy, the encoder can be formulated as:

Ty = ES('LZJch)l:T) (10)

where Fg is the symbolic encoder and r; is the encoded source representation.

The progressive decoder (Dp) is an auto-regressive model that produces
a sign pose frame at each time-step, alongside the counter value described
above. Distinct from symbolic transformers, the progressive decoder produces
continuous sequences that hold a sparse representation in a large continuous
sub-space. The counter-concatenated joint embeddings, }'m are extracted as target
input, representing the sign information of each frame.

A self-attention MHA sub-layer is first applied, with target masking to avoid
attending to future positions. A further MHA mechanism is then used to map
the symbolic representations from the encoder to the continuous domain of the
decoder, learning the important alignment between spoken and sign languages.

A final feed forward sub-layer follows, with each sub-layer followed by a
residual connection and layer normalisation as before. No softmax layer is used
as the skeleton joint coordinates can be regressed directly and do not require
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stochastic prediction. The progressive decoder output can be formulated as:

[gu+1véu+1] = DP(ju‘jlzuflarlzT) (]-]-)

where ¢,11 corresponds to the 3D joint positions representing the produced
sign pose of frame u + 1 and ¢, is the respective counter value. The decoder
learns to generate one frame at a time until the predicted counter value reaches 1,
determining the end of sequence. Once the full sign pose sequence is produced, the
model is trained end-to-end using the Mean Squared Error (MSE) loss between
the predicted sequence, 1., and the ground truth, yi.;:

Il .
Luse =g Z(yw — )’ (12)
i=1

The progressive transformer outputs, 1.y, represent the 3D skeleton joint
positions of each frame of a produced sign sequence. To ease the visual comparison
with reference sequences, we apply Dynamic Time Warping (DTW) [5] to align
the produced sign pose sequences. Animating a video from this sequence is then
a trivial task, plotting the joints and connecting the relevant bones, with timing
information provided from the counter. These 3D joints could subsequently be
used to animate an avatar [30/42] or condition a GAN [2567].

4 Quantitative Experiments

In this section, we share our SLP experimental setup and report experimental
results. We first provide dataset and evaluation details, outlining back trans-
lation. We then evaluate both symbolic and progressive transformer models,
demonstrating results of data augmentation and model configuration.

4.1 Sign Language Production Dataset

Forster et al. released PHOENIX14 [I7] as a large video-based corpus containing
parallel sequences of German Sign Language - Deutsche Gebérdensprache (DGS)
and spoken text extracted from German weather forecast recordings. This dataset
is ideal for computational sign language research due to the provision of gloss
level annotations, becoming the primary benchmark for both SLR, and CSLR.
In this work, we use the publicly available PHOENIX14T dataset introduced
by Camgoz et al. [7], a continuous SLT extension of the original PHOENIX14.
This corpus includes parallel sign videos and German translation sequences with
redefined segmentation boundaries generated using the forced alignment approach
of [36]. 8257 videos of 9 different signers are provided, with a vocabulary of 2887
German words and 1066 different sign glosses from a combined 835,356 frames.
We train our SLP network to generate sequences of 3D skeleton pose. 2D
joint positions are first extracted from each video using OpenPose [9]. We then
utilise the skeletal model estimation improvements presented in [63] to lift the
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Fig. 4. Skeleton pose extraction, using OpenPose [9] and 2D to 3D mapping [63]

2D joint positions to 3D. An iterative inverse kinematics approach is applied
to minimise 3D pose whilst maintaining consistent bone length and correcting
misplaced joints. Finally, we apply skeleton normalisation similar to [53] and
represent 3D joints as z, y and z coordinates. An example is shown in Figure [

4.2 Evaluation Detalils

In this work, we propose back-translation as a means of SLP evaluation, trans-
lating back from produced sign to spoken language. This provides a measure of
how understandable the productions are, and how much translation content is
preserved. Evaluation of a generative model is often difficult but we find a close
correspondence between back translation score and the visual production quality.
We liken it to the wide use of the inception score for generative models [51], using
a pre-trained classifier. Similarly, recent SLP work used an SLR discriminator to
evaluate isolated skeletons [61], but did not measure the translation performance.

We utilise the state-of-the-art SLT [§] as our back translation model, modified
to take sign pose sequences as input. This is again trained on the PHOENIX14T
dataset, ensuring a robust translation from sign to text. We generate spoken
language translations of the produced sign pose sequences and compute BLEU
and ROUGE scores. We provide BLEU n-grams from 1 to 4 for completeness.

In the following experiments, our symbolic and progressive transformer models
are each built with 2 layers, 8 heads and embedding size of 256. All parts of our
network are trained with Xavier initialisation [21], Adam optimization [29] with
default parameters and a learning rate of 1073, Our code is based on Kreutzer et
al.’s NMT toolkit, JoeyNMT [3§], and implemented using PyTorch [48].

4.3 Symbolic Transformer: Text to Gloss

Our first experiment measures the performance of the symbolic transformer
architecture for sign language understanding. We train our symbolic transformer
to predict gloss representations from source spoken language sentences. Table
shows our model achieves state-of-the-art results, significantly outperforming
that of Stoll et al. [53], who use an encoder-decoder network with 4 layers of
1000 Gated Recurrent Units (GRUs). This supports our use of the proposed
transformer architecture for sign language understanding.
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Table 1. Symbolic Transformer results for Text to Gloss translation

DEV SET TEST SET
Approach: ‘BLEU»4 BLEU-3 BLEU-2 BLEU-1 ROUGE|BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

Stoll et al. [53]| 16.34 2230 3247  50.15  48.42 1526 21.54  32.25 50.67  48.10
Ours| 20.23 27.36 38.21 55.65 55.41 19.10 26.24 37.10 55.18 54.55

Table 2. Progressive Transformer results for Gloss to Sign Pose production, with
multiple data augmentation techniques. FP: Future Prediction, GN: Gaussian Noise

DEV SET TEST SET
Approach: ‘BLEU—4 BLEU-3 BLEU-2 BLEU-1 ROUGE‘BLEUA BLEU-3 BLEU-2 BLEU-1 ROUGE

Base| 7.04 9.10 13.12 2420  25.53 5.03 6.89 10.81  23.03  23.31

Future Prediction| 9.96 12.71 17.83  30.03  31.03 8.38 11.04 16.41  28.94 29.73
Just Counter| 11.04 13.86 19.05 31.16  32.45 9.16 11.96  17.41  30.08  30.41
Gaussian Noise| 11.88  15.07  20.61 32.53 34.19 10.02 1296 18.58  31.11 31.83
FP & GN| 11.93  15.08 20.50 32.40  34.01 10.43 13.51 19.19  31.80 32.02

4.4 Progressive Transformer: Gloss to Pose

In our next set of experiments, we evaluate our progressive transformer and its
capability to produce a continuous sign pose sequence from a given symbolic
input. As a baseline, we train a progressive transformer model to translate from
gloss to sign pose without augmentation, with results shown in Table [2| (Base).
We believe our base progressive model suffers from prediction drift, with
erroneous predictions accumulating over time. As transformer models are trained
to predict the next time-step of all ground truth inputs, they are often not robust
to noise in target inputs. At inference time, with predictions based off previous
outputs, errors are propagated throughout the full sequence generation, quickly
leading to poor quality production. The impact of drift is heightened due to
the continuous distribution of the target skeleton poses. As neighbouring frames
differ little in content, a model learns to just copy the previous ground truth
input and receive a small loss penalty. We thus experiment with various data
augmentation approaches in order to overcome drift and improve performance.

Future Prediction Our first data augmentation method is conditional future
prediction, requiring the model to predict more than just the next frame in the
sequence. Experimentally, we find the best performance comes from a prediction
of all of the next 10 frames from the current time step. As can be seen in Table
prediction of future time steps increases performance from the base architecture.
We believe this is because the model now cannot rely on just copying the previous
frame, as there are more considerable changes to the skeleton positions in 10
frames time. The underlying structure and movement of sign has to be learnt,
encoding how each gloss is represented and reproduced in the training data.

Just Counter Inspired by the memorisation capabilities of transformer models,
we next experiment with a pure memorisation approach. Only the counter
values are provided as target input to the model, as opposed to the usual full
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Table 3. Results of the Text2Pose (T2P) and Text2Gloss2Pose (T2G2P) network
configurations for Text to Sign Pose production

DEV SET TEST SET
Configuration: ‘BLEU—4 BLEU-3 BLEU-2 BLEU-1 ROUGE‘BLEU—4 BLEU-3 BLEU-2 BLEU-1 ROUGE

T2P| 11.82 14.80 19.97 31.41  33.18 | 10.51 13.54 19.04  31.36  32.46
T2G2P| 11.43 1471  20.71  33.12  34.05 9.68 1253 1762  29.74  31.07

3D skeleton joint positions. We show a further performance increase with this
approach, considerably increasing the BLEU-4 score as shown in Table

We believe the just counter model setup helps to allay the effect of drift, as
the model now must learn to decode the target sign pose solely from the counter
position, without relying on the ground truth joint embeddings it previously had
access to. This setup is now identical at both training and inference, with the
model having to generalise only to new data rather than new prediction inputs.

Gaussian Noise Our final augmentation experiment examines the effect of
applying noise to the skeleton pose sequences during training, increasing the
variety of data to train a more robust model. For each joint, statistics on the
positional distribution of the previous epoch are collected, with randomly sampled
noise applied to the inputs of the next epoch. Applied noise is multiplied by
a noise factor, r,, with empirical validation suggesting r,, = 5 gives the best
performance. An increase of Gaussian noise causes the model to become more
robust to prediction inputs, as it must learn to correct the augmented inputs
back to the target outputs.

Table [2[ (FP & GN) shows that the best BLEU-4 performance comes from a
combination of future prediction and Gaussian noise augmentation. The model
must learn to cope with both multi-frame prediction and a noisy input, building
a firm robustness to drift. We continue with this setup for further experiments.

4.5 Text2Pose v Text2Gloss2Pose

Our final experiment evaluates the two network configurations outlined in Figure
sign production either direct from text or via a gloss intermediary. Text to Pose
(T2P) consists of a single progressive transformer model with spoken language
input, learning to jointly translate from the domain of spoken language to sign
and subsequently produce meaningful sign representations. Text to Gloss to Pose
(T2G2P) uses an initial symbolic transformer to convert to gloss, which is then
input into a further progressive transformer to produce sign pose sequences.
As can be seen from Table [3] the T2P model outperforms that of T2G2P.
This is surprising, as a large body of previous work has suggested that using
gloss as intermediary helps networks learn [7]. However, we believe this is because
there is more information available within spoken language compared to a
gloss representation, with more tokens per sequence to predict from. Predicting
gloss sequences as an intermediary can act as a bottleneck, as all information
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und nun die wettervorhersage fiir morgen sonntag den sechsten september
(trans: and now the weather forecast for tomorrow sunday the sixth of september)
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heute nacht minus zwei grad an der nordsee in der mitte mitunter werte unter minus zwanzig grad
(trans: tonight minus two degrees on the north sea in the middle sometimes below minus twenty degrees)

Produced Output

Ground Truth

Fig. 5. Examples of produced sign pose sequences. The top row shows the spoken
language input from the unseen validation set alongside English translation. The middle
row presents our produced sign pose sequence from this text input, with the bottom
row displaying the ground truth video for comparison.

required for production needs to be present in the gloss. Therefore, any contextual
information present in the source text can be lost.

The success of the T2P network shows that our progressive transformer
model is powerful enough to complete two sub-tasks; firstly mapping spoken
language sequences to a sign representation, then producing an accurate sign
pose recreation. This is important for future scaling and application of the SLP
model architecture, as many sign language domains do not have gloss availability.

Furthermore, our final BLEU-4 scores outperform similar end-to-end Sign to
Text methods which do not utilize gloss information [7] (9.94 BLEU-4). Note
that this is an unfair direct comparison, but it does provide an indication of
model performance and the quality of the produced sign pose sequences.

5 Qualitative Experiments

In this section we report qualitative results for our progressive transformer model.
We share snapshot examples of produced sign pose sequences in Figure [5, with
more examples provided in supplementary material. The unseen spoken language
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sequence is shown as input alongside the sign pose sequence produced by our
Progressive Transformer model, with ground truth video for comparison.

As can be seen from the provided examples, our SLP model produces visually
pleasing and realistic looking sign with a close correspondence to the ground truth
video. Body motion is smooth and accurate, whilst hand shapes are meaningful
if a little under-expressed. We find that the most difficult production occurs with
proper nouns and specific entities, due to the lack of grammatical context and
examples in the training data.

These examples show that regressing continuous sequences can be successfully
achieved using an attention-based mechanism. The predicted joint locations for
neighbouring frames are closely positioned, showing that the model has learnt the
subtle movement of the signer. Smooth transitions between signs are produced,
highlighting a difference from the discrete generation of spoken language.

6 Conclusion

Sign Language Production (SLP) is an important task to improve communica-
tion between the Deaf and hearing. Previous work has focused on producing
concatenated isolated signs instead of full continuous sign language sequences. In
this paper, we proposed Progressive Transformers, a novel transformer architec-
ture that can translate from discrete spoken language to continuous sign pose
sequences. We introduced a counter decoding that enables continuous sequence
generation without the need for an explicit end of sequence token. Two model
configurations were presented, an end-to-end network that produces sign direct
from text and a stacked network that utilises a gloss intermediary.

We evaluated our approach on the challenging PHOENIX14T dataset, setting
baselines for future research with a back translation evaluation mechanism. Our
experiments showed the importance of several data augmentation techniques
to reduce model drift and improve SLP performance. Furthermore, we have
shown that a direct text to pose translation configuration can outperform a gloss
intermediary model, meaning SLP models are not limited to only training on
data where expensive gloss annotation is available.

As future work, we would like to expand our network to multi-channel sign
production, focusing on non-manual aspects of sign language such as body pose,
facial expressions and mouthings. It would be interesting to condition a GAN to
produce sign videos, learning a prior for each sign represented in the data.
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